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Abstract. We introduce canonical points and lines for the hyperbolic parabola
in Universal Hyperbolic Geometry, and explicit formulas for them in standard
coordinates. Quite a few remarkable collinearities result, with the duality of the
twin parabola playing a major role. We also introduce the curious Y-conic which
is homologous to the parabola, and contains many interesting meets.
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1. Introduction and review of the hyperbolic parabola

We begin by reviewing the basic set-up for Universal hyperbolic geometry (UHG), (see [6], [7],
[8], [9]), the definition of a (hyperbolic) parabola in this context which was introduced in [1],
and the use of standard coordinates which allow a significant simplification of many formulas
for such a parabola. In this algebraic version of hyperbolic geometry, we use a Cayley-
Klein projective framework with metrical structure determined by an invertible symmetric
projective matrix C and its adjugateD. Since the theory is independent of the particular form
of C, we may employ projective (linear) transformations to simplify situations. Everything
holds over a general field F not of characteristic two—which may for simplicity be taken to
be the rational numbers. Prior classical discussions of such curves in hyperbolic geometry
include [2], [3], [4], and [5].

In Figure 1 we see the null circle or absolute C, the parabola P0, and some canonical
points associated to it generating the homologous Y-conic.
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Figure 1: The hyperbolic parabola P0 and its Y-conic

Here is briefly how we set up Universal hyperbolic geometry using (projective) linear
algebra. A (projective) point is a proportion a = [x : y : z] in square brackets, or equivalently
a projective row vector a =

[

x y z
]

. A (projective) line is a proportion L = 〈l : m : n〉 in
pointed brackets, or equivalently a projective column vector

L =





l
m
n



 .

Incidence between the point a = [x : y : z] and the line L = 〈l : m : n〉 is defined by

aL = lx+my + nz = 0.

The join a1a2 of distinct points a1 ≡ [x1 : y1 : z1] and a2 ≡ [x2 : y2 : z2] is the unique line
passing through (i.e. incident with) a1 and a2, namely

a1a2 ≡ [x1 : y1 : z1]× [x2 : y2 : z2] ≡ 〈y1z2 − y2z1 : z1x2 − z2x1 : x1y2 − x2y1〉 . (1)

The meet L1L2 of distinct lines L1 ≡ 〈l1 : m1 : n1〉 and L2 ≡ 〈l2 : m2 : n2〉 is the unique point
lying on (i.e. incident with) L1 and L2, namely

L1L2 ≡ 〈l1 : m1 : n1〉 × 〈l2 : m2 : n2〉 ≡ [m1n2 −m2n1 : n1l2 − n2l1 : l1m2 − l2m1] . (2)

Three points a1, a2, a3 are collinear precisely when they lie on a line L; in this case we
also write [[a1a2a3]]. Similarly three lines L1, L2, L3 are concurrent precisely when they pass
through a point a; in this case we will also write [[L1L2L3]]. These conditions may be directly
reduced to checking that the determinant of the matrix formed by the three points or lines is
zero.
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1.1. Projective quadrance and spread

If C is a symmetric invertible 3×3 matrix, with entries in F, and D is its adjugate matrix (the
inverse, up to a multiple), denote by C and D the corresponding projective matrices, each
defined up to a non-zero multiple. From these we get a metrical structure: the (projective)
points a1 and a2 are perpendicular precisely when a1CaT

2
= 0, written a1 ⊥ a2, and the

(projective) lines L1 and L2 are perpendicular precisely when LT

1
DL2 = 0, written L1 ⊥ L2.

The point a and the line L are dual precisely when

L = a⊥ ≡ CaT or equivalently a = L⊥ ≡ LTD. (3)

Then two points are perpendicular precisely when one is incident with the dual of the other,
and similarly for two lines. So a1 ⊥ a2 precisely when a⊥

1
⊥ a⊥

2
.

A point a is null precisely when it is perpendicular to itself, that is, when aCaT = 0, and
a line L is null precisely when it is perpendicular to itself, that is, when LTDL = 0. The null
points determine the null conic, sometimes also called the absolute. Hyperbolic and elliptic
geometries arise respectively from the special cases

C =





1 0 0
0 1 0
0 0 −1



 = D and C =





1 0 0
0 1 0
0 0 1



 = D. (4)

In the hyperbolic case, a = [x : y : z] is null precisely when x2 + y2 − z2 = 0 and dually the
line L = (l : m : n) is null precisely when l2 + m2 − n2 = 0. So the null circle C in affine
coordinates X ≡ x/z and Y ≡ y/z is the circle X2 + Y 2 = 1, which is shown in blue in our
diagrams.

