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Abstract. The design of rear side windows of convertibles (cabriolets) and their
motion while being retracted contains interesting geometric and kinematic issues.
On the one hand, the space between the door and the rear wheel arch is limited.
On the other hand, the window pane has to move through the sealing slit with
as little friction as possible. These turn out to be two severe constraints for the
window surface and its motion.

In order to allow for the crammed conditions we first compute a spatial motion that
assumes prescribed positions and obeys certain side conditions. Having obtained
this spatial motion we can replace the given window surface by a kinematic surface
which perfectly moves through the sealing slit. Eventually, we construct a set of
possible window surfaces. This way the engineer gets a variety of options to choose
from.
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1. Introduction

Retracting a rear side window of a convertible is particularly intricate. As shown in Figure 1,
the motion retracting the window pane is not as simple as a translation or a rotation. There
is, in general, too little space for such a simple solution.

A car side window should ideally move ‘in itself ’ which is to say that all along the motion
the window sheet stays on the same surface. Such motions have been harnessed to properly
design the geometry and kinematics of a car side window [2], [3]. That approach, however,
cannot be applied in our case: Convertibles usually have two doors that are fairly long. Thus,
the space between the door and the rear wheel arch is pretty much limited. This is where the
rear side window has to be accommodated while retracted. Due to the crammed conditions
within the side panel the designer usually prescribes a number of positions S∗i , i = 0, . . . , n ,
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of the window pane on its path down to the retracted state the way that it does not interfere
anywhere.

We have to be aware that, in general, a given surface cannot be moved through a given
curve. In terms of the inverse motion we can also put it this way: In general, a given curve
cannot be moved across1 a given surface. If a surface S can be generated by applying a motion
µ to a particular curve c then S is called a ‘kinematic surface’ or, in more detail, a ‘kinematic
surface with respect to the motion µ’. The curve c is called a ‘generator’ of the surface S.

Coming back to the problem of our rear side window we have to face the fact that the
stylist’s proposal for the rear side window (surface S) will most probably not be a kinematic
surface generated by the daylight curve c.

This rest of this paper is organized as follows: In Section 2 we construct a suitable window
motion µ that interpolates the prescribed positions of S and — at the same time — moves
the window with low friction along the sealing slit c. Subsequently, we go on and generate
another window sheet Sc that is closely related to the spatial motion µ. It is the great benefit
of Sc over S that Sc is a kinematic surface w.r.t. µ generated by the curve c. As opposed
to S — it delivers zero friction while being moved through the sealing slit c (Section 3). In
Section 4 we construct a whole family of alternative surfaces by means of blending S and Sc.
Eventually, the paper will be rounded off by some conclusions (Section 5).

Figure 1: The rear side window of a convertible on its way down into the space between the
door and the rear wheel arch.

2. Generating the window motion

The engineer is given (see Figure 2)

• a triangular surface patch S (rear side window pane suggested by the stylist): S has the
vertices A,B,C and the boundary curves a (roofline curve), b (front boundary curve)
and c (daylight curve).

• a number of single window sheet positions S∗i , i = 0, . . . , n, which have to be assumed
in the course of the motion when the window is retracted. We presume that S∗0 = S is

1The term ‘moved across’ means that the curve is always contained in the surface.
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the window sheet in its closed position. Moreover, as S has to slide through the sealing
slit (the daylight curve c) we can also state that for i = 0, . . . , n the front boundary
curve b∗i and the roofline curve a∗i of S∗i meet c in points P ∗i and Q∗i , respectively. Note
that P ∗0 is the common point of b = b∗0 and c: P ∗0 = A. Analogously, Q∗0 is the common
point of a = a∗0 and c: Q∗0 = B.

As the window has to be retracted completely we have to prescribe the state of S when
the window sheet is already below the daylight curve c: We assume that P ∗n−1 = Q∗n−1.
This position S∗n−1 is called the ‘vanishing position’. To sort out odd motions of S, we
moreover presume that for i = 0, . . . , n− 2 the order of the points P ∗i , Q∗i on c stays the
same, whereas for the last position Sn, which is already beyond the vanishing position,
the order is reversed (Figure 2, right).
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Figure 2: Left: Six given positions S∗0 , S∗1 , S∗2 , S∗3 , S∗4 , S∗5 of the the window sheet S. Among
them the vanishing position S∗4 . Position S∗2 is displayed together with its points P ∗2 ∈ b∗2 and
Q∗2 ∈ c∗2. The inverse transformation µ−12 maps the points P ∗2 and Q∗2 onto P2 ∈ b and Q2 ∈ a,
respectively.
Right: The same input as on the left; here, the last position S∗5 beyond the vanishing position
is highlighted. The points P ∗5 ∈ b∗5 and Q∗5 ∈ c∗5 are mapped via µ−15 onto P5 ∈ b and Q5 ∈ a.

