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Abstract. We extend the Huzita-Justin origami axioms to allow constructions
with circles. These axioms allow many familiar constructions using conics. New
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1. Introduction

We describe the axioms of a single fold origami system where, in addition to the usual Huzita-
Justin axioms, one may also use a compass to create circles. The Huzita-Justin origami axioms
are just the admissible uses of folding which may be used in a construction of a new folded
line from previously constructed data. The folded lines and their intersections are the lines
and points constructed with origami. This is not an axiom system in the classical sense but
rather restrictions on the construction methods. The first axiom axiom using a circle was
implicitly used in [5] and provided as fold lines the common tangents to a circle and parabola.
(We say a circle is compass constructible iff its center and an incident point are known.) This
allows one to construct the roots to the general quartic polynomial equation. This idea of
constructions using a circle together with origami has also been pursued in [6]. They added
three axioms to the usual Huzita-Justin axioms for single fold origami, obtaining a system
which also is not more powerful than single fold origami. However with the addition of their
axioms one can perform some constructions in an nice way, as they show by implementing a
classical method for the trisection of an angle.

In this article we complete these systems by considering the full range of axioms for
constructions with compass and single fold origami. We allow foldings which align by reflection
across the fold, any of the geometric objects, either point, line or circle with another such
object. For us aligning will mean incidence when a point is involved or in the case of two
curves, an alignment is a tangency.
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There are 29 axioms in all; the new axioms labelled O5b, O6b, O7b are those of [6]. Our
system is not more powerful than ordinary origami since it involves only constructions with
conics and lines [1]; however, it does allow one to elegantly fold the tangents to a given conic
from a given point or the common tangents to two conics. Consequently we can now fold the
solutions to Alhazan’s problem thus resolving a question posed in [2].1 In the final section,
using these axioms, we give a cube root construction and two additional methods for trisection
of an angle which are similar to ancient techniques based on neusis. In addition we briefly
discuss the origami solution to Alhazan’s problem.

2. Geometry of the basic folds

2.1. Basic folds

We use P to denote a point, L to denote a line, and K denotes a circle. The basic folds are
the following single alignments:

P1 ↔ P2; P1 ↔ L1; P1 ↔ K1; L1 ↔ L2; L1 ↔ K1; K1 ↔ K2.

The objects in the basic fold alignment are not necessarily distinct. The arrow means that
the first object is reflected (transformed) across an origami fold line so that it is tangent
(incident) to the second object or similarly the second object is transformed across the fold
line to be incident with the first; in this way ↔ is a symmetric operation. In the case of a
point, tangency means incidence; whereas the tangency afforded by L1 ↔ L2 means that the
folded image L′

1 of the line L1 is coincident with the line L2.
A basic fold where the elements are equal is called of fixed type, otherwise it is generic

type.
Here are descriptions of the basic folds. In order to describe the axioms (see below), it

is important to distinguish the geometry of all possible folds for the fixed type and generic
type. In our description here we assume that distinctly labelled elements are different.

2.2. P1 ↔ P2

The fold is the perpendicular bisector of P1P2.

2.3. P ↔ P

These folds are all the lines through P .

2.4. P ↔ L

These folds form the envelope of tangents to the parabola with focus P and directrix L.

2.5. P ↔ K

We consider the envelope of the perpendicular bisectors of the given point P and a variable
point P ′ on a circle K. These bisector lines are the origami folds P ↔ K. These lines form
the envelope of tangents to a conic. The conic is an ellipse interior to the circle if the given
point is interior to the circle (Figure 1), or a hyperbola if the point is exterior to the circle.

1In this problem of Alhazan we want to construct the locations X on a circle with center O so that for
given points A,B interior to the circle then the lines AX , BX are reflections across the line OX .
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Figure 1: Focal conic: P ↔ K

The foci of the conic are the given point P and the center F of the circle. This is a familiar
classical construction. See the chapter on negative pedals in [8]. If P lies on K then the
fold line passes through the center of K or is tangent to K at P . Since these are readily
constructed with ordinary origami folds we shall assume P is not on K.

