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Koroška cesta 160, 2000 Maribor, Slovenia

email: bojan.hvala@um.si

Abstract. According to Seebach’s theorem there exist six points inside a triangle
with Cevian triangles similar to the reference triangle. Besides the centroid, other
five points M,M ′,MA,MB, MC are generally not constructable with ruler and
compass. We present an access to these five points using an additional tool: a
possibility to draw a conic through five given points. We provide information on
barycentric coordinates of these five points and prove that MAMBMC is a central
triangle of type 2 and that points M and M ′ are Brocardians of each other.
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1. Introduction

K. Seebach’s theorem [6] states that if a triple of angles (A1, B1, C1), A1 +B1 +C1 = 180◦

is chosen, we find exactly one point P inside a triangle ABC such that it’s Cevian triangle
APBPCP has angles: (AP , BP , CP ) = (A1, B1, C1). We will call ordered triples (A1, B1, C1)
of positive numbers satisfying A1 +B1 +C1 = 180◦ angle triples, and the related point P the
point, corresponding to a certain angle triple.

In this article we will consider points, corresponding to angle triples, consisting of per-
mutations of angles A,B,C of the reference triangle ABC. The point, corresponding to the
triple (A,B,C) is the centroid G. Points M and M ′, corresponding to the 3-cycles, i.e., the
triples (C,A,B) and (B,C,A), were considered in [1] and were called Cevian Brocard points
due to their Brocard-like property. The authors in [1] also raised the question regarding
points MA,MB,MC , corresponding to transpositions, i.e., to the triples (A,C,B), (C,B,A)
and (B,A,C).

Since the centroid G and the above mentioned five points have the same angle set
{A,B,C} of their Cevian triangles and they have therefore a similar ‘Cevian part of their
genome’, we will call MA, MB, MC , M , and M ′ Cevian cousins of the centroid G.

In Section 2 we are going to prove that points M,M ′,MA,MB and MC are generally not
constructible with ruler and compass. (See [5] for a comprehensive review of many different
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Figure 1: Points G,M,M ′,MA,MB,MC having Cevian triangles similar
to the reference triangle. Example: Cevian triangle of MB.

aspects of constructability.) In order to investigate these points, we want to draw them using
some additional tools. In Section 3 we will describe the construction of these points using a
tool for drawing a conic through five given points P1, . . . , P5. We will denote this conic by
Con5(P1, . . . , P5). Constructions of this kind were already considered, for instance, in [2, 7].
The effective realization of these constructions is possible in many computer programs for
dynamic geometry, like Cabri-Geometry, GeoGebra etc., which integrate the conics as the
base objects. Moreover, using Pascal’s theorem, the conic through five given points can be
drawn as soon as a program for dynamic geometry provides a possibility to draw the trace of
a point. In Section 4 we will consider the barycentric coordinates of the centroid’s cousins,
and on this basis we derive some further relations among them.

2. Five points that are generally not constructable with ruler and

compass

The basis of our considerations regarding the constructibility of the points M , M ′, MA, MB,
and MC with ruler and compass is the following result, which follows from the main theorem
in [3]:

Theorem 1. Let ABC be positively oriented triangle and (A1, B1, C1) an angle triple. For
{X, Y, Z} = {A,B,C} define:

mX = (cot Y1 + cotZ1) sinX, nx,Y = (cotX1 sin Y − cosY ) (1)

and

p(α) = mAα
3 + (nc,B −mA na,C + nb,C nc,A)α

2 + (nb,C mB − na,C nc,B − nc,A)α−mB. (2)

Since (A + A1) + (B + B1) + (C + C1) = 360◦, at most one of the sums in brackets can be
equal to 180◦. Suppose A + A1 6= 180◦ and C + C1 6= 180◦. Then the point P corresponding
to an angle triple (A1, B1, C1) has trilinear coordinates P = (α : 1 : γ), where α is the only

positive root of the polynomial p(α) in (2) such that also γ =
nc,Aα+mB

α− na,C

is positive.
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In case of a point MA we have (A1, B1, C1) = (A,C,B). Compute the coefficients:

mA =
a2

bc
, mB =

c

a
, mC =

b

a
, nc,B = nb,C = 0,

na,C =
c2 − a2

ab
, nc,A =

a2 − b2

bc
, na,B =

b2 − a2

ac
, nb,A =

a2 − c2

bc
.

