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Abstract. The current work revisits the point-in-polygon problem by providing a
novel solution that explicitly employs the properties of epigraphs and hypographs.
Using concepts of epigraphs and hypographs, this manuscript provides a new defi-
nition of inaccessibility and inside, to accurately specify the meaning of inclusion of
a point within or without a polygon. Via Poincaré’s ideas on homotopy and Hopf’s
Degree Theorem from topology, a relationship between inaccessibility and inside
is established and it is shown that consistent results are obtained for peculiar
cases of both non-intersecting and self-intersecting polygons while investigating
the point inclusion test w.r.t. a polygon. Through illustrative examples, the novel
method addresses the issues of • ambiguous solutions given by the Cross Over for
both non-intersecting and self-intersecting polygons and • a point being labeled
as multi-ply inside a self-intersecting polygon by the Winding Number Rule, by
providing an unambiguous and singular result for both kinds of polygons. The
proposed solution bridges the gap between Cross Over and Winding Number Rule
for complex cases.
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1. Introduction

Given a polygon P with the vertices (x1, y1), (x2, y2), . . . , (xn, yn), (xn+1, yn+1) = (x1, y1), it
is desired to know whether a sample point S (x0, y0) lies within P . The status of a point S
with respect to a polygon P, termed as inside, needs to be defined properly. This appears to
be crucial in order to retrieve unambiguous results not only for self-intersecting polygons but
also for non-intersecting ones in a 2D Cartesian plane.
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In this manuscript, a new definition of inaccessibility and inside has been proposed,
aiming to clarify the semantical meaning of a point being inside (or outside) a polygon. Later
in the manuscript, it is shown that the newly proposed definitions form a bridge between the
two well known definitions of Cross Over and the Winding Number Rule. This combined
effect of both the existing definitions helps to resolve many of the rare issues of solving the
point-in-polygon problem for simple as well as self-intersecting polygons.

Cross Over ([18], [4], [5], [6], [7]) states that if a half infinite line (ray) drawn from S
cuts P an odd number of times, then the point is inside the polygon. However, there are a few
issues regarding this definition. Depending on the orientation of the ray from the query point,
odd or even number of intersections can be obtained, if the ray passes through vertices. This
gives rise to ambiguous results for the same point with different rays at different orientation.
In other words, the outcome is a non-singular function of the line’s direction.

To resolve this issue, a prevalent solution is shifting of the ray infinitesimally ([19], [20]).
Here the solution may change drastically depending on the direction of the shift and thus the
direction of the shift is often fixed. This solution is palliative as the issue is considered to arise
rarely and ambiguous results can still be found. A solution to resolve the issue could be to
repeat the Cross Over multiple times until it is found that the point lies inside the polygon;
however, exactly how many repetitions are necessary to prevene a reliable result is unknown
leading to non determinism.

Winding Number Rule ([7], [3], [1]) states that the number of times one loops around
S while traversing P before reaching the starting point on the polygon shows whether the
point is inside the polygon or not. So a number ` greater than one can mean that the point
is ` times inside the polygon. In this paper, this is considered as an issue because if a point
lies inside a polygon once, it lies forever. Thus ` > 1 depicts the idea of redundancy. Finally,
the Cross Over and the Winding Number Rule algorithms are known to provide different
solutions in specific cases of self-intersecting polygons.

The solution provided tries to address these problems by deciding upon the ’in-
side/outside’ status of a point with respect to a polygon from a different perspective. [2]
proposed to take the decision using a binary coded coordinate system and parity counting of
the number of intersections of the polygon with an infinite vector. The algorithm presented
here differs from the former in using S as a reference point. The location of S does not depend
on the coordinate system, but it helps in forming a line (in any orientation) such that it cuts
the polygon at different intersection points. For the sake of simplicity, the case where the line
is horizontal is presented. The generalization only requires the rotation of the reference (i.e.,
horizontal-vertical) Cartesian system and the transformation of the coordinate points of the
polygon with respect to the rotated system.

The first half line is used as a reference to dismember the polygon into sections. These
sections (later defined as chains) are then classified as valid or invalid based on definitions
of epigraphs or hypographs that may or may not contain S, respectively. A second line,
orthogonal to the first, is used to sort these sections of the polygon that contain the sample
point. The sections are then paired and taken out. For each pair the location of the point
within the two sections, is checked. The process of checking continues until the algorithm
runs out of pairs to be checked. This iterative procedure of elimination of sections that do
not contain the point and final repetitive checking within the pairs of remaining sections, of
the polygon, represents the core difference from [2], and is explained in detail in the following
section.

A more in-depth theoretical approach to show the correctness of the proposed method
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follows in Section 3, accompanied by a comparison with the Cross Over (Section 3.3) and
with the Winding Number Rule (Section 3.4). The conclusion follows in Section 4.

2. Algorithm implementation

The algorithm can be described in simple terms as follows. Given the sample point S with
coordinates (x0, y0), a horizontal line y = y0 (i.e., Lh) is drawn through S to cut polygon P
at q locations {(xint1 , y0), . . . , (xintq , y0)}. This breaks the polygon into q chains.

Definition 1. A chain C is a series of connected edges of the polygon whose starting and
ending points lie on Lh, that passes through S. Mathematically, a chain is a function1 fC,
with a domain defined by the closed interval bounded by the x-coordinates of consecutive
intersection points on Lh (here referred by starting and ending points), and a range that is
the union of the coresponding y-coordinates of points of the polygon (i.e., a piecewise linear
function) comprised between the starting and ending points on Lh.