2.6. L1 ↔ L2

The folds are the angle bisectors of the lines if the lines are not parallel; if the lines are parallel
then the fold line is the midline of the two given lines.

2.7. L ↔ L

These folds are all the lines perpendicular to the given line L. The fold line L is also an
admissible reflection, taking L to itself, but we ignore this case since no new object is created.

Figure 2: L ↔ K
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2.8. L ↔ K

The possible fold lines F1, F2 are the bisectors of the line L with each of the tangents of K.
These bisectors give two families, tangent to two parabolas with the focus O, the center of
K (Figure 2). The directrices are lines parallel to the given line L at distance equal to the
radius r of K. To see this notice that the point of tangency U folds across F1, F2 to L and
hence the center O folds across F1, F2 to lines at distance r from L; in addition the fold of
OU is perpendicular to L since OU is perpendicular to the tangent of K at U . Also one can
easily show that the line OU meets F1, F2 in the points of tangency of the two parabolas.

2.9. K1 ↔ K2

When K1 is folded to K2 it is either tangent as interior circle K
−

1 or exterior circle K+

1 to K2

(Figure 3). The center of K1 is O, and the centers of the image circles are respectively O−

and O+. The locus of the centers O−, O+ are circles so the analysis is similar to § 2.5. The
reflections or folds achieving these tangencies are the perpendicular bisectors of O and O−

or O and O+. These family of lines envelope conics K−, K+ which are either hyperbolas or
ellipses with the foci O and the center U of K2. The conics are either: ellipses if K1 is interior
to K2; hyperbolas if K1 is exterior to K2; otherwise an ellipse and hyperbola.

Figure 3: K1 ↔ K2

2.10. K ↔ K

A fold K ↔ K can be internally tangent; in this case the only possible folds are lines through
the center P ; these folds through the center P are equivalently folded as P ↔ P , so we shall
ignore this as a new basic fold. So we shall assume for this basic fold that the transform of
K is externally tangent to K and then the fold line is a tangent line of K.
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3. Axiom types

Axioms are sets of these basic folds which have only finitely many possible origami fold line
solutions; so we combine the basic folds to obtain axioms.

As we see from the discussion above there are only finitely many folds for P1 ↔ P2,
L1 ↔ L2 and in the remaining cases the solutions form an algebraic curve of small degree in
the projective space of lines. Thus by imposing at most two of these conditions we will have
only finitely many solutions. These form the set of axioms.

The axioms O1, O2, O3a, O4a, O5a, O6a, O7a (see below) are defined by the standard one
fold origami alignments.

In the table below there are 15 circle-origami axioms using two basic folds. We do assume
that the column element is distinct from the row element. However distinctly labelled circles
may be equal since the alignment generates an algebraic curve. For example an instance of
3d, K ↔ K1, K ↔ K2, would represent the simultaneous alignment of K,K1, K2; there are
only finitely many possibilities as long as K1 6= K2.

Table 1: 15 circle-origami axioms using basic folds

P2 ↔ K2 L2 ↔ K2 K3 ↔ K4

P1 ↔ P1 5b 4b 4c

P1 ↔ L1 6b 7c 7e

P1 ↔ K1 6c 7d 7f

L1 ↔ L1 7b 8a 8b

L1 ↔ K1 3b 3c

K1 ↔ K2 3d

In addition to these in Table 1 there are seven more axioms which use the basic fold
K ↔ K discussed in § 2.10.

3.1. Eight axiom types

We use a numbering system consistent with the standard Huzita-Justin axioms. The axioms
are exhaustively described as one of the following types:

1. No points are transformed: this is either O3, or O8, where the first has no fixed curves,
the second has at least one fixed curve.

2. Only one point is transformed and it is fixed: this is O4.

3. Only one point is transformed and it is not fixed: this is O7.

4. Two points are transformed and both are fixed: this is O1

5. Two points are transformed and one is fixed: this is O5.

6. Two points are transformed and neither is fixed: if there are no curves this is O2,
otherwise O6.
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4. Axioms

4.1. O1:

P1 ↔ P1, P2 ↔ P2. The fold line is incident with the given points.