It is the development engineer’s job to deliver a spatial motion µ = µ(t) interpolating the
series S∗i of the given window poses. The parameter t can be interpreted as a ‘time parameter’.
Additionally, the motion µ is to slide the window S through the sealing slit (daylight curve
c) with as little friction as possible.
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To solve the task we first consider the displacements µi, i = 0, . . . , n, defined by S → S∗i .
Clearly, the pre-images Pi := µ−1i (P ∗i ) and Qi := µ−1i (Q∗i ) of the points P ∗i and Q∗i lie on the
front boundary curve b and on the roofline curve a of S, respectively (Figure 2, left). Mind
that not only the part of b between A and C and the part of a between B and C are involved
but also the continuations beyond C. More detailed, we have: For i = 0, . . . , n− 2 the points
Pi on b lie between A and C and the points Qi on a lie between B and C. For the vanishing
position S∗n−1 we have P ∗n−1 = Q∗n−1 and Pn−1 = Qn−1 = C (Figure 2, left). For i = n the
points Pn and Qn lie beyond the upper vertex C of S. In Figure 2, right, this position is
highlighted.

In order to obtain an appropriate motion µ(t) we extract a minimal data set
[wb,i, wa,i, vi, βi] ∈ R4 for each i = 0, . . . , n representing the given position S∗i . To this aim
we first have to decompose each displacement µi in a canonic way (Section 2.1). In a second
step we interpolate the constructed data [wb,i, wa,i, vi, βi] by standard interpolation methods
(Section 2.2).

2.1. Canonic decompositions of displacements µi

We want to decompose each of the given displacements µi

• into a displacement σi that gets Pi onto P ∗i and Qi onto Q∗i and additionally maintains
the direction orthogonal to both lines PiQi and P ∗i Q

∗
i

• and into a subsequent rotation ρi about the axis P ∗i Q
∗
i .

For i = 0, . . . , n , i 6= n− 1, we define the unit vectors

ei := ±
−−→
PiQi

‖
−−→
PiQi‖

and e∗i := ±
−−−→
P ∗i Q

∗
i

‖
−−−→
P ∗i Q

∗
i ‖

where we take the positive signs if 0 ≤ i < n− 1 and the negative signs if i = n.
In case of the vanishing position (i = n− 1) where Pn−1 = Qn−1 = C, P ∗n−1 = Q∗n−1 and

hence, the vectors en−1, e∗n−1 cannot be defined by the formulae above, we instead put en−1
as angle bisector of the two adjacent directions en−2 and en:

en−1 :=
en−2 + en
‖en−2 + en‖

.

Then we compute e∗n−1 as the corresponding direction of en−1 w.r.t. µn−1.

• If PiQi and P ∗i Q
∗
i are not parallel the direction di normal to both of them is defined by

di :=
ei × e∗i
‖ei × e∗i ‖

. (1)

In that case the displacement σi is determined by

x̃ := p∗i + Mi · (x− pi) (2)

where Mi denotes the rotation matrix belonging to the axis direction di and to the
rotation angle αi defined by

cosαi := 〈ei, e∗i 〉, sinαi := ‖ei × e∗i ‖. (3)

The vectors pi, p∗i , x, x̃ are the position vectors of the points Pi, P
∗
i , an arbitrary point

X and its image X̃ = σi(X) under σi.
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• If — just in case — PiQi and P ∗i Q
∗
i are parallel2we set the matrix Mi in (2) as the

identity matrix. In that case σi is a pure translation.

The second displacement ρi is a rotation about the axis P ∗i Q
∗
i whose normalized direction

vector is e∗i . The corresponding rotation angle βi can be determined as follows:
Let Ãi denote the image of A under σi, i.e., σi(A) = Ãi. Then ρi(Ãi) = µi(A) = A∗i .