(3)

E.g., for the triangle with the sides a = b = 2, c = 3, the polynomial p has the form

p(α) = 4α3 − 5α2 − 9.

This polynomial has exactly one real root α0 which is not rational. Therefore the number
α0 is not constructible with ruler and compass. If point MA would be constructible with
ruler and compass, we could construct actual trilinear coordinates MA = (α1 : β1 : γ1), and
since

α1

β1

=
α0

1
, also the root α0 would be constructible. The contradiction proves that in this

triangle MA is not constructible with ruler and compass.
In a similar way we can also prove thatMB,MC ,M andM ′ are generally not constructable

with ruler and compass. In the case of the Cevian Brocard points M and M ′ we knew this
before, since the authors have noticed this in [1].

3. The constructions of the points MA, MB, MC, M , and M ′

The only information we have about the points MA, MB, MC , M , and M ′ are the angles of
their Cevian triangles. In this situation the following result [3, section 2] is useful.

Theorem 2. Let (A1, B1, C1) be an angle triple and P the corresponding point inside the
triangle ABC. Define the coefficients mX and nx,Y as given in (1). Then the point P lies on
three conics with the following trilinear equations:

βγ = α (mA α + nc,B β + nb,C γ),

αγ = β (nc,A α +mB β + na,C γ), (4)

αβ = γ (nb,A α + na,B β +mC γ).

Each of the listed conics passes through two vertices of the triangle. Moreover, each of
them also passes through one of the points of the anticomplementary triangle ÃB̃C̃. This
follows from the relations of the type a+c nc,B+b nb,C = bc

a
mA, which can be verified directly.

However, in special cases as listed below this will be evident even without this last relation.
We therefore already have three points on each of the conics. In order to provide a ’conic’
construction of a point P we just need to detect two more constructible points on at least
two of the conics in (4). Point P will then be the only intersection of these two conics inside
the triangle.

In the case P = MA the related coefficients are already prepared in (3). We write the
equations (4) of the associated conics and recognize, that their equations are much shorter in
barycentric coordinates. Therefore, from now on, we switch to barycentrics. Point MA thus
lies on conics A1, A2, and A3 with the respective equations

x2 = yz,

c2y2 = (b2 − a2)xy + b2xz + (a2 − c2)yz, (5)

b2z2 = c2xy + (c2 − a2)xz + (a2 − b2)yz.
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Figure 2: Conics A2 and A3

The conics A2 and A3 seem to appear somehow symmetrically. Due to this symmetry, and
in spite of the simplicity of A1, perhaps the easiest way to construct MA is as an intersection
of A2 and A3. This is the background for the following construction (see Figure 2).

Theorem 3. Let Ã6B̃6C̃6 be the tangential triangle (i.e., the anticevian triangle of the sym-
median point X6).

Let X2 be the intersection of the sideline BC with the parallel to the line BÃ6 through A

and W the intersection of the line AX2 with the perpendicular to the sideline BC at B. The
bisector of the segment BW meets sideline AB at point Z2.

Next we interchange the roles of B and C: the intersection of the sideline BC with the par-
allel to the line CÃ6 through A is X3 and W ′ is the intersection of the line AX3 with the
perpendicular to the sideline BC at C. The bisector of the segment CW ′ meets sideline AC

at Y3.

Then the only intersection of the conics Con5(A,C, B̃,X2, Z2) and Con5(A,B, C̃,X3, Y3) in-
side the triangle ABC is MA.

This theorem follows from an easily verified fact that A2 = Con5(A,C, B̃,X2, Z2) and
A3 = Con5(A,B, C̃,X3, Y3).

