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Rose Curves with Chebyshev Polynomials
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Abstract. In this paper, we present a class of curves derived from a geometrical
construction. We take points on two half-lines (or lines). The first point is on
one of the half-lines and the second one is on the other half-line, while the next
is again on the first half-line, and so on. The distance of two consecutive points
is the unit. The orbits of these points when the angle of the lines goes from zero
to 2π are similar to lemniscates and rose curves. For determining the parametric
equation systems of the curves we use Chebyshev polynomials.
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1. Introduction

Let e be a half-line given by the equation cosα · y = sinα · x, where 0 ≤ α ≤ π/2 and x ≥ 0.
The initial point of e is the origin O. Let the point A0 coincide with O and the point A1

be given on e at the distance 1 to the point O. The point A2 on the x-axis has the distance
1 to A1 while A2 6= O. Recursively, we define the point Ai, i ≥ 2, on the line e or on the
x-axis depending on whether i is odd or even, respectively, at the distance Ai−1Ai = 1, where
Ai 6= Ai−2. If α is less then π/(2i− 2) the point Ai exists. Figure 1 shows the first six points.
We obtain a similar geometric construction when A1 lies on the x-axis.

In [3] the author presented the parametric equation system of the orbits of the vertices
A1, A2, . . . , when α goes from 0 to π/2 — not only when A1 is on the line e, but also when
it is on the x-axis. The orbit of the vertex An, n ≥ 1, satisfies

xn(α) = cosα Un−1(cosα)

yn(α) = sinα Un−1(cosα)
for

{

0 ≤ α ≤ π

2
if n = 1,

0 ≤ α <
π

2(n− 1)
otherwise,

(1)

where Un−1(x) is a Chebishev polynomial of the second kind (see Section 2.1 on page 222, or
[4]). In Figure 1 the orbits of the vertices A1, A2, A3 are displayed.

For n ∈ Z\{0} let us extend the domain of the eq. (1) to α ∈ [0, 2π]. Now the shapes of
the curves satisfying by (1) with their different loops are similar to the rose curves as given [1].
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Figure 1: The geometric construction of the vertices A1, A2, . . . , when the origin O
is the inital point of the half-line e

Figures 2–5 show some of these curves. For odd n the two biggest loops are very similar to the
loops of lemniscates. In Figure 4 we see the parts of the curve coming from the geometrical
construction. The angles between any two lines mi, i = 1, . . . , 2n , are multiples of

π

2n
, where

mi is a tangent line of the curve at the origin or a line connecting the origin with maxima of
the curve. For more details and more figures see [3].

The polar equation of the curves is

rn(α) = Un−1(cosα), where α ∈ [0, 2π], (2)

and the corresponding Cartesian equation is

x2 + y2 = U2

n−1

(

√

x2

x2 + y2

)

, where x2 + y2 6= 0 . (3)

Equation (3) covers the curves for n and −n together (see Figure 6).

Figure 2: Curve in the case n = 3

Figure 3: Curves in the case n = 4 and n = −4

2. Generalized curves

Now we generalize the geometric construction defined above in the introduction. Let the
half-line e be given by the equation

y = tanα · x+ b, where x ≥ 0, −π

2
< α <

π

2
and 0 ≤ b < 1. (4)
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Figure 4: Curve with some properties for n = 5

Figure 5: Curve in the case n = 6 Figure 6: Union of curves for n = 4 and −4

Then, the intersection points of the line (4) with the x- and y-axis are A = (−b cotα, 0) and
B = (0, b), respectively (see Figure 7).

Let A0 = O and A1 ∈ e at unit distance to O. Furthermore, let point A2 be on the
x-axis such that the distance to A1 is equal 1 while A2 6= A0. Recursively, we define point
Ai, i ≥ 2, either on the half-line e or on the x-axis depending on whether i is odd or even,
where Ai−1Ai = 1 and Ai−1 is closer to O than Ai. Let αi, i ≥ 1, be the inner angle of the
triangle Ai−1AiAi+1 at the vertices Ai−1 and Ai+1 and let ϕ = α1. If αi < π/2 then the point
Ai exists. Figure 7 shows the first seven points.

In the following we write the equations of the orbits of the points An for n = 2k+1, k ≥ 0,
on the half-line e when ϕ goes from 0 to π/2 and y ≥ 0. Let A′

1 be the orthogonal projection
of A1 on the x-axis, and B′ the orthogonal projection of B on the line A1A

′

1 (Figure 7). Then
from the right-angled triangle BB′A1 and A1A

′

1 = sinϕ we obtain that

tanα =
sinϕ− b

cosϕ
, (5)

where α goes from arctan(−b) to π/2. If b = 0, then we get the construction of the introduction
and ϕ = α.