In the general setting, the dual notions of (projective) quadrance q (a1, a2) between points
a1 and a2, and (projective) spread S (L1, L2) between lines L1 and L2 are

q (a1, a2) ≡ 1−

(

a1CaT
2

)2

(a1CaT
1
) (a2CaT

2
)

and S (L1, L2) ≡ 1−

(

LT

1
DL2

)2

(LT

1
DL1) (LT

2
DL2)

. (5)

Clearly q (a, a) = 0 and S (L, L) = 0 for any point a and any line L, while q (a1, a2) = 1
precisely when a1 ⊥ a2, and dually S (L1, L2) = 1 precisely when L1 ⊥ L2. Then S

(

a⊥
1
, a⊥

2

)

=
q (a1, a2).

In [6], Wildberger showed that for hyperbolic geometry these metrical notions agree
with a purely projective formulation using suitable cross ratios, and relate to the classical
hyperbolic distance d (a1, a2) and angle θ (L1, L2) between points and lines, inside the null
circle C, via q (a1, a2) = − sinh2 (d (a1, a2)) and S (L1, L2) = sin2 (θ (L1, L2)). Note however
that (5) are defined for all non-null points and lines in the projective plane.

Recall also that a midpoint of the non-null side ab is a point m lying on the line ab which
satisfies q(a,m) = q(m, s). There are generally zero or two midpoints of a given side. More
novel is the following closely related concept, which was introduced in our paper [9]: a sydpoint
of the non-null side ab is a point s lying on the line ab which satisfies q(a, s) = −q(b, s). There
are also generally zero or two sydpoints of a given side, and these are intimately related to
the theory of the hyperbolic parabola.

1.2. The parabola and standard coordinates

We now introduce some basic facts from [1]. The hyperbolic parabola P0 is defined in terms
of two non-null, non-perpendicular points f1 and f2 (called the foci), as the locus of a point
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p0 satisfying
q(p0, f1) + q(p0, f2) = 1.

After introducing the directrices F1 ≡ f⊥

1
and F2 ≡ f⊥

2
respectively, this defining equation

is equivalent to either q (p0, f1) = q (p0, F2) or q (p0, f2) = q (p0, F1), showing that the above
definition gives a hyperbolic version of the Euclidean parabola. Note also that there are two
focus/directrix pairs.

The parabola P0 is indeed a conic. Define its axis line A ≡ f1f2, the vertices v1 and v2
where P0 meets the axis, the dual vertex lines V1 ≡ v⊥

1
and V2 ≡ v⊥

2
which are tangents to

the parabola at the vertices, and the base points b1 ≡ F1A and b2 ≡ F2A, with dual base lines
B1 ≡ b⊥

1
and B2 ≡ b⊥

2
.

For a point c its reflection in the axis A, called the opposite of c, is denoted c. This is a
fundamental symmetry for the parabola.
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Figure 2: A parabola P0 and some basic points and lines

The main idea to study the parabola is to allow flexibility in our field and to carefully
choose an optimum coordinate framework ; for this we utilize four important points associated
to the parabola: a pair of opposite null points α0, α0 lying on P0, and the vertices v1, v2. The
existence of α0, α0 may well require a quadratic field extension, which we assume we have
made.

We may now invoke the Fundamental theorem of projective geometry to projectively
transform these four points to

α0 = [1 : 1 : 1] , α0 = [1 : −1 : 1] , v1 = [0 : 0 : 1] , v2 = [1 : 0 : 0] .

This choice is called standard coordinates for the parabola. It is then a pleasant fact that
β0 ≡ (v2α0) (v1α0) and β0 ≡ (v2α0) (v1α0) are the null points

β0 = [−1 : 1 : 1] and β0 = [−1 : −1 : 1] .

The opposite of c = [x : y : z] is then c = [x : −y : z].
The main Parabola standard coordinates theorem then shows that the original hyperbolic

bilinear form of C = D = J from (4) is transformed to one with new matrices

C =





α2 0 0
0 1− α2 0
0 0 −1



 and D = adj (C) =





α2 − 1 0 0
0 −α2 0
0 0 α2 (1− α2)



 (6)
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for some parameter α. While the metrical structure has now changed, the quadrance and
spread depend only on the corresponding projective matrices C and D, so all the definitions
of the previous section apply. Crucially, in standard coordinates the parabola P0 now has
equation

y2 = xz (7)

and so can easily be parametrized by p0 = p (t) ≡ [t2 : t : 1]. The equation of the axis in
standard coordinates is A = 〈0 : 0 : 1〉, while the null circle C is

α2x2 +
(

1− α2
)

y2 − z2 = 0.