Similarly, a convenient way to construct MB andMC is to start with an adequate vertex of
the anticevian triangle Ã6B̃6C̃6 of the symmedian point X6 and then construct the analogues
of A2 and A3.
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Let us now move our attention to the point M . Its corresponding angle triple is
(A1, B1, C1) = (C,A,B). Computing the coefficients

mA =
c

b
, mB =

a

c
, mC =

b

a
, na,C = nc,B = nb,A = 0,

nb,C =
c2 − a2

ab
, nc,A =

a2 − b2

bc
, na,B =

b2 − c2

ac
,

applying Theorem 2 and switching to barycentrics, we find that M lies on the following conics
M1, M2, and M3:

c2x2 = (a2 − c2)xz + a2yz,

a2y2 = (b2 − a2)xy + b2xz,

b2z2 = (c2 − b2)yz + c2xy.

Here we notice the following: the only intersection of M1 with the sideline AB is B, thus AB
is a tangent of M1 at B.

Having five points of a conic, we can construct a tangent of a conic at one of these points
[8, section 12.5.1]. Reversing this construction, having four points of a conic and a tangent
to it at one of the points, we can construct a fifth point on the conic as follows:

Lemma 4. Let T, U, V,W be four points on a conic C an let t be a tangent to C at T . Choose
point R on line t and find the intersections: P of lines TU and VW , Q of lines TW and PR

and E of lines V R and UQ. Then point E lies on a conic C.

Having four points on M1 and knowing that the sideline AB is tangent to M1 at B,
we apply the Lemma, find a fifth point on the conic, and draw it. To accelerate our work in
constructing conics, using the programs for dynamic geometry, we can prepare a macro, based
on Lemma 4, to construct a conic through given four points P1, . . . , P4 and a given point T
on the tangent to the conic at P1. We will denote such a conic by Con41(P1, P2, P3, P4, T ).

Now we can describe the construction of point M , which is somehow similar to that
of MA, with the difference, that the role of X6 is now played by the first Brocard point
Ω = (b−2 : c−2 : a−2).

Theorem 5. Let Ω be the first Brocard point of ABC and ÃΩB̃ΩC̃Ω the anticevian triangle
of Ω. Let YM be the intersection of the sideline CA with the parallel to the line AB̃Ω through
B. Similarly, let ZM be the intersection of AB with the parallel to BC̃Ω through C, and XM

the intersection of BC with the parallel of CÃΩ through A.

Then M is the intersection of the conics Con41(B,C, Ã, YM , A), Con41(C,A, B̃, ZM , B), and
Con41(A,B, C̃,XM , C).

Again, this theorem follows from the easily verified fact that the quoted conics are M1,
M2, and M3. Figure 3 shows the construction of M as the intersection of these three conics,
each of them tangent to one of the triangle sides at one of the vertices of a triangle.

In case of the point M ′, the situation is similar, with two differences: in the constructions
of the conics M′

1, M
′

2, and M′

3, the role of the first Brocard point is played by the second
Brocard point Ω′ = (c−2 : a−2 : b−2); and the direction of circulation is reversed (Y ′M is the
intersection of the sideline AC with the parallel to the line CB̃′

Ω
through B, etc.). Again,

each of the appearing three conics is tangent to one of the triangle sides at one of the vertices
of a triangle.
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Figure 3: Conics M1,M2 and M3

Both configurations, the one in Figure 3 and the similar one, leading to the point M ′,
remind us of similar configurations of three circles, each tangent to one of the triangle sides,
which appear in the constructions of Brocard points Ω and Ω′.

As we will see in the next section, once we have one of the points M or M ′, there is no
need to apply ‘conic’ constructions to construct the other one. We can draw it with a simple
compass and ruler construction (Figure 4).

4. On barycentric coordinates of the considered five points

As a side result of our considerations up to now we can derive some results on the barycentric
coordinates of the considered five points, which will bring to light some additional connections
between them.

It follows from Seebach’s theorem and from considerations in [3] that the triple of the
barycentrics of MA is the only solution of the system (5) with all three coordinates being
positive. This fact provides an opportunity to find the barycentric coordinates of MA and
similarly of MB and MC . In case of MA, choose y = 1 and apply z = x2 to the second and
third equation of (5). This leads us to the following result:

Theorem 6. Let τ(a, b, c) be the only positive root of the equation

b2x3 + (a2 − c2)x2 + (b2 − a2)x− c2 = 0.