Each chain is then checked for whether its two endpoints contain the test point between
them; if not, the chain is discarded. Discarded chains are labeled as invalid chains and those
kept for further consideration are referred to as valid chains. This classification is based on the
satisfication of a criterion dependent on concepts of epigraph and hypographs. The definition
of these concepts are as follows:

Definition 2. The epigraph of a function fC : Rn → R is a set of points that lie on or above
the graph of the function under consideration, such that epi (fC) = {(x, t) : x ∈ Rn, t ∈
R, fC(x) ≤ t} is a subset of Rn+1.

Definition 3. The hypograph of a function fC : Rn → R is a set of points that lie on or below
the graph of the function under consideration, such that hypo(fC) = {(x, t) : x ∈ Rn, t ∈
R, fC(x) ≥ t} is a subset of Rn+1.

Here n equals 1 since x corresponds to a point on Lh. The remaining valid chains are
then tested for intersection with a vertical line x = x0 through S. The intersections found
are sorted by height, and paired up. If the test point is not between a pair, it is outside. This
criterion of containment is checked via the definition of a convex combination below:

Definition 4. An affine combination of points xi, xj ∈ Rn is a point of the form θxi+(1−θ)xj
with θ ∈ R. This combination is called a convex combination if 0 ≥ θ ≥ 1.

These definitions and notations, as well as a few others, are adopted from [8]. It should
be noted that the vertices of the polygon P are arranged in order of traversal, starting from
any vertex. The traversal order can be in any one direction. Another requisite is that the
edges are traversed only once. This is useful in avoiding multiple loops that may occur in
cases of self-intersecting polygons.

If S lies out of the bounding box of the polygon, it is considered outside P and no further
processing is done. Lastly, if the sample point is one of the vertices of the polygon, then it is
considered to be in the polygon. This final point is assumed as the proposed algorithm would
reach the same conclusion at the expense of computational time. In the theoretical proof it

1If any chain is not the graph of a function then in a preprocessing step we can modify the polygon
accordingly by cutting edges. This has no effect on the result of the procedure, but eases our explanations.
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Figure 1: Query point location in (A) non-
intersecting and (B) self-intersecting polygon.

Figure 2: Query point location in (A) non-
intersecting and (B) self-intersecting polygon.

will be shown that this case is true and from the implementation point of view the idea holds
correct.

What follows is a step-by-step explanation of how the algorithm works; pictorial repre-
sentations will help in clarifying each step. The examples will regard closed polygons, both
self-intersecting, and non-intersecting. Figures 1 and 2 show the polygons with the sample
point being tested at different locations.

2.1. Intersecting the P

It is known that P is an ordered series of vertices (x1, y1), (x2, y2), . . . , (xn, yn), starting from
(x1, y1) such that the ending point after the traversal has coordinates (xn+1 = x1, yn+1 = y1).
Given P , the first step is to draw Lh through the sample point S (x0, y0), such that it intersects
the polygon at certain points. As observed before, the line Lh being horizontal does not imply
any loss of generality in the proposed solution for the point-in-polygon problem.

The intersection point is obtained by computing the coordinate values of the common
point between Lh and a straight edge extending from (xi, yi) to (xi+1, yi+1) (henceforth
(xi, yi), (xi+1, yi+1)). The slope and the constant of the former is 0 and y0, and that of

the latter is mi =
yi+1 − yi
xi+1 − xi

and ci = yi − mixi. Here i and i + 1 are indices to any pair of

consecutive vertices on P . Let the coordinates of this common point be (xint, y0). Solving the
algebraic equation between the two straight lines yield:

xint =
y0 − ci
mi

(1)

In the case when the infinite line Lh is horizontal, the y-coordinate of the intersection point
equals the y-coordinate of Lh, i.e., y0. Once the intersecting point with coordinates (xint, y0) is
obtained, the algorithm checks it’s inclusion on (xi, yi), (xi+1, yi+1) of P , for further processing.
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If the criterion of inclusion is satisfied, the intersection point is stored as a new vertex point
that needs to be appended to the pre-existing list of vertices of the polygon at a later stage.
This inclusion criterion is put into affect by the use of the convex combination property in
Definition 4.

Three different cases arise depending on the slope of (xi, yi), (xi+1, yi+1):

• mi = ±∞ : If the edge is vertical the point (xint, y0) lies on the line. This is because
xint = xi = xi+1.

• mi = 0 : If edge is horizontal then the intersection point (xint, y0) is considered to lie
outside the range of (xi, y0) and (xi+1, y0). This is because, if (xint, y0) ∈ [(xi, y0), and
(xi+1, y0)], then there are infinitely many values that could be assigned to xint. To avoid
random selection of any point within the above range, the point (xint, y0) is considered
to lie outside the range. Also, if (x0, y0) lie on a horizontal edge it is still considered
outside the range for further processing.

• mi ∈ R−{0,±∞} : Finally, this being the simplest case, it is easy to compute whether
(xint, y0) lies on the line between the given points using Definition 4.

It is important to note that this process of finding intersection points and their subsequent
inclusion into the pre-existing vertex list of P , based on satisfaction of the convex combination
property, is iterative in nature: that is, for each pair of (xi, yi) and (xi+1, yi+1) as i iterates
through values 1 to n, the intersection points are computed between (xi, yi), (xi+1, yi+1) and
Lh. Next, for each edge (xi, yi), (xi+1, yi+1) and its corresponding intersection point with
Lh, it is verified whether the intersection point lies between (xi, yi) and (xi+1, yi+1). If yes,
then the points are stored. The stored points are then appended to the list of existing
vertices P , such that the traversal order remains unaffected. In other words, if (xint, y0) ∈
(xi, yi), (xi+1, yi+1) then a particular subsequence of the traversal order becomes: (xi, yi) →
(xint, y0)→ (xi+1, yi+1).