Almost all subsequent formulas for points, lines and related curves will involve the parameter
α.

1.3. Dual conics and the connection with sydpoints

Here are the coordinates of the points and lines already defined in standard coordinates:

f1 = [α + 1 : 0 : α (α− 1)] , f2 = [1− α : 0 : α (α+ 1)] ,

F1 ≡ f⊥

1
= 〈α (α+ 1) : 0 : 1− α〉 , F2 = f⊥

2
= 〈α (α− 1) : 0 : 1 + α〉 ,

b1 ≡ F1A = [α− 1 : 0 : α (α + 1)] , b2 ≡ F2A = [α + 1 : 0 : α (1− α)] ,

B1 ≡ b⊥
1
= 〈−α (α− 1) : 0 : α+ 1〉 , B2 ≡ b⊥

2
= 〈α (α + 1) : 0 : α− 1〉 .

Define the axis null points to be the meets of the axis A and the null conic C:

η1 ≡ AC = [−1 : 0 : α] and η2 = AC = [1 : 0 : α] ;

note that this is a switch from the convention in [1]. We also have dual lines

α⊥

0
= C [1 : 1 : 1]T =

〈

α2 : 1− α2 : −1
〉

and α0
⊥ = C [1 : −1 : 1]T =

〈

α2 : α2 − 1 : −1
〉

.

The tangent line to P0 at a point p0 = p (t) ≡ [t2 : t : 1] on it is P 0 = 〈1 : −2t : t2〉, and the
dual point of this tangent line is the twin point p0 of p0. The locus of p

0 as p0 varies along P0

turns out, remarkably, to be another parabola P0 with foci which are the sydpoints f 1, f 2 of
the side f1f2, as in Figure 3.

To understand this, we first introduce the lines and points

F 2 ≡ α0α0 = 〈1 : 0 : −1〉 , B1 ≡ β0β0 = 〈1 : 0 : 1〉 ,

b2 ≡ F 2A = [1 : 0 : 1] , f 1 = B1A = [−1 : 0 : 1] .

The duals are

f 2 ≡ (F 2)
⊥
= [1 : 0 : α2] , b1 ≡ (B1)

⊥
= [1 : 0 : −α2] ,

B2 ≡ (b2)
⊥
= 〈−α2 : 0 : 1〉 , F 1 ≡ (f 1)

⊥
= 〈α2 : 0 : 1〉 .

The points f 1 and f 2 are the t-foci of the parabola P0, while the respective dual lines F 1 and
F 2 are the t-directrices of P0. The meets of the t-directrices and the axis A are the t-base
points b1 ≡ F 1A and b2 ≡ F 2A, with respective dual lines B1 and B2.

We also introduce the points d0 and d0 to be the meets of the directrix F2 with the
parabola P0, should they exist, and the corresponding twin null points d0 ≡ δ0 and δ0 lying
on the directrix F1.
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Figure 3: A point p0 and the twin point p0 of P0

The Parabola sydpoints theorem then asserts that the points f 1 and f 2 are in fact the
sydpoints of the original side f1f2. The parabola P0 with foci f 1 and f 2, called the twin
parabola of P0, is the dual conic of P0 with respect to the null circle C; namely the locus of
p0 as p0 varies. The equation of P0 in standard coordinates is

y2 =
−4α2

(α2 − 1)2
xz.

Note in Figure 3 that the tangents to both the parabola P0 and the null circle C at their
common meets, namely the null points α0 and α0, pass through the foci of the twin parabola
P0. Dually the tangents to both the parabola P0 and the null circle C at their common meets,
namely the null points δ0 and δ0 on F1, pass through the focus f1 of P0.

2. Canonical structures on the hyperbolic parabola

In the paper [1] we mostly concentrated on properties of the hyperbolic parabola that were
analogous to the classical theory for a Euclidean parabola. We now derive some interesting
results that have no classical parallel: while a Euclidean parabola has relatively few canonical
points and lines associated to it, the situation is dramatically different here, due to the
existence of the null points α0 and α0. Here we sketch the beginnings of this theory, up to
the discussion of the Y-conic of a hyperbolic parabola. As usual, obtaining explicit formulae
in standard coordinates is a main aim.

The proofs of most of the results are straightforward–we compute joins and meets, or
duals, and occasionally verify that a point lies on the parabola P0 using (7). Many of these
facts have generalizations that are also valid when α0 is replaced by a general point p0 on the
parabola; we will discuss this in a future paper.