Lemma 1. If n ≥ 1 and A0 = O then αn = ϕ+ (n− 1)α.

Proof: If n = 1 then α1 = ϕ. In case n = 2, α2 = ϕ+α (see Figure 7). We suppose that the
lemma holds for any j from 3 to n − 1. From the triangle An−2An−1An we obtain at point
An−1 that αn−2 + αn = 2αn−1. Thus

αn = 2αn−1 − αn−2 = 2(ϕ+ (n− 2)α)− (ϕ+ (n− 3)α) = ϕ+ (n− 1)α.

Let α2k denote the angle α2k if the point A2k+1 is on the x-axis, so α2k+1 = 0 (see Figure 8).
It is easy to see that if α2k = π/2 then A2k+1 coincides with A2k−1. The coordinates of A2k+1
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Figure 7: The construction when A0 = O and B is the initial point of the half-line e
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Figure 8: General orbit of the point A2k+1

can be determined by the functions cosx and sin x in the following way.

x2k+1(ϕ) = 2(cosα1 + cosα3 + · · ·+ cosα2k−1) + cosα2k+1

y2k+1(ϕ) = sinα2k+1,
(6)

where α2k ≤ α2k < π/2.
We can simplify (6) and write it in a closed form by using Chebishev polynomials.

2.1. Calculations with Chebyshev polynomials

The recursive definition of the Chebyshev polynomials of the first kind Tn(x) is given by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1,

and for the second kind Un(x)

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x), for n ≥ 1.

When |x| ≤ 1, the substitution x = cosϕ gives the expressions cosnϕ = Tn(cosϕ) and
sinnϕ = sinϕ Un−1(cosϕ) [4].

The identities Tm(x) = Um(x) − xUm−1(x), 2Tm(x) = Um(x) − Um−2(x) can be used in
the proof of Lemmas 2 and 3.

Lemma 2. sin(x+mz) = sin xUm(cos z)− sin(x− z)Um−1(cos z),

cos(x+mz) = cosxUm(cos z)− cos(x− z)Um−1(cos z).
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Proof: Clearly,

sin(x+mz) = sin x cos(mz) + cosx sin(mz)

= sin xTm(cos z) + cosx sin z Um−1(cos z)

= sin x
(

Um(cos z)− cos zUm−1(cos z)
)

+ cosx sin z Um−1(cos z)

= sin xUm(cos z) +
(

cosx sin z − sin x cos z
)

Um−1(cos z)

= sin xUm(cos z)− sin(x− z)Um−1(cos z).

Similarly,

cos(x+mz) = cosx cos(mz) − sin x sin(mz)

= cosxTm(cos(z)) + sin x sin z Um−1(cos z)

= cosx
(

Um(cos z)− cos(z)Um−1(cos z)
)

+ sin x sin z Um−1(cos z)

= cosxUm(cos z)−
(

cosx cos z + sin x sin z
)

Um−1(cos z)

= cosxUm(cos z)− cos(x− z)Um−1(cos z).

Lemma 3. U2m−1(x) = 2
(

xU2
m−1(x)− Um−1(x)Um−2(x)

)

, if |x| < 1.

Proof: Suppose sinα 6= 0 and use the substitution x = cosα, so |x| 6= 1. Since

sin(2mα) = 2 sin(mα) cos(mα),

we have

sinαU2m−1(cosα) = 2 sinαUm−1(cosα) Tm(cosα),

and then

U2m−1(cosα) = Um−1(cosα)
(

2Tm(cosα)
)

= Um−1(cosα)
(

Um(cosα)− Um−2(cosα)
)

= Um−1(cosα)
(

2 cosαUm−1(cosα)− 2Um−2(cosα)
)

= 2
(

cosαU2
m−1(cosα)− Um−1(cosα)Um−2(cosα)

)

.

2.2. Parametric equation system of curves when n is odd

In order to determine the orbits of points An for n = 2k + 1 and k ≥ 0, when ϕ goes from 0
to π/2, we use the Lemmas 2 and 3. Moreover, from (5) we obtain α = α(ϕ).