As ρi is a rotation about the axis P ∗i Q
∗
i , the angle βi occurs between the planes P ∗i Q

∗
i Ãi and

P ∗i Q
∗
iA
∗
i and hence also between the normal vectors

ñi :=
e∗i ×

−−−→
P ∗i Ãi

‖e∗i ×
−−−→
P ∗i Ãi‖

and n∗i :=
e∗i ×

−−−→
P ∗i A

∗
i

‖e∗i ×
−−−→
P ∗i A

∗
i ‖

of these two planes. We get

cos βi := 〈ñi,n∗i 〉 and sin βi := ‖ñi × n∗i ‖. (4)

Thus, the rotation ρi is given by

x∗ := p∗i + Ni · (x̃− p∗i ) (5)

where Ni denotes the rotation matrix belonging to the axis direction e∗i and to the rotation
angle βi defined by (4).

2.2. Construction of a window motion by standard interpolation techniques

Let the triangular window sheet S be described by the barycentric parameterization3

s(u, v, w) =

 x(u, v, w)
y(u, v, w)
z(u, v, w)

 (6)

where the parameters u, v, w run in the triangular domain

D := {(u, v, w) |u, v, w ∈ [0, 1], u+ v + w = 1} (7)

with the vertices U(u = 1, v = 0, w = 0), V (u = 0, v = 1, w = 0), W (u = 0, v = 0, w = 1) and
the edges VW . . . (u = 0, v+w = 1), WU . . . (v = 0, u+w = 1), and UV . . . (w = 0, u+v = 1)
(see Figure 3, left).

We take it that the curves a (roofline curve) and b (front boundary curve) are determined
by u = 0 and v = 0, respectively. Due to the condition u + v + w = 1, we can use w as the
running parameter on both, a and b: Note that w = 0 delivers the bottom points B and A
of a and b whereas w = 1 yields the common point C of these two curves (Figure 3, right).
In the same way we can assume that the daylight curve c is determined by w = 0 and the
parameter v controls the points on c, where A and B belong to the parameters v = 0 and
v = 1, respectively. These parameterizations of the boundary curves b, a and c read as:

b . . . b(w) = s(1− w, 0, w), (8)

a . . . a(w) = s(0, 1− w,w), (9)

c . . . c(v) = s(1− v, v, 0). (10)

2This also includes the case i = 0 where the two lines PiQi and P ∗
i Q

∗
i are even identical!

3For barycentric coordinates see for example [1, p. 304–306], [5, p. 289–290], [4, p. 226–228].
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Figure 3: Barycentric parameterization of the window sheet.
Left: Parameter domain and its boundary lines: u, v, w ∈ [0, 1], u+ v + w = 1.
Right: The triangular surface with its boundary curves. Front boundary curve b (blue), roofline
curve a (red), the daylight curve c, also representing the sealing slit (green).

Let wb,i, wa,i and vi be the parameter values belonging to the points Pi, Qi and P ∗i w.r.t. the
parameterizations (8), (9) and (10)

b(wb,i) = pi, a(wa,i) = qi, c(vi) = p∗i .

Then, together with the angles βi (4) from the first step we obtain the n+ 1 data quadruples
[wb,i, wa,i, vi, βi]

> in R4. We choose appropriate parameter values

t0 = 0 < t1 < · · · < tn−1 = 1 < tn ∈ R

and define a suitable interpolation curve

g(t) =


wb(t)
wa(t)
v(t)
β(t)

 , t ∈ [t0, tn]

satisfying

g(ti) =


wb(ti)
wa(ti)
v(ti)
β(ti)

 =


wb,i
wa,i
vi
βi

 .
As for the construction of interpolating spline curves see [4, p. 116 – 136].

Every point g(t) of this interpolation curve delivers — apart from the angle β(t) — three
parameters wb(t), wa(t) and v(t) which, via (8), (9), (10)), yield three points P . . .b(wb(t)),
Q . . . a(wa(t)) and P ∗ . . . c(v(t)) on the boundary curves b, a and c of S, respectively. Having
found P , Q and P ∗ it is easy to determine the appropriate4 point Q∗ ∈ c such that

dist (P ∗, Q∗) = dist (P,Q).

4The values of t lying in the interval ]0, tn−1 = 1[ correspond to the positions of Q∗ lying between P ∗ and
B whereas the values t in ]tn−1 = 1, tn[ belong to points Q∗ between P ∗ and A.



