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Abstract. Bisectors of line segments are quite simple geometrical objects. De-
spite their simplicity, they have many surprising and useful properties. As metric
objects, the shape of bisectors depends upon the metric considered. This article
discusses geometric properties of bisectors of line segments in the plane, when the
bisectors are taken with respect to the usual p-norms. Although the shape of bi-
sectors changes as their defining p-norm varies, it is shown that the bisectors share
exactly three points (or infinitely many points in exceptional cases determined by
the orientation of the base line segment).
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1. Introduction

When one ventures into the plane and decides to change the familiar Euclidean norm by
another one, the new way of measuring distances between points yields a radical change in the
geometry of the plane. Immediately, one falls into the category of non-Euclidean geometries,
were many basic geometric principles no longer hold. For instance, principles of congruence of
triangles or non distance-preserving rotations, to mention a few. As new geometric shapes are
created with a new norm (by using the very same metric definition of Euclidean objects such
as circles, ellipses, bisectors of a line segment and so forth), one discovers the amusing fact
that our geometric way of thinking is completely Euclidean. Take, for instance, the excellent
book of Krause [5]. There, he takes the reader by the hand and shows us step by step,
the wonderful world of the taxicab plane with no few surprises among the taxicab versions
of familiar Euclidean geometric objects. However, renorming finite dimensional spaces is not
just an interesting topic in its own accord. It is related to a vast area of research known as
Minkowski Geometry where many more interesting problems arise and even more unanswered
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questions remain. We refer the interested reader to [10] or to the survey articles [6], [7], and
[8], to get a glimpse of the subject.

As we said, our setting will be the real plane, namely, the two dimensional real vector
space of ordered pairs ~v = (x, y) ∈ R2. We will refer to ~v = (x, y) as a point or vector in
the plane. We will equip the plane with a norm, that is, a non-negative function, ‖ · ‖, that
assigns to a vector ~v its “length”. Recall that this “length” function must satisfy that the
only vector with length zero is the origin and that for any vectors in the plane, ~v and ~w, and
any real number r, ‖r~v‖ = |r| ‖~v‖ and ‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖ hold. We will only consider the
so called p-norms : if 1 ≤ p ≤ ∞, these norms are defined as

‖(x, y)‖p = (|x|p + |y|p)1/p for 1 ≤ p <∞,

and for p =∞
‖(x, y)‖∞ = max{|x|, |y|}.

The pair (R2, ‖ · ‖p) is denoted by `p2. Recall that any norm in the plane induces a metric
dist(~v1, ~v2) = ‖~v1 − ~v2‖, and thus a notion of distance between points in the plane.

For the cases p = 1, 2, and, ∞ the corresponding norms are usually known as the taxicab
norm, the Euclidean norm and the max or Chebyshev norm, respectively. We denote by
Sp(~v, r) the p-circle with center ~v and radius r, that is,

Sp(~v, r) = {~w ∈ `p2 : ‖~w − ~v‖p = r}

(see Figure 3).1

In this article we focus on bisectors of a line segment with respect to the p-norm. If ~v1
and ~v2 are two distinct points in `p2, the p-bisector of the line segment determined by ~v1 and
~v2 is

Mp(~v1, ~v2) = {~w ∈ `p2 : ‖~w − ~v1‖p = ‖~w − ~v2‖p}.
Note that the p-bisector of the line segment determined by ~v1 and ~v2 is just the collection
of points obtained by intersecting the circles Sp(~v1, r) and Sp(~v1, r) with r at least half the
p-distance between ~v1 and ~v2 (see Figure 1). Also note that, regardless of the value of p,
Mp(~v1, ~v2) is nonempty, as it always contains at least the midpoint (~v1 + ~v2)/2. That is,

~v1 + ~v2
2
∈

⋂
1≤p≤∞

Mp(~v1, ~v2). (1)