Define the e-points:

e0 ≡ (η1α0) (η2α0) =
[

1 : α : α2
]

and e0 ≡ (η1α0) (η2α0) =
[

1 : −α : α2
]
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the m-points:

m ≡
(

f 2α0

) (

b1α0

)

=
[

1 : −α2 : α4
]

and m ≡
(

f 2α0

) (

b1α0

)

=
[

1 : α2 : α4
]

and the n-points:

n1 ≡ (f1α0) (b2α0) =
[

(α + 1)2 : −α
(

α2 − 1
)

: α2 (α− 1)2
]

,

n2 ≡ (f2α0) (b1α0) =
[

(α− 1)2 : α
(

α2 − 1
)

: α2 (α + 1)2
]

,

n1 ≡ (f1α0) (b2α0) =
[

(α + 1)2 : α
(

α2 − 1
)

: α2 (α− 1)2
]

,

n2 ≡ (f2α0) (b1α0) =
[

(α− 1)2 : −α
(

α2 − 1
)

: α2 (α + 1)2
]

.

Theorem 1 (Canonical parabola points). The points e0, e0, m,m, n1, n2, n1 and n2 all lie on
the parabola P0.

Proof. This can be checked easily from the above forms of these points and the equation (7)
for P0.
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Figure 4: Additional collinearities with canonical points

We call these canonical points for the parabola P0. The dual lines of α0 and α0 are
respectively α⊥

0
= α0f

2 = α0m and (α0)
⊥ = α0f

2 = α0m, so the points m and m are also
characterized by being the respective meets of these duals with P0.

Now we introduce the γ-points:

γ1 ≡ (f1α0) (b1α0) =
[

α3 − α2 + α + 1 : −2α2 : α
(

α3 − α2 − α− 1
)]

γ1 ≡ (f1α0) (b1α0) =
[

α3 − α2 + α + 1 : 2α2 : α
(

α3 − α2 − α− 1
)]

γ2 ≡ (f2α0) (b2α0) =
[

α3 + α2 + α− 1 : 2α2 : −α
(

α3 + α2 − α + 1
)]

γ2 ≡ (f2α0) (b2α0) =
[

α3 + α2 + α− 1 : −2α2 : −α
(

α3 + α2 − α+ 1
)]

.

Theorem 2 (Canonical null γ-points). The γ-points are all null points.
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Proof. We can check that each of γ1, γ1, γ2 and γ2 satisfy the equation α2x2+(1− α2) y2−z2 =
0 of the null circle C in standard coordinates.

Now we introduce the δ-points

δ1 = (β0f1)
(

β0b1
)

=
[

α3 + α2 + α− 1 : 2α2 : α
(

α3 + α2 − α+ 1
)]

,

δ1 =
(

β0f1
)

(β0b1) =
[

α3 + α2 + α− 1 : −2α2 : α
(

α3 + α2 − α + 1
)]

,

δ2 = (β0f2)
(

β0b2
)

=
[

α3 − α2 + α + 1 : −2α2 : α
(

−α3 + α2 + α + 1
)]

,

δ2 =
(

β0f2
)

(β0b2) =
[

α3 − α2 + α + 1 : 2α2 : α
(

−α3 + α2 + α + 1
)]

.

Theorem 3 (Null δ points). The δ-points are all null points.

Proof. We can check that each of δ1, δ1, δ2 and δ2 satisfy the equation α2x2+(1− α2) y2−z2 =
0 of the null circle C in standard coordinates.

In addition to the collinearities that define the canonical points, the following theorems
bring together some remarkable relations between the points we have defined. In each case
we have corresponding collinearities by considering opposite points.

Theorem 4 (e-point collinearities).
We have the collinearities [[f2e0e0]] , [[f1β0e0]] and

[[

f2β0e0
]]

.

Theorem 5 (n-point collinearities). We have the collinearities [[f 2n1n2]] and [[b1n1n2]].

Theorem 6 (γ-foci collinearities). We have the collinearities [[f 1γ1γ2]] and [[b1γ1γ2]].

Theorem 7 (γ,m collinearities). We have the collinearities [[f1γ2m]] and [[f2γ1m]].

Theorem 8 (α-m collinearities). We have the collinearity [[b1α0m]].

Theorem 9 (γ-δ collinearities).
We have collinearities [[δ1γ2v1]] , [[δ1γ2v2]] , [[δ2γ1v1]] and [[δ2γ1v2]] (Figure 5).