4.2. O2:

P1 ↔ P2. The fold line is the perpendicular bisector of the given points.

4.3. O3:

a) L1 ↔ L2. The fold line is a bisector of the given lines. There are two solutions.

b) L1 ↔ K1, L2 ↔ K2. The folds are the common lines to a pair of conic envelopes. There
are at most eight solutions, but the algebraic degree is at most 4 (factors into two quartics).

c) L1 ↔ K1, K2 ↔ K3. The folds are the common lines to four different pairs of conic
envelopes. Thus there are at most 16 solutions, but the algebraic degree is at most 4.

d) K1 ↔ K2, K3 ↔ K4. The folds are the common lines to four different pairs of conic
envelopes. Thus there are at most 16 solutions, but the algebraic degree is at most 4.

4.4. O4:

a) P1 ↔ P1, L1 ↔ L1. The fold line is incident with the point and perpendicular to the line.
There is one fold solution.

b) P1 ↔ P1, L1 ↔ K1. The fold line is incident with the point and reflects the given line to a
tangent of the circle. The reflections of the given tangent to the circle has a bisector with the
given line enveloping a parabola. Thus there are at most two folds passing through a given
point.

c) P1 ↔ P1, K1 ↔ K2. The fold line is incident with the given point and belongs to one of two
possible confocal conic envelopes. Thus there are four possible solutions, but the algebraic
degree is at most 2.

d) P1 ↔ P1, K1 ↔ K1. The fold line is incident with the point and is tangent to the circle.
Thus there are at most two possible solutions.

4.5. O5:

a) P2 ↔ L1, P1 ↔ P1. The fold line passes through P1 and is part of the tangent envelope to
a parabola. There are at most two possible solutions.

b) P2 ↔ K2, P1 ↔ P1. The fold line passes through P1, and conic envelope of tangents to an
ellipse or hyperbola. There are at most two possible solutions.

4.6. O6:

a) P1 ↔ L1, P2 ↔ L2. There are in general at most three solutions given by the common
tangents to two parabolas, [1].

b) P1 ↔ L1, P2 ↔ K1. The folds are the common tangents to a parabola and an ellipse or
hyperbola. There are at most four solutions. The algebraic degree is 4.

c) P1 ↔ K1, P2 ↔ K2. These folds are the common tangents to two conics, so there are at
most four solutions and the algebraic degree is 4.
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4.7. O7:

a) L1 ↔ L1, P1 ↔ L2. The fold line is perpendicular to L1 and is tangent to a parabola.
There is at most one solution.

b) L1 ↔ L1, P1 ↔ K1. The fold line is perpendicular to L1 and tangent to an ellipse or
hyperbola. There are at most two solutions.

c) L1 ↔ K1, P1 ↔ L2. The fold line is a common tangent to two different pairs of parabola
envelopes. There are at most six solutions but the algebraic degree is 3.

d) L1 ↔ K1, P1 ↔ K2. The fold line is a common tangent to one of the common focus
parabolas and confocal conic envelopes. There are 16 possible solutions but the algebraic
degree is at most 4.

e) K1 ↔ K2, P1 ↔ L1. The fold line is a tangent to a one of the two parabola and confocal
conic envelopes. There are at most eight solutions, but the algebraic degree is 4.

f) K2 ↔ K3, P1 ↔ K1. The folds are common to paired conic envelopes. There are at most
eight solutions but the algebraic degree is 4.

g) K1 ↔ K1, P1 ↔ L1. The folds are common tangents to a circle and parabola. There are
at most four solutions.

h) K1 ↔ K1, P1 ↔ K2. The folds are common tangents to a circle and an ellipse or hyperbola.
There are at most four solutions.