A. Gfrerrer, J. Lang: Geometry and Kinematics of a Convertible’s Rear Side Window 107

The motion µ(t) is now constructed in the following way: For each instant t we compose

• the displacement σ(t) that brings P into P ∗ and Q into Q∗ and maintains the direction
normal to both lines PQ and P ∗Q∗

• and the rotation ρ(t) with angle β(t) about the axis P ∗Q∗.

To determine the first transformation σ = σ(t) we only need to follow the recipe of Section 2.1.
We just have to replace the points Pi, Qi, P

∗
i , Q∗i by the points P , Q, P ∗, Q∗ to obtain the

direction vector d = d(t) and the angle α = α(t) that constitute the rotation matrix M(t).
The transformation σ(t) is then given by

x̃ := p∗ + M · (x− p). (11)

The second displacement ρ = ρ(t) is a rotation about the axis P ∗Q∗; the axis direction is

e∗ := ±
−−−→
P ∗Q∗

‖
−−−→
P ∗Q∗‖

.

We choose the positive leading sign if Q∗ lies between P ∗ and B and the negative leading
sign if Q∗ lies between P ∗ and A. The rotation angle is β(t); together with e∗(t) it defines
the rotation matrix N(t). The emerging rotation ρ(t) reads as

x∗ := p∗ + N · (x̃− p∗). (12)

Finally, the composition of σ(t) and ρ(t) (substitution of (11) into (12)) gets us the resulting
motion µ(t) = ρ(t) ◦ σ(t)

x∗ := p∗ + N ·M · (x− p). (13)

Note that the presented recipe only fails if t = tn−1 = 1 (or numerically if t is very close to
1), i.e., when we happen to deal with the vanishing position S∗n−1 of the window S. In that
instance we have P = Q = C and P ∗ = Q∗ which is why the vectors d and e∗ cannot be
computed as described above. Instead, we simply put: µ(t) = µ(tn−1) = µ(1).

Result 1. Let a triangular window sheet S with the parameterization (6), its roofline curve
a, its front boundary curve b and its daylight curve c be given. Let moreover S∗i , i = 0, . . . , n ,
be a series of prescribed positions of S such that S∗0 = S and, for i = 0, . . . , n , the front
boundary curve b∗i and the roofline curve a∗i of S∗i meet the daylight curve c of S in points P ∗i
and Q∗i , respectively. Then the motion µ given by the representation (13) moves S in a way
that

• the prescribed positions S∗i are assumed and

• at any point in time t the front boundary curve µ(b) and the roofline curve µ(a) of µ(S)
intersect the daylight curve c in two points P ∗(t) and Q∗(t).

3. A kinematic surface as a possible substitute

We have stated above that sliding the window through the daylight curve c amounts to slipping
c across the window surface. This observation is crucial as it encourages us to construct a
substitute window surface: If we subject the daylight curve c to the inverse µ−1(t) of the
window retraction motion µ(t) we obtain a kinematic surface Sc that is close to the initial
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Figure 4: Left: The daylight curve c subjected to the inverse of the window motion µ generates
a kinematic surface Sc.
Right: Obviously, the emerging geometric surface has to be trimmed along the given boundary
curves a and b.

surface S (Figure 4, left). As µ(t) guides both, the front boundary curve b and the roofline
curve a such that they — at any point in time t — intersect the daylight curve c in two
respective points P ∗, Q∗, the inverse motion µ−1(t) moves c in a way that its instances always
meet b and a in two points P and Q. In other words: The two surfaces S and Sc have the three
boundary curves b, a and c in common. Of course, only the part of Sc within these boundary
curves is what we are interested in. The only thing that is left to be done is trimming Sc
along the given boundary curves a and b (Figure 4, right).

Result 2. The described construction generates a patch contained in a kinematic surface Sc.
The surface Sc can be generated by the inverse µ−1(t) of the window retraction motion µ(t)
applied to the daylight curve c. The surface patch Sc and the surface S share their boundary
curves b, a and c. If we apply the motion µ(t) to the surface Sc we obtain a continuous series
Sc(t) of positions each of them containing the daylight curve c. This means that the patch Sc
perfectly slides through the sealing slit without any deflection.