We will prove that in fact the intersection above consists of exactly three points as long as
the line segment ~v1~v2 is not parallel to a coordinate axis or to a side of the unit taxicab circle.
When the segment ~v1~v2 is parallel to a coordinate axis, all p-bisectors, 1 ≤ p < ∞, coincide
with the Euclidean bisector: the orthogonal line to the line segment that goes through the
midpoint, and the Euclidean bisector is contained in the max-bisector which surprisingly has
nonempty interior (see Figure 2). When the line segment is parallel to a side of the taxicab
unit circle, all p-bisectors, 1 < p ≤ ∞, are the same; but now they are contained in the
1-bisector, which, in this case, is the one with nonempty interior (see Theorems 3.1 and 3.2).
Figures 1 and 2 below show bisectors in different norms. The bisectors are drawn the same
way as in the Euclidean case: take p-circles Sp(~v1, r) and Sp(~v2, r) with r ≥ ‖(~v1 − ~v2)/2‖p.
The intersection points of the circles lie on the bisector, and it is easy to show that there are
no more points on a bisector.

1Please note that all figures in this article are drawn in the cartesian plane with respect to the standard
basis {(1, 0), (0, 1)}. The coordinate axes, although not shown in the figures, are important since the p-norms
are analytically defined via a fixed (affine) coordinate frame.
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Figure 1: Bisectors for three different norms

Bisectors have been a subject of intense study among mathematicians. In fact, some of
the ideas presented here have been discussed under more general settings. Nevertheless, to
the best of our knowledge, Theorem 3.1 has not been previously explicitly stated or proven
(see [3] and [4] for related results). Choosing one’s favorite norm and discovering its geometric
properties is just plain instructional fun. Who does not remember a first course in geometry
where after a series of geometrical constructions three points appear miraculously aligned?
Or, take the case where more than four points (nine to be exact, as in the nine-point circle
theorem) are in the same circle?

Bisectors have played a significant role in other contexts. For instance, in [9] Schatt-
schneider gave a beautiful and simple geometric argument to describe the group of isometries
for the taxicab norm (recall, an isometry is a function that preserves distances). First,
she determined which Euclidean isometries preserve taxicab distance (translations plus the
symmetry group of the taxicab unit circle, that is, translations plus isometries that take the
unit circle onto itself) and then, by considering the taxicab metric midpoints, that is, the
points ~w of the taxicab bisector of ~v1 and ~v2 such that ‖~w− ~m‖1 = ‖~v1− ~m‖1 where ~m is the
midpoint of the segment ~v1, ~v2, she proved that any taxicab isometry must be a Euclidean
isometry. It is well known, and a relatively easy exercise, to show that for p 6= 2, all p-norms
have the same group of isometries, they correspond to the group of unitary permutation
matrices plus translations. This sets apart the Euclidean norm as the p-norm with the richest
isometry group (translations plus the group of orthogonal matrices, which is the symmetry
group of the circle) and hence our natural bias to think in an Euclidean way.

Another instance, where one can find bisectors, is when trying to find the regions, say, in
the plane, that contain the points that are closer to a point than to other points in a given set.
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Figure 2: Bisectors with nonempty interior

One can obtain these regions by considering the bisectors among the points in the given set.
The regions obtained are called Voronoi sets. Voronoi sets have a wide range of applications,
from computational geometry to anthropology and archeology. See, for instance, the excellent
survey [1].

2. A few good lemmas

The following lemma is a classical exercise from real analysis (see, for instance, [2]). The
second part of the lemma can be proved by elementary calculus.

Lemma 2.1. For a fixed point (x, y) 6= (0, 0) in R2 we have that

lim
p→∞
‖(x, y)‖p = ‖(x, y)‖∞ .

Moreover, the limit is strictly decreasing whenever (x, y) is not on a coordinate axis. If one
of x or y is equal to zero then all p-norms have the same value, max{|x|, |y|}. In particular,
we obtain that for any point (x, y) in the plane

‖(x, y)‖∞ ≤ ‖(x, y)‖p ≤ ‖(x, y)‖1 for any 1 < p <∞

or, to put it in geometric terms,

B1(~0, 1) ⊂ Bp(~0, 1) ⊂ B∞(~0, 1),

where Bp(~0, 1) denotes the closed unit ball in the corresponding norm.