4.8. O8:

a) L1 ↔ L1, L2 ↔ K1. The fold line is perpendicular to the first line and tangent to one of
two parabolas. There are at two solutions. The algebraic degree is 2.

b) L1 ↔ L1, K1 ↔ K2. The fold line is perpendicular to the first line and tangent to one of
two conics. There are at most four solutions and the algebraic degree is 2.

c) K1 ↔ K1, L1 ↔ L1. The fold line is tangent to the circle and perpendicular to the line.
There are at most two solutions.

d) K1 ↔ K1, L1 ↔ K2. The fold line is tangent to the first circle and one of the other
parabolas. There are at most eight solutions and the algebraic degree is 4.

e) K1 ↔ K1, K2 ↔ K3. The fold line is tangent to the first circle and one of the other conics.
There are at most eight solutions and the algebraic degree is 4.

f) K1 ↔ K1, K2 ↔ K2. The fold line is tangent to both circles. There are at most four
solutions.

5. Constructions

These axioms allow constructions which solve some problems posed in [2]; the axioms give
several constructions of the following: common tangents to two conics; tangents to a conic
which pass through a given point;tangents to conics which are perpendicular to a given line.

For example, the solutions to Alhazan’s problem reduces to locating the intersection of a
right hyperbola and a circle. As discussed in [2] dualizing these means we want to find the
common tangents to a parabola and a circle. We can now do this easily with the axiom O7g.
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5.1. Angle trisection: O6b

Here is a classical construction (Jordanus, Campanus, 13th century) for the trisector of
∠FSL with vertex S and sides FS and line L modified so that it is done by compass-origami.
This is closely related to Archimedes trisection [3].

Figure 4: Trisection by O6b

Let M be the line parallel to L through F . Construct the circle K centered at F with
radius |FS| (Figure 4).

Fold F ↔ K,S ↔ M using axiom O6b (the focal conic is a circe). Let S ′, F ′ be the image
by reflection across the fold line. The fold line meets M at T . By isosceles triangles and
opposite angles cut on parallels ∠TSS ′ = ∠TS ′S = ∠TFF ′ = ∠TF ′F = α. So ∠F ′TS ′ =
∠FTS = 2α. Then using parallels L,M cut by ST we have ∠TSL = 2α so ∠S ′SL = α. Also
since SFF ′ is isosceles then ∠FSF ′ = α and thus ∠FSL is trisected by S ′S.

Figure 5: Another Trisection by O6b
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5.2. Another angle trisection: O6b

Here is a another classical construction (Archimedes, 3rd century BC) for the trisector of
∠FSL with vertex S and sides FS and line L; the construction has been modified so that it
is done by compass-origami. It is also related to an origami trisection of Justin [7].

Let N be the line perpendicular to L through S. Construct the circle K centered at S
with radius |FS| (Figure 5).

Fold S ↔ K,F ↔ N using axiom O6b. There are in general four common tangents
to the parabola with focus F and directrix N with the circle K1 concentric with K with
half the radius. These common tangents are the possible fold lines; one of the tangents, the
perpendicular bisector of SF , is not useful for trisection (trivial case).

Let S ′, F ′ be the image by reflection across a non-trivial fold line. ∠FSS ′ = ∠SF ′Q = β,
∠S ′SL = γ, β + γ = π/2. Therefore ∠F ′QS = γ. Hence ∠F ′RS = ∠F ′S ′S = ∠FSS ′ = α.
So α = 2γ by exterior angle of △RQS and therefore the acute ∠FSL is trisected.

5.3. Cube root: O3b

Consider a circle of radius one, K, centered on the y-axis Y at U = (0,−1), and a circle of
radius a, Ka, centered on the x-axis X at V = (−a, 0), hence tangent to the respective axes
as in Figure 6. The we fold using axiom 3b, Y ↔ Ka, X ↔ K. The line achieving this folding
meets the axes at points A,B respectively.

Now one easily sees that there are three similar right triangles △OAU , △OVB, △OBA.
Using the common ratio of the legs we have a ·OA = OB2 and OB = OA2. Hence a = OA3.

Figure 6: Cube Root by O3b
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