The parameterization arising from the generation as a kinematic surface, however, is
unfavorable for our further computations. An appropriate parameterization of this part of Sc
can be obtained by means of projection: Starting with the parameterization (6) of S we get
a barycentric parameterization sc(u, v, w)

sc(u, v, w) =

 xc(u, v, w)
yc(u, v, w)
zc(u, v, w)

 , u+ v + w = 1, u, v, w ∈ [0, 1] (14)

of Sc by orthogonally projecting the points of S onto Sc: For each point X . . . s(u, v, w) on S
the image point Xc . . . sc(u, v, w) is defined as the pedal point5 of X on Sc. This implies that
the parameterizations (8), (9) and (10) of the common boundary curves b, a, c of S and Sc

5If S and Sc are sufficiently close the orthogonal projection from S to Sc is a well-defined and bijective
mapping.



A. Gfrerrer, J. Lang: Geometry and Kinematics of a Convertible’s Rear Side Window 109

are now parameterized identically:

b . . . b = b(w) = s(1− w, 0, w) = sc(1− w, 0, w),

a . . . a = a(w) = s(0, 1− w,w) = sc(0, 1− w,w),

c . . . c = c(v) = s(1− v, v, 0) = sc(1− v, v, 0).

4. A family of alternatives

Having constructed the spatial motion µ(t) we can now examine the given window surface
S in the course of its motion. We concentrate on the sealing slit along the daylight curve c
where S has to pass through. Obviously, as S is not a kinematic surface with respect to µ−1

generated by c it will not slide through c without any deviation. The motion µ(t) drives S in
a way that its front boundary curve b and its roofline curve a meet c all the way down on its
path. But still, we cannot be sure that unwanted deviations and friction appear in the course
of the motion µ(t).

On the other hand, the kinematic surface Sc constructed in Section 3 can in fact be moved
through c under the motion µ(t) without any deflection. So, comparing the given window
sheet S to Sc and measuring their distances enables the engineer to assess the quality of S.
The maximum distance δ of S and Sc directly relates6 to the stress exerted to the sealing
along c while S is moved w.r.t. µ(t). Obviously, δ = 0 amounts to S = Sc.

Unsurprisingly, the following question arises: Why don’t we substitute S by Sc in the
first place? The reason why we do not do so right away is that replacing the stylist’s window
sheet S by another surface is a delicate issue. In order to leave the final judgement at the
discretion of the development engineer we set up a tool such that he or she can allow for
the laws of physics (including the constraints of the sealing manufacturer) and still keep the
stylist happy:

• We create a family {Sf} of surfaces whose members are very close to the given surface
S, all the more so in the areas near the boundary curves. This way we can avoid
disturbing the visual continuity towards neighbouring surfaces. Any interference of the
overall impression is marginal if negligible.

• The surfaces of {Sf} will cause a smaller maximum distance δf to S and, consequently,
reduce the friction along the sealing slit c when they are subjected to the retraction
motion µ(t).

• Additionally we offer a number of parameters controlling the remaining distance δf and
the degrees of smoothness w.r.t. S along the boundary curves.

To obtain these intermediate surfaces Sf between S and Sc we use a certain polynomial
blending function f :

Definition 1. Let k, l,m be non-negative integers and let d0 be a real value in the interval
[0, 1]; then we define the function

f(u, v, w) := d ukvlwm (15)

on the triangular parameter domain D given by (7). The constant d is given by

d :=
(k + l +m)k+l+m

kk ll mm
· d0 .

6For practical applications the maximum distance δ can be viewed as a measure for the stress exerted to
the sealings.
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Proposition 1. The function f(u, v, w) has the following properties:

(a) If


k > 0
l > 0
m > 0

then


∀w : f(0, 1− w,w) = 0
∀w : f(1− w, 0, w) = 0
∀v : f(1− v, v, 0) = 0

.

(b) If


k > 0
l > 0
m > 0

all partial derivatives of f(u, v, w) w.r.t. u, v, w of order i ≤


k − 1
l − 1
m− 1

along the boundary edges


VW : u = 0, v + w = 1
WU : v = 0, u+ w = 1
UV : w = 0, u+ v = 1

of the triangular parameter do-

main D vanish.

(c) • If k = l = m = 0 then f is the constant function f(u, v, w) ≡ d0.