The p-norms are symmetric with respect to the origin and invariant under the group of
rotations with respect to right angles. As a result, most of the time we will consider points
in the plane in the first quadrant only. Moreover, given the symmetric nature of the p-norms
with respect to the coordinates of a point, we will consider points of the form (x, αx) with
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Figure 3: Unit spheres for the 1, 2, 4, 8 and ∞-norm

x ≥ 0 and 0 ≤ α ≤ 1 only. That is, points in the plane that lie in the cone bounded by the
non-negative x-axis and the line y = x, which we will refer to as the first octant.

A word about angles. Recall that angles in the plane are defined via the usual inner
product that induces the 2-norm

〈(x1, y1), (x2, y2)〉 = x1y1 + x2y2.

Here you have an amusing fact to think about it: if you think about the notion of radian (a
measure of angle), this notion is defined in terms of length (arclength), thus, if one measures
length using different norms the corresponding arclength should change and hence the mag-
nitude of the angle (in “radians”). For instance, with the 1-norm, the perimeter of the unit
1-circle is 8, thus the value of π is 4. Angles are not well defined when one moves away from
the Euclidean plane, that is, by considering norms that are not induced by inner products
(recall that all p-norms, p 6= 2, are nor induced by an inner product, that is, the norm cannot
be obtained as ‖ · ‖ =

√
〈 · , · 〉 for some inner product 〈 · , · 〉). See for instance [11] to get a

glimpse on angle discussion. In what follows we avoid these subtleties and use the notion of
angle in the good Euclidean way. We use the term angle or polar angle to emphasize that we
measure angles in the polar plane.

Lemma 2.2. Let (x, αx) be a point in the first quadrant, with x ≥ 0 and 0 ≤ α ≤ 1. Suppose
furthermore, that for some p 6= q, ‖(x, αx)‖p = r and ‖(x, αx)‖q = t with r 6= t. Then, there
does not exist another point in the first octant with p-norm r and q-norm t.

Proof. First, observe that (x, αx) 6= (0, 0). Moreover, given that r 6= t, Lemma 2.1 implies
α 6= 0. Now suppose that such a second point (y, βy) exists. By Lemma 2.1 this point cannot
lie on the coordinate axes, therefore y > 0 and 0 < β ≤ 1. By our assumptions ‖(y, βy)‖p = r,
whereas ‖(y, βy)‖q = t. Without loss of generality we may take p < q, and we first consider
q <∞. It follows that

‖(y, βy)‖p‖(y, βy)‖−1q = ‖(x, αx)‖p‖(x, αx)‖−1q = r t−1, (2)

which is equivalent to

(1 + βp)1/p(1 + βq)−1/q = (1 + αp)1/p(1 + αq)−1/q = r t−1. (3)

By defining g(β) = (1 + βp)1/p(1 + βq)−1/q, it is easy to prove that g′(β) > 0 whenever
0 < β < 1 (consider log g). By the Mean Value Theorem, there do not exist two distinct
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constants 0 ≤ α and β ≤ 1 that satisfy (3), and from the equivalence to (2) neither two points
in the first octant with p-norm r and q-norm t if r 6= t.

For p < q =∞, g(β) = ‖(y, βy)‖p‖(y, βy)‖−1∞ = (1 + βp)1/p which also satisfies g′(β) > 0
whenever 0 < β < 1. Thus, the result also extends to this case.

An immediate consequence of Lemma 2.1 is that a p-circle and a q-circle, both centered
at the origin and of the same radius, intersect at exactly four points, on the coordinate axes:

Sp(~0, r) ∩ Sq(~0, r) = {(±r, 0), (0,±r)}.

At the same time, Lemma 2.2 gives us the points of intersection of a p and a q-circle of
different radii. We summarize these geometric consequences in the following proposition:

Proposition 2.3. If the intersection of a p-circle and a q-circle, both centered at the origin,
i.e., Sp(~0, r) ∩ Sq(~0, t), is nonempty and p 6= q, then exactly one of the following happens:

1. r = t and the circles intersect at exactly four points on the coordinate axes, (±r, 0) and
(0,±r).