Then the respective barycentric coordinates of MA, MB, and MC are

MA = (τ(a, b, c) : 1 : τ 2(a, b, c)) , MB = (τ 2(b, c, a) : τ(b, c, a) : 1) ,

MC = (1 : τ 2(c, a, b) : τ(c, a, b)) .
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Note that due to the symmetry of the cubic equation above we have τ(a, c, b) = τ−1(a, b, c)
and therefore MA = (1 : τ(a, c, b) : τ(a, b, c)). Switching for a moment to trilinears and defin-
ing f(a, b, c) = 1

a
and g(a, b, c) = 1

a
τ(c, b, a), we notice that MAMBMC is a (f, g)-central

triangle of type 2 as defined in [4].

In a similar way we can derive some information on barycentric coordinates of the points
M and M ′:

Theorem 7. Let η(a, b, c) (or shortly ηa) be the only positive root of the equation

b2c2x3 − (a2 − b2)(a2 − c2)x2 + a2(−2a2 + b2 + c2)x− a4 = 0

such that also the numbers
[(

a2

b2
− 1

)

ηa +
a2

b2

]

and
[(

a2

c2
− 1

)

ηa +
a2

c2

]

are positive.

Then the barycentric coordinates of M and M ′ are

M =
(

η2a : ηa :
[(

a2

b2
− 1

)

ηa +
a2

b2

])

and M ′ =
(

η2a :
[(

a2

c2
− 1

)

ηa +
a2

c2

]

: ηa

)

.

This result can be improved using the following observation. Triangles ABC and BCA

have the same Cevian Brocard point M . Analogue to ηa = η(a, b, c) we denote ηb = η(b, c, a).
Applying Theorem 7, we compare the barycentrics of M with respect to the triangles ABC

and BCA, namely

(

η2a : ηa :
[(

a2

b2
− 1

)

ηa +
a2

b2

])

and
(

η2b : ηb :
[(

b2

c2
− 1

)

ηb +
b2

c2

])

.

Since M is the same point, the ratio of the coordinates regarding sides of triangle of lenghts
b and c are the same:

ηa :

[(

a2

b2
− 1

)

ηa +
a2

b2

]

= η2b : ηb,

which implies
[

(

a2

b2
− 1

)

ηa +
a2

b2

]

=
ηa

ηb
.

Moreover, using the same argument for the triangle CAB, we derive ηaηbηc = 1. After
repeating the whole procedure also for the point M ′, we can state the following improved
result:

Theorem 8. Under the assumptions of Theorem 7 and denoting ηa = η(a, b, c) and ηb =
η(b, c, a), the barycentric coordinates of the points M and M ′ are

M = (ηaηb : ηb : 1) and M ′ = (ηa : ηaηb : 1) .

Remember that, given a point P = (u : v : w), we define the Brocardians of the point P
as

P← =
(

v−1 : w−1 : u−1
)

and P→ =
(

w−1 : u−1 : v−1
)

(see [8]). According to Theorem 8, the points M ′ and M are Brocardians of each other:
M ′ = M← and M = M ′

→
. Given one of the points M or M ′, the other one can therefore be

simply constructed applying the construction [8, section 8.4].
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Figure 4: The construction of the point M ′ if point M is given

5. Some concluding remarks

The situation considered in this paper could be generalized. As well as the centroid, also
every other triangle center P has five Cevian cousins PA, PB, PC ,MP and M ′

P , i.e., points
with the same Cevian triangle angle set. The conjecture is that PAPBPC is always a central
triangle of type 2 and that MP and M ′

P are Brocardians of each other.
When looking at the Figure 1, the first thought is that the six points might lie on an

ellipse. Computer experiments do not confirm it: a considerable enlargement shows that the
conic through five of the points fails to include the sixth one. The same conclusion can be
reached by computing the 6 × 6 determinant with rows of the type (x2

i , y
2

i , z
2

i , xiyi, xizi, yizi)
for i = 1, . . . , 6, where (xi : yi : zi) are the barycentrics of the considered six points. The
determinant is generally not vanishing.
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