Figures 3 and 4 show Lh passing through S and intersecting the polygon at different edges.
The location of S is indicated by the red arrow while the new vertices at the intersection of
Lh with edges of P are pointed by the blue arrows. Some of the newly added vertices may lie
very close to the pre-existing vertices, e.g., in the range of ±10−5 (arbitrary units) or smaller.
The algorithm removes these old vertices from the list that lie in such a close range, but stores
the newly added vertices with their coordinates (xint, y0) separately. Two reasons arise for
executing this step:

• To avoid further computations that may involve floating point precision of the order
smaller than or equal to ±10−5.

• Retention of newly appended vertices with coordinates (xint, y0) will be used later for
searching chains whose epi/hypo-graph may contain S.

In this paper, the tolerance range of ±10−5 is an arbitrarily assigned value.

2.2. Decomposition of polygon into valid and invalid chains

The new vertices with coordinates (xintj , y0) (where j ∈ {1, . . . ,m}) and the sample point
(x0, y0) form the basis for the next steps. From Definition 2 it is known that a point belongs
to the epigraph (hypograph) if it lies on or above (below) the function under consideration.
To use the mentioned properties, the polygon P is decomposed into chains. These chains
would then be tested for convexity or concavity with respect to Lh in the following way: One
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Figure 3: Finding intersection points on the
polygon. Location of S indicated via red
arrow in (A) non-intersecting and (B) self-
intersecting polygon. Blue arrows point to
newly found intersection points. The green
line depicts Lh, i.e., y = y0.

Figure 4: Finding intersection points on the
polygon. Location of S indicated via red
arrow in (A) non-intersecting and (B) self-
intersecting polygon. Blue arrows point to
newly found intersection points. The green
line depicts Lh, i.e., y = y0.

of the newly added vertex on P (with the y-coordinate y0) is picked up as the starting vertex.
A traversal order is chosen randomly and is followed until the starting point is reached again.

As the traversal is done from one intersecting vertex to the other, the polygon gets de-
composed into subsets of consecutive edges, thus forming chains. Each chain may contain
more than one original vertex of the polygon excluding the starting and ending vertex of the
chain. These chains lie either above or below Lh, i.e., y = y0. The chains are further classified
as valid or invalid using the Definitions 2 and 3. In non-mathematical terms, if the starting
and ending vertices of a chain are on different sides of S on Lh then the chain is a valid one:
otherwise the chain is invalid. The invalid chains are discarded and the valid ones are stored
with their starting and ending vertices along with coordinates of vertices on the chain.

Figures 5 and 6 show the valid and invalid chains pointed by the green and blue arrows
respectively. The solid lines represent the valid chains and the dotted lines represent the
invalid chains. The red arrow indicates the sample point’s location in each of the figures.

2.3. Chain intersection

Hitherto, it is known that the x-coordinate of S lies in the epi/hypo-graph of the valid
chains. To decide if the point lies inside or is inaccessible with respect to a polygon under
consideration, what needs to be tested is whether the y-coordinate of S lies within any two
nearest valid chains. The rationale behind doing these steps will be elucidated a little later,
but before that it is important to define what the nearest valid chains mean:
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Figure 5: (A) Non-intersecting and (B) self-
intersecting polygon decomposed into chains.
Green and blue arrows indicate the valid and
invalid chains, respectively. Location of query
point w.r.t. the polygon is shown via the red
arrow.

Figure 6: (A) Non-intersecting and (B) self-
intersecting polygon decomposed into chains.
Green and blue arrows indicate the valid and
invalid chains, respectively. Location of query
point w.r.t. the polygon is shown via the red
arrow.

Definition 5. The chain Ci is a nearest valid chain if

• either epi (fCi) ⊂ epi (fCu) for all chains Cu, u ∈ {1, . . . , q}, below S, i.e., such that
(x0, y0) ∈ epi (fCu),

• or hypo(fCi) ⊂ hypo(fCv) for all chains Cv, v ∈ {1, . . . , q}, above S, i.e., such that
(x0, y0) ∈ hypo(fCv).

After all the valid chains have been retained, a similar procedure (as before) of intersecting
the valid chains using the vertical line x = x0 (Lv) that passes through S, is executed. For
each valid chain, defined by a set of vertices (xi, yi) (such that i ⊆ {1, . . . , n}), points of
intersection are computed between the edges of the chain and Lv. The process of evaluating
the intersection points follows:

The slope of the straight edge joining two vertices of the chain is mi =
yi+1 − yi
xi+1 − xi

and the

constant is ci = yi −mixi. Here, i and i+ 1 are consecutive vertices on the valid chain. The
y-coordinate of the point of intersection is computed as follows:

yint = mix0 + ci. (2)

Once the coordinates of the intersection point (x0, y
int) are obtained for an edge, a test is

conducted to find whether the intersection point lies between the bounding points (xi, yi) and
(xi+1, yi+1). This is achieved using the convex combination property in Definition 4. Three
cases may arise, that need to be considered:
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• mi = ±∞ , the edge is vertical. In this case the intersecting point (x0, y
int) is considered

to lie inside the range of (x0, yi) and (x0, yi+1). This is because, if the chain crosses x = x0
many times before going from left of S to the right of S or vice versa then there can be
infinitely many points on one chain that may be considered as intersection points. That
is, it may require the algorithm to store many intersection points for just one chain. To
avoid the presence of multiple intersection points on a single chain, the algorithm stores
the vertex of one of the vertical edges in a chain.