2. r 6= t and the circles intersect at exactly eight points, one in each octant: (±x,±y) and
(±y,±x), with x 6= y and x, y 6= 0.

3. r 6= t and the circles intersect at exactly four points (±x,±x) with 21/p|x| = r and
21/q|x| = t.

Proof. Case 1) is the observation following the proof of Lemma 2.2. To prove 2), first note
that if p 6= q, r 6= t and the circles intersect at a point (x, y) that does not belong to the lines
y = x, y = −x, then it must be in one of the open octants. By Lemma 2.2 and the symmetry
of the p-norms we know that there does not exist another point in that octant where they
intersect. However, it is easy to see that ‖(±x,±y)‖p = ‖(±y,±x)‖p = r and the same is
true for their q-norms. So, by applying Lemma 2.2 once again, these eight points are the only
intersections of the circles.

Case 3) occurs when one of the intersection points lies on y = x or y = −x. Given that
the four points (±x,±x) all have the same p-norm, they are the only ones on the p-circle with
that norm in each octant by Lemma 2.2, and therefore in each quadrant.

Remark 2.4. Proposition 2.3 illustrates that the intersection of a p-circle with a q-circle at a
point (x, y) with polar angle φ, determines the angle of all other possible intersections of the
circles. Given the symmetric nature of the p-norms with respect to reflections in the lines
y = x and y = −x, we conclude that the set of polar angles where the two circles intersect

is
{
π

4
± φ, 3π

4
± φ, −π

4
± φ, −3π

4
± φ

}
for some 0 ≤ φ ≤ π

4
. Equivalently, this set of angles

can be represented as
{
±φ, π

2
± φ, π ± φ, 3π

2
± φ

}
for some 0 ≤ φ ≤ π

4
.

3. Main results, or the part where one has to do the math

We start this section with a “proof by picture”. Figure 4 shows a line segment (AB) with
five bisectors corresponding to the p-norms, 1, 3/2, 2, 5/2, and ∞. Observe that the bundle
of bisectors lies in between the taxicab bisector and the max bisector. Also observe, that
all bisectors have exactly three points in common, one of them the midpoint of the segment.
The details of this nice geometric property are the contents of Theorems 3.1 and 3.2 in this
section.
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Figure 4: Bisectors of AB in five different norms

We start with a few simplifications. By the invariance of the p-norms under translation,
we will assume that the midpoint of the given segment is the origin. Thus, the endpoints of
the line segment are now symmetric points with respect to the origin. We will take one of
the end points in the first quadrant.

Given ~v = (x, y), we define its normal vector as ~v⊥ = (−y, x). It can be easily confirmed
that both ~v⊥ and −~v⊥ belong to Mp(~v,−~v) for all p. We will demonstrate that whenever the
bisectors do not coincide, then their only points of intersection besides the origin are ~v⊥ and
−~v⊥.

Theorem 3.1. Suppose that 1 < p < ∞ and ~v 6= ~0. Then exactly one of the following may
occur:

1. Mp(~v,−~v) = M2(~v,−~v), or

2. Mp(~v,−~v) ∩M2(~v,−~v) = {~0, ~v⊥,−~v⊥}.

Proof. It suffices to consider the case p 6= 2. Whether the two bisectors Mp(~v,−~v) and
M2(~v,−~v) coincide or not, depends solely on the position of the vector ~v. Let φ be the polar
angle of the vector ~v with respect to the x-axis. Again due to the symmetric nature of the
p-norms we may assume without loss of generality that 0 ≤ φ ≤ π

4
.

Let ~w ∈ M2(~v,−~v), and consider the triangle 4ABC with A = ~w, B = −~v and C = ~v.
Let r = ‖~v− ~w‖2 = ‖−~v− ~w‖2 and θ be the angle ∠CBA (see Figure 5). Clearly, −π

2
< θ <

π

2
and ∠BCA = θ. The midpoint ~0 corresponds to θ = 0 whereas ~v⊥ and −~v⊥ correspond to
θ =

π

4
and θ = −π

4
, respectively. Thus each point ~w in M2( ~−v,~v) is associated to a unique

angle θ = θ(~w).
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The point ~w lies on S2(−~v, r) at polar angle φ + θ with respect to the x-axis, and on
S2(~v, r) at polar angle π + φ− θ. Given the invariance of the p-norms under translation, we
see that ~w corresponds to two points on S2(~0, r), one at the angle φ + θ and another one at
the angle π + φ− θ.