• If d0 6= 0 and at least one of the non-negative integers k, l,m is different from zero,
then the values of f in the triangular domain D vary in the interval [0, d0]. In the
interior of D, i.e., for u, v, w ∈]0, 1[; u+v+w = 1 the function f has only positive
values in the interval ]0, d0]. In that case f assumes the maximum value d0 in D
at

(u0, v0, w0) =

(
k

k + l +m
,

l

k + l +m
,

m

k + l +m

)
. (16)

Proof. (a) and (b) are obvious consequences of Definition 1.

(c) Let Φ denote the graph of the function f . The statement for k = l = m = 0 is again
trivial. Let now d0 6= 0 and let at least one of the values k, l,m be different from zero. Then,
as one can easily verify, the value of f at (u0, v0, w0) is indeed d0. To show that this is the
maximum value of f in the triangular domain D we have to distinguish three cases:
• If only one of the three values k, l,m is different from zero, say k = l = 0 and m > 0,

we have

f(u, v, w) = d wm = d (1− u− v)m.

Obviously, the function graph Φ of f is a cylinder surface whose generators are parallel
to the edge UV of the parameter triangle D (Figure 5, left). Clearly, in this case, the

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ

d0

V

U

W
ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0

V

U W

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ

V

U W

Figure 5: Function graph Φ for the following cases:
Left: k = l = 0, m = 2. Center: k = 0, l = m = 2. Right: k = l = m = 2.
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maximum of f in the domain D is reached at the third vertex W (u0 = v0 = 0, w0 = 1)
of D and has the value d0.

• If two of the values k, l,m are non-zero whereas the third vanishes, say k = 0and
l,m > 0, we have

f(u, v, w) = d vlwm. (17)

Along the edges WU and UV of the parameter triangle D and nowhere else we have
f(u, v, w) = 0. Moreover, the two partial derivatives

∂f

∂v
= d l vl−1wm,

∂f

∂w
= d m vlwm−1

can vanish simultaneously only along these edges WU and UV . This shows that the
maximum must occur in a point of the remaining edge VW of the triangular domain
D; i.e., the maximum is a point on the intersection curve of the graph Φ of f with the
vertical plane through VW (Figure 5, center). This curve is obtained by substitution
of u = 0, i.e., w = 1− v into (17):

f(0, 1− w,w) = d (1− w)lwm.

One can easily check that this univariate function assumes its maximum at w = w0 =
m

l +m
. Substitution into v0 = 1 − w0 yields v = v0 =

l

l +m
which finishes the proof in

that case.

• In the remaining case (k, l,m > 0) the function f is zero all along the three edges UV ,
VW , WU of the parameter domain D (Figure 5, right). As f has only positive values
in the interior of D the maximum value of f must be assumed there. To determine this
maximum we substitute w = 1−u−v into (15) and compute the first partial derivatives
with respect to u and v:

∂f

∂u
= d uk−1vl(1− u− v)m−1 · [k − (m+ k)u− kv] ,

∂f

∂v
= d ukvl−1(1− u− v)m−1 · [l − lu− (m+ l)v] .

Hence, the condition for the maximum is the pair of linear equations

(k +m)u+ kv = k,

lu+ (l +m)v = l

whose solution turns out to be u0 =
k

k + l +m
, v0 =

l

k + l +m
. Adding w0 = 1−u0−v0 =

m

k + l +m
finally delivers (16).

Let now d0 ∈ [0, 1] and k, l,m be non-negative integers. We define blending surfaces
Sf = Sf (k, l,m, d0) via

Sf . . . sf (u, v, w) := s(u, v, w) + f(u, v, w) · (sc(u, v, w)− s(u, v, w)) . (18)

Every choice of d0 and k, l,m provides an instance of Sf .
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Proposition 2. The surface Sf . . .xi(u, v, w) has the following properties:

(a) Sf shares its boundary curves b, a, c with S and Sc.

(b) All partial derivatives of s(u, v, w) and sf (u, v, w) w.r.t. u, v, w of order i ≤


k
l
m

along

the boundary curve


b . . .b(w) = s(1− w, v = 0, w)
a . . . a(w) = s(u = 0, 1− w,w)
c . . .d(v) = s(1− v, v, w = 0)

are identical.

(c) Sf is contained in the convex domain spanned by S and Sc.

(d) The surface

{
S
Sc

is contained in the set {Sf} for

{
d0 = 0,

k = l = m = 0, d0 = 1 .

(e) If δ denotes the maximum distance between the surfaces S and Sc then the maximum
distance δf between Sf and S will not exceed the value d0 δ.