• mi = 0 , the edge is horizontal. In this case the intersecting point (x0, y
int) lies on the

line. This is because xint = x0 and yint = yi = yi+1.

• mi ∈ R − {0,±∞} : This is the simplest case. It is easy to compute whether (x0, y
int)

lies on the line between the given points using Definition 4.

This process of finding the intersection point is repeated for all edges (i.e., for all i ⊆
{1, . . . , n}) that constitute the valid chain under consideration. Next, for each edge
(xi, yi), (xi+1, yi+1) and its corresponding intersection point with Lv, it is verified whether
the intersection point lies within (xi, yi) and (xi+1, yi+1). It is expected that, after preprocess-
ing of all edges on a chain, there exists only one intersection point between a chain and Lv.
The reason behind this is to find one common point of intersection between the valid chain
and Lv. This is done as a necessary step to sort the valid chains on the basis of y-coordinates
of the newly found intersection points. The sorted valid chains will further be processed to
test the inclusion of S within P .

The pictorial representation of the line x = x0 intersecting the valid chains are shown in
Figures 7 and 8. The green arrows indicate the points of intersection on the valid chains. The
valid chains are pointed by the blue arrows. The sample point is indicated via the red arrow.
As mentioned earlier, the invalid dotted chains have been removed by the algorithm, in the
final stages of the processing.

2.4. Point inclusion test

Each valid chain has a point of intersection with Lv. The algorithm sorts the series of inter-
section points with respect to their y-coordinates (i.e., yint) that lie on Lv, thus sorting the
valid chains.

It is also known that S lies either in the epigraph or in the hypograph of any valid chain.
The final step to decide whether S is inside P is to assess whether the y-coordinate of S
is compartmentalized between two nearest valid chains Ci and Ci+1 (if Ci is below Ci+1 after
sorting), such that S ∈ epi (fCi) and S ∈ hypo(fCi+1

). This is done as follows:

Considering a pair (yinti , yintj ) of yint’s, i.e., a pair of chains, it is tested whether S = (x0, y0)
is an convex combination of (x0, y

int
j ) and (x0, y

int
i ) (for i < j). If such a pair is found, then

the point lies inside the polygon, else outside. The only constraint is that the pair of chains
or the pair of intersecting y-coordinates are mutually exclusive. Thus, if there are m/2 pairs,
with m being an even number and yint1 , yint2 , . . . , yintm are the intersecting y-values in order,
then the pairs (yint1 , yint2 ), (yint3 , yint4 ), . . . , (yintm−1, y

int
m ) are mutually exclusive in the sense that

the elements of one pair cannot be included in any other pair.

The intuitive idea behind this rule is that, in a pair, if the path of traversal in a chain is
moving (say) from left side of S to the right side, then the traversal in the other chain must
move from right side S to the left (and vice versa). Thus, any pair shall not contain chains
from any other pair. These ideas can be seen in Figures 7 and 8. The green arrows mark the
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Figure 7: Inclusion test, S inside P . Blue ar-
rows: valid chains of (A) a non-intersecting
and (B) a self-intersecting polygon. Green
arrows: intersection points with the vertical
line LV . The point S (red arrow) is inside
the polygon.

Figure 8: Inclusion test, S outside P . Blue
arrows: valid chains of (A) a non-intersecting
and (B) a self-intersecting polygon. Green ar-
rows: intersection points with the vertical line
LV . The point S (red arrow) is outside the
polygon.

intersecting points on the valid chains. Testing the sample point S as an convex combination
of two intersection points on Lv indicates whether the point lies inside or outside the polygon.

3. Inaccessibility-inside theorem

The meaning of inside is viewed from different perspectives via the definitions of the Cross
Over and the Winding Number Rule. This gives rise to contradictory results in peculiar cases
of non-intersecting and self-intersecting polygons.

This manuscript proposes new definitions of inside and inaccessibility of a point S with
respect to a polygon P . Also, a relation between inaccessibility and inside is proved. It is
shown that consistent results can be obtained if the meaning of the inaccessibility and inside
of a polygon is framed correctly, in an abstract sense. It must be noted that the points that
lie on vertices are special cases and the definitions of inside and inaccessibility will have to be
slightly modified to take them into account without changing the general, abstract meaning
of inside and inaccessibility. Ultimately, two cases that are examined are: a point lying (1)
on a vertex or (2) on an edge or anywhere else.
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3.1. Point on vertex of polygon

Definition 6. The inaccessibility InaccP(S) of a point S with respect to (w.r.t. in brief) a
polygon P , is the number of valid chains that need to be broken by a line passing through S
such that the line reaches outside the bounding box of the polygon.

InaccP(S) =

{
n if n 6= 0 valid chains need to be broken,
0 otherwise.

Definition 7. The status of a point S w.r.t. a polygon P , that is InsideP(S), is the existence
of a chain C such that S ∈ epi (fC) or S ∈ hypo(fC).

InsideP(S) =

{
1 if S ∈ epi (fC) or S ∈ hypo(fC),
0 otherwise.

These two definitions form the basis of the two theorems below.

Theorem 1. Given a point S inside as well as inaccessible w.r.t. the polygon P, then the
following two statements

(1) InsideP(S) = 1 and

(2) InaccP(S) = n

are logically equivalent, i.e., InsideP(S) = 1 ⇐⇒ InaccP(S) = n.

Proof. (a) If InaccP(S) = n then InsideP(S) = 1.