Suppose now that the same point ~w is in Mp(~v,−~v) with p 6= 2, and let t = ‖~v − ~w‖p =
‖ − ~v − ~w‖p. Then, as in the case when ~w is in the Euclidean bisector, ~w corresponds to two
points on Sp(~0, t), one at the angle φ+ θ and another at the angle π + φ− θ.

Note that ~w is in S2(~v, r)∩Sp(~v, t) and ~w is in S2(−~v, r)∩Sp(−~v, t) if and only if S2(~0, r)
and Sp(~0, t) intersect at the angles φ+θ and π+φ−θ. This is the crucial geometric observation
needed to prove the theorem. Indeed, since the value of φ + θ determines, as we have seen,
the set of angles where the intersection of the two circles may occur, the point ~w belongs to
both bisectors if and only if the angles φ+ θ and π + φ− θ are related as in Remark 2.4.

To begin with, consider the case φ = 0. Then φ+ θ = θ, whereas π + φ− θ = π − θ. We
know from Remark 2.4 that whenever S2(~0, r) intersects Sp(~0, t) at an angle 0 < θ <

π

2
then

it must also intersect it at the angle π − θ. As a consequence, every point ~w in M2(~v,−~v)
must also belong to Mp(~v,−~v) for all p.

In the case φ =
π

4
holds φ+ θ =

π

4
+ θ, whereas π+φ− θ =

3π

4
− θ. Again by Remark 2.4,

whenever S2(~0, r) intersects Sp(~0, t) at an angle
π

4
+ θ, then it must also intersect it at the

angle
3π

4
− θ.

For the case 0 < φ <
π

4
consider the points on M2(~v,−~v) with 0 ≤ θ ≤ π

4
. Note that

0 < φ+ θ <
π

2
, whereas

3π

4
< π + φ− θ < 5π

4
. Again by Remark 2.4 we have that, whenever

S2(~0, r) intersects Sp(~0, t) at an angle φ+ θ, then it also intersects it at an angle π + φ− θ if
and only if there exists 0 ≤ ψ ≤ π

4
such that one of the following happens:

(i) φ+ θ =
π

4
− ψ and π + φ− θ =

3π

4
+ ψ

(ii) φ+ θ =
π

4
− ψ and π + φ− θ =

5π

4
− ψ

(iii) φ+ θ =
π

4
+ ψ and π + φ− θ =

3π

4
+ ψ
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(iv) φ+ θ =
π

4
+ ψ and π + φ− θ =

5π

4
− ψ.

Case (i) implies that φ = 0, and case (iv) implies that φ =
π

4
, which is not possible. Case (ii)

implies that θ = 0, whereas case (iii) implies that θ =
π

4
.

A similar analysis shows that there are no intersection points for
π

4
< θ <

π

2
, and by

symmetry we get that the only intersection point for negative θ occurs at −π
4

.

We conclude that M2(~v,−~v) ⊂ Mp(~v,−~v) if and only if ~v lies on one of the coordinate
axes, or on the lines y = ±x, and that in the remaining of the cases M2(~v,−~v) ∩Mp(~v,−~v)
consists of exactly three points, the ones corresponding to the angles θ = ±π

4
and 0.

That M2(~v,−~v) = Mp(~v,−~v) in the case φ = 0,
π

4
, follows by the fact for 1 < p < ∞,

Mp(~v,−~v) intersects the ray at angle θ+φ from −~v at exactly one point. This is a consequence
of the triangle inequality.

We can now generalize the above result to any p and q-norms.