Theorem 1. The equation system of the orbit of An, n = 2k + 1, k ≥ 0, is given by

x2k+1(ϕ) = cosϕU2k(cosα) + 2
(

cosϕ− cos(ϕ− α) cosα
)

U2
k−1

(cosα)

y2k+1(ϕ) = sinϕU2k(cosα) + sin(ϕ− α)U2k−1(cosα),
(7)

where α2k ≤ ϕ+ (2k − 1)α < π/2 and α = α(ϕ) comes from (5).
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Proof: In this proof we use the formula for the sum of cos(a +mb) from [2] and Lemmas 2
and 3.

x2k+1(ϕ) = 2(cosα1 + cosα3 + · · ·+ cosα2k−1) + cosα2k+1

= 2
∑k−1

j=0
cos(ϕ+ 2jα) + cos(ϕ+ 2kα)

= 2
sin(kα)

sinα
cos(ϕ+ (k − 1)α) + cos(ϕ+ 2kα)

= 2Uk−1(cosα)
(

cosϕUk−1(cosα)− cos(ϕ− α)Uk−2(cosα)
)

+
(

cos(ϕ)U2k(cos(α))− cos(ϕ− α)U2k−1(cos(α))
)

= cosϕ
(

2U2
k−1

(cosα) + U2k(cosα)
)

− cos(ϕ− α)
(

2Uk−1(cosα) · Uk−2(cosα) + U2k−1(cosα)
)

= cosϕ
(

2U2
k−1

(cosα) + U2k(cosα)
)

− cos(ϕ− α)
(

2 cosαU2
k−1

(cosα)
)

= cosϕU2k(cosα) + 2
(

cosϕ− cos(ϕ− α) cosα
)

U2
k−1(cosα).

y2k+1(ϕ) = sinα2k+1 = sin(ϕ+ 2kα)

= sinϕU2k(cosα) + sin(ϕ− α)U2k−1(cosα).

If b = 0 then α = ϕ and we get back the equation system (1) with the appropriate domain.

3. Parametric equation system of curves when n is even

In this section we specify the first vertex as the starting point of the half-line e, so A0 = B
(Figure 9). The definitions of Ai and αi are the same as in the previous sections. Let ϕ = α2.
Now we can prove Lemma 4 in a very similar way to Lemma 1.

Lemma 4. If n ≥ 2 and A0 = B then αn = ϕ+ (n− 2)α.

From the right-angled triangle BB′A2 we get, similarly to (5),

tanα =
sinϕ− b

cosϕ+
√
1− b2

. (8)

Let α2k+1 denote the angle α2k+1 if the point A2k+2 is on the x-axis, so α2k+2 = 0.
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Figure 9: Geometric construction when A0 = B and B is the initial point of the half-line e
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Theorem 2. The equation system of the orbit of An (n = 2k + 2, k ≥ 0) is

x2k+2(ϕ) = cosϕU2k(cosα) + 2
(

cosϕ− cos(ϕ+ α) cosα
)

U2
k−1

(cosα) +
√
1− b2

y2k+2(ϕ) = sinϕU2k(cosα) + sin(ϕ− α)U2k−1(cosα),
(9)

where α2k+1 ≤ ϕ+ 2kα < π/2 and α = α(ϕ) comes from (8).

Proof: Based on the proof of Theorem 1, we obtain

x2k+2(ϕ) =
√
1− b2 + 2 (cosα2 + cosα4 + · · ·+ cosα2k) + cosα2k+2

=
√
1− b2 + 2

(

cosϕ+ cos(ϕ+ 2α) + cos(ϕ+ 4α) + · · ·+ cos(ϕ+ (2k − 2)α)
)

+cos(ϕ+ 2kα)

= x2k+1(ϕ) +
√
1− b2,

y2k+2(ϕ) = sinα2k+2 = sin(ϕ+ 2kα) = y2k+1(ϕ).

4. Generalization of the curves with domain extension

Let us extend the domain of parametric equations (7) and (9) in Theorems 1 and 2, re-
spectively, to ϕ ∈ [0, 2π]. In that way we get the generated rose curves with Chebishev
polynomials. The Figures 10–13 show some special cases of these curves.

Figure 10: Curve in the case n = 3, b = 0.4

Figure 11: Curve in the cases n = 4 and n = −4, b = 0.4

Figure 12: Curve in the case n = 5, b = 0.4

If we consider e as a line instead of a half-line and we require only that any two consecutive
points are on different lines, on e or on the x-axis, the orbits of the points give the generalized
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Figure 13: Curve in the case n = 6, b = 0.4

curves. In this case the angles αi can be larger then π/2, moreover larger than 2π, but the
properties of the functions cosx and sin x ensure that the equation systems (7) and (9) give
the curves defined by the geometric construction in case of the whole line e.

Unfortunately, we cannot combine the two equation systems (7) and (9) in the same way
as in [3], because in (9) there is an additional term, and the connection between α and ϕ is
not the same in these two cases.
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