If InaccP(S) = n then there exist n valid chains that need to be broken according to
Definition 6. It is known that a chain is valid when either its epigraph or its hypograph
contains S. This existence of n valid chains implies that S ∈ {epi (fCk), hypo(fCk)} for all
k ∈ {1, . . . , n}. But this is the definition of the status of S w.r.t. P , i.e., InsideP(S) = 1 or
InsideP(S) ∈ {1}.
(b) If InsideP(S) = 1 then InaccP(S) = n.

If InsideP(S) = 1 then there exists a C with S ∈ {epi (fC), hypo(fC)}. Thus, chain C is a valid
chain, as it contains the point S. If S is inaccessible then there must exist at least one valid
chain in P that needs to be broken. Since C is such a chain and the only chain that contains
S, the inaccessibility order of S w.r.t. P is InaccP(S) = 1 or InaccP(S) ∈ {1}.
If S is a vertex such that it is an intersection point of two or more sides of a polygon, then
all chains that have their epigraph or hypograph containing S, are valid, since it requires n
chains (if n is the number of valid chains) to be broken.

Pictures will help the reader to get acquainted with the practical consequences of the
previous theorem. Figure 9 shows three different polygons with S as the point under con-
sideration. The polygon in Figure 9.(A) has four chains that contain S namely (a) STU,
(b) UVS, (c) SWX, and (d) XYS, which are valid. Thus, by virtue of Theorem 1, follows
InsideP(S) = 1 and InaccP(S) = 4. Hence, S lies inside the polygon. Similarly, for Fig-
ure 9.(B) there is one chain STUS which is valid as it contains the point S. Thus we have
InsideP(S) = 1 and InaccP(S) = 4. For the case of Figure 9.(C) there exists two chains that
contain S, i.e., (a) STUS and SVWS which are valid. So InsideP(S) = 1 and InaccP(S) = 2.

Since it is always true that S is inside P when it lies at one of its vertices, it is a
reasonable strategy to check this first, avoiding further computations. Thus, in the current
implementation of the algorithm, the sample point is always first checked against the vertices
of the polygon in order to know if it belongs to P .
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Figure 9: Polygons with locations
of the point S.

Figure 10: Polygons with locations
of the point S.

Theorem 2. Given a point S not inside as well as not inaccessible w.r.t. the polygon P, then
the following two statements

(1) InsideP(S) = 0 and

(2) InaccP(S) = 0

are logically equivalent, i.e., InsideP(S) = 0 ⇐⇒ InaccP(S) = 0.

Proof. (a) If InaccP(S) = 0 then InsideP(S) = 0.

Given InaccP(S) = 0, then there exist no valid chains that need to be broken according to
Definition 6. This means that S /∈ {epi (fCk), hypo(fCk)} for all k chains in P . Since no chain
exists whose epigraph or hypograph contains S, the status of S w.r.t. P is InsideP(S) = 0 or
InsideP(S) ∈ {0}.

(b) If InsideP(S) = 0 then InaccP(S) = 0.

InsideP(S) = 0 implies that S /∈ {epi (fCk), hypo(fCk)} for all k chains in P . This means, no
valid chain exists in P that needs to be broken. Thus the inaccessibility of S related to P is
zero, i.e., InaccP(S) ∈ {0}, which is the desired result.

Cases for Theorem 2 are simple and depicted in Figure 10. Figure 10 shows two different
polygons with S as the point under consideration. The polygon in Figure 10.(A) has four
chains that do not contain S, namely (a) RTU, (b) UVR, (c) RWX, and (d) XYR, which
are invalid. Thus by Theorem 2, InsideP(S) = 0 and InaccP(S) = 0. Hence, S lies outside
the polygon.

Similarly, for Figure 10.(B) exist two chains that do not contain S, i.e., (a) RTUR and
RVWR, which are invalid. So InsideP(S) = 0 and InaccP(S) = 0.
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3.2. Point not on vertex of polygon

Definition 8. The inaccessibility InaccP(S) of a point S w.r.t. a polygon P is the number of
pairs of valid chains that need to be broken and/or ignored by a line passing through S such
that the line reaches outside the bounding box of the polygon.

InaccP(S) =


1 if a pair of chains need to be broken,
n if n 6= 0 pairs of chains are to be ignored,

1 + n if a pair is to be broken and n pairs are to be ignored.

Definition 9. The status of a point S w.r.t. to a polygon P , that is InsideP(S), is the
existence of a pair of chains Ci and Cj such that S ∈ epi (fCi) and S ∈ hypo(fCj), where i < j.

InsideP(S) =


1 if a pair of chains (Ci, Cj) exists such

that S ∈ epi (fCi) and S ∈ hypo(fCj),
0 otherwise.

The theorems revealing the relation between inaccessibility and inside of a polygon are as
follows:

Theorem 3. If a point S is inside as well as inaccessible w.r.t. a polygon P, then the following
two statements

(1) InsideP(S) = 1, and

(2) InaccP(S) = 1 or InaccP(S) = 1 + n,

are logically equivalent, i.e.: InsideP(S) = 1 ⇐⇒ InaccP(S) = 1 or InaccP(S) = 1 + n.

Proof. (a) If InaccP(S) = 1 or InaccP(S) = 1 + n then InsideP(S) = 1.

InaccP(S) ∈ {1, 1 + n} implies that there exists a pair of valid chains in P that need to be
broken and/or n pairs of valid chains that need to be ignored. By definition, a valid chain
is one whose epigraph or hypograph contains S. Taking the general case of 1 + n (if n = 0,
1 +n collapses to 1), there are 2× (1 +n) valid chains such that one half lies above/on S and
the other half lies below/on S. By Definition 5, the pair of nearest valid chains denoted by 1
needs to be broken while other n pairs need to be ignored.