Proof. Since we have the coordinates of all the points, these theorems can all be checked using
the determinant condition for collinearity. For example to check [[f1β0e0]] we compute

det





α+ 1 0 α (α− 1)
−1 1 1
1 α α2



 = 0

and to check [[δ2γ1v2]] we compute

det





α3 − α2 + α + 1 2α2 α (−α3 + α2 + α + 1)
α3 − α2 + α + 1 2α2 α (α3 − α2 − α− 1)

0 0 1



 = 0.
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Figure 5: γ-δ collinearities

2.1. The y-points and the Y-conic

Using the points of the previous section, we now introduce some secondary meets which
determine an interesting conic. Define

y1 ≡ (n2n2) (γ1γ2) =
〈

α2 (α+ 1)2 : 0 : − (α− 1)2
〉

× 〈2α3 : α4 − 1 : 2α〉

=
[

(α− 1)3 (α+ 1) : −4α3 : α2 (α− 1) (α + 1)3
]

,

y2 ≡ (n1n1) (γ1γ2) =
〈

−α2 (α− 1)2 : 0 : (α + 1)2
〉

× 〈2α3 : α4 − 1 : 2α〉

=
[

(α− 1) (α + 1)3 : −4α3 : α2 (α− 1)3 (α + 1)
]

,

y3 ≡ (n1n2) (γ1γ2) = 〈−α2 (α2 − 1) : 4α2 : α2 − 1〉 ×
〈

2α2 : − (α2 − 1)
2
: 2α2

〉

= [4α2 + α4 − 1 : 2α2 (α2 − 1) : α2 (−4α2 + α4 − 1)] ,

y4 ≡ (n1n2) (α0b
1) = [α2 (α2 − 1) : 4α2 : − (α2 − 1)]× [α2 : − (α2 + 1) : 1]

= [−4α2 + α4 − 1 : 2α2 (α2 − 1) : α2 (4α2 + α4 − 1)] , and

y5 ≡ (β0b
1)B2 = [α2 : α2 − 1 : 1]× [−α2 : 0 : 1]

= [α2 − 1 : −2α2 : α2 (α2 − 1)] .

Theorem 10 (The Y-conic). The points y1, y1, y2, y2, y3, y3, y4, y4, y5 and y5 lie on a conic,
which we call the Y-conic, whose equation is

α4
(

α4 − 6α2 + 1
)

x2 + 4α2
(

α2 − 1
)2

y2 +
(

α4 − 6α2 + 1
)

z2 − 2α2
(

α2 + 1
)2

xz = 0.

Proof. Since the forms of all the points involved are known, it is a lengthy but straightforward
exercise (made much simpler with a computer package) to verify that the corresponding points
satisfies the Y-conic equation.

The relationship between the Y-conic and the parabola P0 is interesting; empirical inves-
tigations with GSP suggest that in some sense the Y-conic is symmetrically placed both with
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Figure 6: The parabola and its Y-conic

respect to P0 and C, as Figures 6 and 7 suggest. We will give two theorems that suggest
this. First recall that in projective geometry a homology with axis the line L and center the
point a is defined in terms of two additional points c and d satisfying [[acd]]. In this case the
homology sends the general point x to (((cx)L) d) (ax).

Theorem 11 (Parabola null circle homology). The homology φ with axis F 1 and center f1
which sends b2 to b1 sends P0 to C.

Proof. Using the known coordinates of the points and lines involved, the homology may be
computed to be

φ ([x : y : z]) =
[

xα3 − xα2 + zα + z : −2yα2 : −α
(

−xα3 + xα2 + zα + z
)]

.

After substitution, we find that this lies on the null conic: α2x2+(1− α2) y2−z2 = 0 precisely
when 4α4 (xz − y2) (α2 − 1) = 0. So this homology sends P0 to C.

Theorem 12 (Y-conic homology). If the meet of the tangents to P0 at n2 and n2 is denoted
q2, then the homology ϕ with axis F 1 and center f 2 which sends q2 to f 1 sends P0 to Y.

Proof. We first compute that q2 =
[

(α + 1)2 : 0 : −α2 (α− 1)2
]

, and then determine that

ϕ ([x : y : z]) = [z + 2zα + xα2 − 2xα3 − xα4 − zα2 : −4yα3

: α2 (z − 2zα + xα2 + 2xα3 − xα4 − zα2)] .

After substitution, we find that this point lies on the Y-conic above precisely when
64α8 (xz − y2) (α2 − 1)

2
= 0. So this homology sends P0 to Y .



A. Alkhaldi, N.J. Wildberger: The Parabola in Universal Hyperbolic Geometry II 11

f
f

n

n

m

m

n

n

x

u

v
y z

d

d

e

e

f
f

F B
B

F

F

b

b

b
b q

1
2

1
1

2

2

1

2
1

1

1

2

2

2

0

0

0

0

2

1

2
1

P
P

C Y

00

0

0

0

0

0

0

0

0

d

d

d

d

a

a

b

b

Figure 7: Another view of the Y-conic
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