Theorem 3.2. Suppose that 1 < p < q < ∞ and ~v 6= ~0. Then exactly one of the following
occurs:

1. Mp(~v,−~v) = Mq(~v,−~v), or

2. Mp(~v,−~v) ∩Mq(~v,−~v) = {~0, ~v⊥,−~v⊥}.

Proof. Again, we let ~w ∈ Mp(~v,−~v) with r = ‖~v− ~w‖p = ‖−~v− ~w‖p and define the angles φ
and θ = ∠CBA as in the proof of Theorem 3.1. Note that in this case it is not true in general
that ∠CBA = ∠BCA. So we define the function fp(θ) = ∠BCA, which is uniquely defined
since Mp(~v,−~v), 1 < p <∞, intersects the ray at angle θ + φ from −~v at exactly one point.

If ~w ∈ Mp(~v,−~v)∩Mq(~v,−~v), then fp(θ) = fq(θ). Let t = ‖~v− ~w‖q = ‖−~v− ~w‖q. In the
terms of the proof of Theorem 3.1, φ + θ, and π + φ − fp(θ) = π + φ − fq(θ) are two angles
where the circle Sp(~0, r) intersects Sq(~0, t). Let s = ‖ − ~v − ~w‖2. Since ~w is in S2(−~v, s), it
follows from Proposition 2.3 that S2(~0, s) also intersects these circles at these same angles. In
other words, ~w must also belong to M2(~v,−~v). The theorem now follows from Theorem 3.1.

To include the taxicab and max bisectors in the statement of Theorem 3.2, consider
again the segment determined by the points ~v and −~v, and let φ be the polar angle of the
vector ~v (see Figure 5). We may assume, as in the proof of Theorem 3.1, that 0 ≤ φ ≤ π

4
.

When φ = 0, the segment lies on the x-axis and, in this case, one can easily check that all
bisectors Mp(~v,−~v), 1 ≤ p <∞, coincide. Moreover, all of them are contained in the bisector
M∞(~v,−~v) (see Figure 2, (b)). The intersection of all p-bisectors, 1 ≤ p ≤ ∞, is then the
set of all max metric midpoints of the segment determined by ~v and −~v. The case φ =

π

4
is analogous, but now all bisectors Mp(~v,−~v), 1 < p ≤ ∞, coincide and are contained in
M1(~v,−~v). Their intersection is the set of metric midpoints of the taxicab bisector of ~v and
−~v.

Finally, if 0 < φ <
π

4
, we know from Theorem 3.2 that Mp(~v,−~v) ∩ Mq(~v,−~v) =

{~0, ~v⊥,−~v⊥} for all 1 < p < q < ∞. It is easy to check that all three of ~0, ~v⊥, and −~v⊥
lie on the bisectors M1(~v,−~v) and M∞(~v,−~v). To see that these are the only points common
to both bisectors, we show that both M1(~v,−~v) and M∞(~v,−~v) are piecewise linear curves.
Indeed, if we write ~v = (x, y) and ~v⊥ = (−y, x) it follows that M1(~v,−~v) consists of the
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following three lines (see Figure 6), the line segment of taxicab metric midpoints, which is the
the segment with endpoints (−y, y) and (y,−y), and the vertical rays starting at the points
(−y, y) and (y,−y). On the other hand, M∞(~v,−~v) consists of the line segment of max metric
midpoints, which is the segment on the y-axis with endpoints (0, (α− 1)x) and (0, (1− α)x)
where α = tanφ, and the rays with slope −1 starting at (0, (1 − α)x) and (0, (α − 1)x) (see
Figure 6).

The segments of metric midpoints of M1(~v,−~v) and M∞(~v,−~v) intersect at the origin,
while the lines above the segment of metric midpoints intersect at v⊥, and the ones below
intersect at −v⊥, as claimed.

4. Epilogue

The invitation is clear, take your favourite norm and wonder about geometric objects that
you can get just by reading off the metric definition of them. What are their properties? Are
they of any interest? Do you get common properties when norms are changed? Has anyone
studied them? We ventured into this direction for the case of p-norms in the two dimensional
space. Rest assured that there is still a lot more to get discovered and a lot of fun to be had.
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