If a vertical line Lv is drawn such that it cuts the valid chains and S, then the chains can be
sorted according to the value of intersection points in x = x0. Let C1, . . . , C2×(1+n)−1, C2×(1+n)

be the sorted order of chains from bottom to top. Taking mutually exclusive consecutive
pairs of these valid chains, i.e., (C1, C2), (C3, C4), . . . , (Ci, Ci+1), . . . , (C2×(1+n)−1, C2×(1+n)),
it is easy to know whether S is an convex combination of (x0, y

int
Ck ) and (x0, y

int
Ck+1

), for all

k ∈ {1, 3, 5, . . . , 2× (1 + n)− 1}. Here yintCk and yintCk+1
are the y-coordinates of the intersection

points on Lv and the chains k and k + 1, respectively.
Since it is known that at least one pair of chains need to be broken, a pair of points

(x0, y
int
Ci ) and (x0, y

int
Ci+1

) exists for which S has coordinates (x0, y0) = (x0, θy
int
Ci + (1− θ)yintCi+1

)
for 0 ≤ θ ≤ 1. This implies that Ci is the nearest chain below/on S, and Ci+1 is the nearest
chain above/on S. Otherwise S won’t be an convex combination of (x0, y

int
Ci ) and (x0, y

int
Ci+1

).

For the rest of the n pairs, since S is not an convex combination of (x0, y
int
Ck ) and (x0, y

int
Ck+1

)
for all k ∈ {1, 3, . . . , 2 × (1 + n) − 1} \ {i}, these n pairs of chains can be ignored for fur-
ther processing or consideration. Since these nearest chains Ci and Ci+1 are valid also, their
epigraph and hypograph contain S, respectively. This existence of a pair of a valid chains,
which has to be broken such that S ∈ epi (fCi) and S ∈ hypo(fCi+1

), implies InsideP(S) = 1,
the status of S w.r.t. P .
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(b) If InsideP(S) = 1 then InaccP(S) = 1 or InaccP(S) = 1 + n.

Let P be a polygon such that InsideP(S) = 1 implies the existence of a pair of chains (Ci, Cj)
such that S ∈ epi (fCi) and S ∈ hypo(fCj). Given only these two chains, it is evident that
both of them are nearest chains to S. Let the starting and ending points of Ci and Cj be
{(xintCis , y0), (x

int
Cie , y0)} and {(xintCjs , y0), (x

int
Cje , y0)}, respectively. If a vertical line x = x0 is

drawn through (x0, y0) it would intersect the chains Ci and Cj at (x0, y
int
Ci ) and (x0, y

int
Cj ),

respectively. Since (x0, y
int
Ci ) lies below (x0, y0) and (x0, y

int
Cj ) lies above (x0, y0), S = (x0, y0)

is an convex combination of (x0, y
int
Ci ) and (x0, y

int
Cj ). Thus, S lies between Ci and Cj. Now, if

an endpoint of Ci is joined with an endpoint of Cj and another endpoint of the former joined
to the remaining endpoint of the latter, then a closed loop is formed such that traversing once
from any one point, leads to the same point in the end. Let this loop be P ′. To check for the
inaccessibility, it needs to be known whether P ′ can be transformed into P while retaining all
the geometric properties.

Poincaré’s ideas on homotopy ([9],[10], [11], and [12]) state that geometric objects or
simple cases of paths as continuous functions are homotopic if one function can continuously
deform into another. We obtain from [14]: Let X and Y be two (topological) spaces and
f, g : X→ Y two (continuous) maps from X to Y.

Definition 10. The maps f and g are homotopic, if there exists a continuous map F :
X × [0, 1] → Y such that F(x, 0) = f(x) and F(x, 1) = g(x). Such a map F is called a
homotopy between f and g.

Simplifying the above scenario for two-dimensional Cartesian planes, f and g are functions
in the 2D-space and F is a mapping that helps to transform f into g. In case such a mapping
exists, then F is a homotopy between the two functions.

To retain geometric properties during the transformation, Hopf’s Degree Theorem [13]
states that a loop A may be continuously deformed into another loop B without ever crossing
the point D if and only if A and B have the same winding number around D. Formally, by
virtue of [14], Hopf’s degree theorem can be formulated as follows:

Theorem 4. If X is a compact, connected, oriented, n-dimensional manifold without bound-
ary and Sn the n-sphere, then the two maps f, g : X→ Sn are continuously homotopic if and
only if deg(f) = deg(g).

Here, the degree deg of a map is a homotopy invariant, i.e., the maps respect the relation
of homotopy equivalence. Definitions and proofs of the concept of the degree of a map and its
invariance against homotopies is beyond the scope of this manuscript. Interested readers are
advised to consult [14].

In the current situation f and g are the loops P ′ and P , respectively. As long as the
winding number of P ′ around S is same as that of P around S, P ′ and P are homotopic, i.e.,
P ′ can be deformed into P by Theorem 4. Without loss of generality, let us assume that P ′
can be deformed into P .

Since P is formed from the two necessary chains Ci and Cj which are valid, a pair exists
in polygon P that needs to be broken. Thus the minimum inaccessibility of S w.r.t. P
is InaccP(S) = 1. If there exist extra pairs of valid chains then they are ignored from
consideration, while checking for the convex combination criteria of S with respect to the
sorted pairs of chains on x = x0. If n is the minimum number of pairs of valid chains that
are ignored, then the inaccessibility of S w.r.t. P is InaccP(S) = 1 + n. Thus InaccP(S) =
{1, 1 + n}.
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Figure 11: Polygons with
locations of the point S.

Figure 12: Polygons with
locations of the point S.

Figure 13: Polygons with S
outside.

Examples for Theorem 3 are presented in the Figures 11 and 12. In Figure 11.(A), three
chains exist of which two are valid. The valid chains are (a) UV and (b) WU. The chain
VW is invalid. Thus InsideP(S) = 1 and InaccP(S) = 1. In Figure 11.(B) the point lies
on the edge and the polygon can be divided into three chains of which only two contain S.
These valid chains are (a) SU and (b) VS. Thus InsideP(S) = 1 and InaccP(S) = 1. In part
(C) of Figure 11, the horizontal line cuts through two edges and touches two vertices. Thus
there exist four chains of which two are valid, namely (a) UV and (b) XU, which contain S.
Thus InsideP(S) = 1 and InaccP(S) = 1. Lastly, in part (D) of the same figure, S lies on an
edge and the horizontal line passes through a vertex. In this case, there exist five chains of
which two contain the sample point and are thus valid. They are (a) VW and (b) YU. Thus
InsideP(S) = 1 and InaccP(S) = 1.

Next, in Figure 12.(A) eight chains exist, namely (a) YZ, (b) ZW, (c) WB, (d) BU,
(e) UV, (f) VA, (g) AX, and (h) XY, of which six are valid except UV and XY. These
two do not contain S. Now, the pair that needs to be broken is YZ and ZW, while the pairs
(WB, AX) and (BU, VA) are to be ignored from consideration. Thus, InsideP(S) = 1 and
InaccP(S) = 1 + 2 (i.e., one pair requires to be broken and two need to be ignored from
consideration). Finally, in Figure 12.(B) two chains exist of which both are valid, i.e., (a) UV
and (b) VWWU. Thus InsideP(S) = 1 and InaccP(S) = 1.

Theorem 5. If a point S is not inside as well as inaccessible w.r.t. the polygon P, then the
following two statements

(1) InsideP(S) = 0, and

(2) InaccP(S) = n

are logically equivalent: InsideP(S) = 0 ⇐⇒ InaccP(S) = n.

Proof. (a) If InaccP(S) = n then InsideP(S) = 0.

InaccP(S) = n implies that n pairs of valid chains need to be ignored. Again, by definition a
valid chain is one whose epigraph or hypograph contain S. If Lv, i.e., x = x0, is drawn such
that it cuts the valid chains and passes through S then the chains can be sorted according
to the value of intersection points in x = x0. Let C1, . . . , C2×n be the sorted order of chains
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from bottom to top. Taking consecutive pairs of these valid chains, i.e., (C1, C2), (C3, C4),
. . . , (Ci, Cj), . . . , (C2×n−1, C2×n), it is easy to know whether S is an convex combination of
(x0, y

int
Ck ) and (x0, y

int
Ck+1

) for all k ∈ {1, 3, . . . , 2× n− 1}. Since n pairs need to be ignored, it
is evident that S is not a convex combination of any of the above pairs. This suggests that
there does not exist a pair such that S ∈ epi (fCk) and S ∈ hypo(fCk+1

), that can be broken.
Since no such pair exists, the status of S w.r.t. P is InsideP(S) = 0, which is the desired
result.

(b) If InsideP(S) = 0 then InaccP(S) = n.

InsideP(S) = 0 implies there does not exist a pair of chains (Ci, Cj) such that S ∈ epi (fCi)
and S ∈ hypo(fCj). Thus it is difficult to proceed with the proof. Instead, by proving its
contrapositive, the above statement will hold. If InaccP(S) /∈ {n} then InsideP(S) /∈ {0}.
Since InaccP(S) /∈ {n}, it follows that InaccP(S) ∈ {1, 1 + n}. It has been proved in part
(a) above that if InaccP(S) ∈ {1, 1 + n} then InsideP(S) ∈ {1}. But InsideP(S) ∈ {1} also
means that InsideP(S) /∈ {0}. Thus InaccP(S) /∈ {n} implies that InsideP(S) /∈ {0}. Since
the contrapositive holds, so does the original statement.

Two examples of Theorem 5 are depicted in Figure 13. In Figure 13.(A) eight chains
exist, namely, (a) UV, (b) VA, (c) AX, (d) XY, (e) YZ, (f) ZW, (g) WB, and (h)
BU. Among them, three pairs exist, which are valid chains but need to be ignored as none of
them encloses S as a convex combination of two intersection points on x = x0. These pairs
are (WB, AX), (XY, ZW) and (VA, BU). Thus InsideP(S) = 0 and InaccP(S) = 3.
For the case depicted in Figure 13.(B) six chains exist namely, (a) ZU, (b) UY, (c) YW,
(d) WX, (e) VX, and (f) XZ, of which WY and XZ are not valid. The remaining pairs of
valid chains need to be ignored and thus InsideP(S) = 0 and InaccP(S) = 2.

For the next few sections, let EH (epi/hypo-graph method) denote the proposed method.

3.3. Crossover vs EH

Crossover (CR) states that when a line drawn from a point S in a direction, cuts the polygon
P odd number of times, then S is inside P , i.e.,

InsideCR
P (S) =

{
1 if odd intersections,
0 if even intersections.

For the case of a line passing through vertices, the problem is solved by shifting the line
infinitesimally. Two issues arise in this case:

(1) There can be two solutions, if the line is not shifted slightly.

(2) If the crossover has to be repeated several times until it finds an odd number of intersec-
tions, then it is a nondeterministic problem, in case the line is shot randomly.

In view of (1), ambiguity arises on the way a ray or line is shot from S, and by (2),
nondeterminism arises due to repetition of the procedure of shooting the line randomly. The
following figures will illustrate these issues in detail.

In contrast to the CR, by using Theorems 1 and 3, the EH or the proposed method can
easily determine deterministically, whether S lies in P or not. This is because in which way
ever a line is drawn through S, if it cuts the polygon, then it will dismember P into a finite
number of countable chains. If it doesn’t cut the polygon and S is a vertex, then there also
exists at least one chain that contains S. Searching for these valid chains and then locating
which of those need to be broken is deterministic.
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Figure 14: Cases to compare Cross Over
(CR) and the proposed method (EH)

Figure 15: Cases to compare Winding Number
Rule (WNR) and the proposed method (EH)

Figure 14 shows the different cases for the comparison of the CR and EH methods for the
same point of investigation. In Figure 14.(A), if the a horizontal line is drawn to the left of
the S then it intersects at two points U and V, and if it is drawn to the right it intersects at
the point W. According to CR, when the line is drawn to the right of the S, then S is inside
the polygon. If the line is drawn to the left of S, then the point is outside the polygon. This
is definitely a case of ambiguity. Also, the outcome of CR depends on the direction of the ray
that is shot from S. This makes the outcome of the test nondeterministic in the sense that it
is not known which ray would give the correct result, if the rays are shot randomly.

The EH method overcomes this problem by segmenting the polygon into finitely countable
chains. The search for an convex combination of valid chains that may contain S is deter-
ministic as there is only limited number of chains available for checking. Thus the outcome
is singular and deterministic. If two perpendicular rays with their intersection point at S
are drawn at a different orientation, intersecting the polygon at different places, even then
by rotating the oriented axis and the polygon to the horizontal-vertical frame, the solution
remains the same. Thus randomness of the directionality of the shot rays do not affect the
outcome of the point inclusion test for S.

For part (A) in Figure 14, by CR InsideCR
P (S) = (0, 1) depending on the number of

intersections that is (2, 1). By the EH method, InsideEH
P (S) = 1 and InaccEH

P (S) = 3 by
Theorem 1. It must be noted that the inaccessibility of the point w.r.t. the polygon may
change but the status of S w.r.t. P captured by the definition of Inside will not change if the
point is inside the polygon.

Similarly, for the parts (B) and (C) in Figure 14, by CR we obtain InsideCR
P (S) = (1, 0)

depending on the number of intersections based on the direction of the ray which is (1, 2).
Finally, in Figure 14.(D), for point S1 four valid chains exist namely, (a) VW, (b) XU,
(c) US2, and (d) S2V, none of which need to be broken or ignored. Thus by Theorem 3
InsideEH

P (S1) = 0 and InaccEH
P (S1) = 2. By CR, the outcome of the inclusion test changes,

that is InsideCR
P (S1) = (0, 1) depending on the intersections obtained by the direction of the

ray that is (2, 3). For the point S2, two valid chains exist, namely (a) S2V, and (b) VWXUS2.
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Thus by Theorem 1, InsideEH
P (S2) = 1 and InaccEH

P (S2) = 2. By CR follows InsideEH
S2

(S2) = 0,
as the number of intersections is 4.

3.4. Winding Number Rule vs EH

The Winding Number Rule (WNR) states that the number of times a point tracing the
polygon P surrounds the point S before reaching its starting point, decides whether S lies
inside P or not. Thus

InsideWNR
P (S) =

{
n if there are n loops around S
0 if there ar zero loops around S

In Figure 15 an analogy to a prison wall is taken into account in order to the explain the
differences. Figure 15.(A) is the initial structure of the prison, and then the final structure
is shown in part (B) of the same figure. Initially, via the WNR, S1 was lying outside and S2

inside the prison wall. The same is the verdict by the new method. Next a portion of the
prison wall is extended, and the final structure looks like that in Figure 15.(B). Note that S1

and S2 are still outside the new prison via the new definition, as the areas in which S1 and S2

lie, are not reachable from the prison’s perspective. This is because two pairs of walls have to
be ignored and not broken in each case. From this point of view both S1 and S2 are outside
P , in Figure 15.(B). Also, even though WNR = 2 for S2 in the new prison in part (B) of the
same figure, implying that the point lies twice inside, it does not make sense. It can be stated
that if a point lies inside once, then it lies inside forever. There does not arise the idea of a
point lying inside n times. Thus, a point lying inside n times is the same as the point is lying
inside once. If it does not lie inside, then it won’t lie forever. In this way the new definitions
and the accompanying theorems are definitive in producing a concrete answer via means of
the epigraph-hypograph method.

4. Conclusion

An old problem of containing contradictory definitions of Cross Over and Winding Rule
for point in polygon is addressed. A theoretically reliable and analytically correct solution
is proposed, using epi-hypo graphs, homotopy and Hopf’s Degree Theorem. The proposed
definitions along with the partial proofs indicate the bridge between the Cross Over and the
Winding Number Rules. The method resolves the problem of ambiguity of solution due to the
ray passing through vertices, the direction of the shift of the ray, and nondeterminism induced
by usage of the Cross Over multiple number of times. For complex self-intersecting polygons,
the presented algorithm challenges and addresses the issue of a point being multiply inside
the polygons posed by the Winding Number Rule. By providing an unambiguous, singular
and deterministic solution for both non-intersecting and self-intersecting polygons, the novel
solution redefines concepts of inside and inaccessibility of a sample point with respect to a
polygon and presents a fresh perspective of solving the old point-in-polygon problem.
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