Remarks:
(a) Proposition 2, (b) signifies that for k = 1 the surfaces Sf and S are tangent all along

the roof curve a. For k ≥ 2 the two surfaces are even curvature continuous along
a. Analogous properties can be stated for the other boundary curves b and c and the
integers l and m, respectively.

(b) For fair surfaces as used in our practical case Proposition 2, (c) means that Sf is con-
tained in the spatial domain bounded by S and Sc.

(c) If especially k = l = m then u0 = v0 = w0 = 1
3

and the maximum deviation of S and
Sf belongs to the barycenter of the triangular parameter domain D.

Proof of Proposition 2.

(a) follows from the definition (18) of Sf as S and Sc have common boundary curves.

(b) We exemplarily restrict the proof to the boundary curve (roofline curve) a (u = 0,
v + w = 1). For i ≤ k and i1, i2, i3 ∈ N0 with i1 + i2 + i3 = i we apply the product rule of
differentiation and obtain

∂isf
(∂u)i1(∂v)i2(∂w)i3

=
∂is

(∂u)i1(∂v)i2(∂w)i3
+

∂if

(∂u)i1(∂v)i2(∂w)i3
·

(∗)︷ ︸︸ ︷
(sc − s) +

+
∑

j1+j2+j3<i

cj1,j2,j3 ·
∂j1+j2+j3f

(∂u)j1(∂v)j2(∂w)j3︸ ︷︷ ︸
(∗∗)

· ∂i−(j1+j2+j3) (sc − s)

(∂u)i1−j1(∂v)i2−j2(∂w)i3−j3
,

where cj1,j2,j3 are certain constants in N0.
According to the preconditions we have sc = s all along the roofline curve a, i.e., (∗) = 0.
Due to Proposition 1, (b) all partial derivatives of f of order < k vanish, and so does (∗∗).
Thus,

∂isf
(∂u)i1(∂v)i2(∂w)i3

=
∂is

(∂u)i1(∂v)i2(∂w)i3

holds all along the boundary curve a.

(c) follows from the fact that the blending function f only assumes values in the interval
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[0, 1].

(d) can easily be verified by substitution of the given values of d0, k, l,m.

(e) We have:

δf = max
u,v,w
{‖sf − s‖} = max

u,v,w
{f · ‖sc − s‖} ≤

=d0︷ ︸︸ ︷
max
u,v,w
{f} ·

=δ︷ ︸︸ ︷
max
u,v,w
{‖sc − s‖} = d0 · δ

Remark: The figure δ is a measure for the deviation of S along the daylight curve c. If δ
exceeds the allowed limits of deviation we can choose an appropriate d0 in ]0, 1[ and replace
S by one of the respective surface Sf . The maximum distance δf of Sf and S does not exceed
the value d0δ according to Proposition 2, (e). Choosing d0 = 1 and k = l = m = 0 amounts
to replacing S by Sc and hence to avoiding any deviation along the sealing. Any choice of d0
in [0, 1] will diminish the deviation to a value between δ and 0. The choice of d0 provides a
handy tool for the control of the friction. Simultaneously, the choice of k, l,m neatly controls
the shape of the replacement surface Sf along the boundary curves.

5. Conclusions

A couple of decades ago side window panes were mostly flat. In those times a simple vertical
shift could do the job of moving the window up or down. Now, that the car windows are
curved the job of computing an appropriate spatial motion to properly shift the window
has gradually become an issue. This is why the problem of moving car windows has been
addressed in a number of papers within the last few years.

Rear side windows of convertibles (cabriolets) often have to be moved in a very sophis-
ticated way. There are additional constraints to be observed: On the one hand, spatial
limitations demand that a set of predetermined positions be assumed. On the other hand,
though, the surface has to be moved through the sealing slit. In this paper we tried to present
a recipe how these conditions can both be met. This recipe intends to put the designer into
the position to create a suitable spatial motion for the rear side window of a cabriolet that
moves the window sheet from its closed position down to the position where the whole window
is hidden inside the car side panel.

We started our considerations with a given rear side window an a set of predefined posi-
tions of the desired motion. To further improve the process it would be a promising approach
to preprocess the whole design. While selecting the set of further positions the engineer exerts
great influence on the final result. We would like to enable the engineer to act wilfully in this
early stage of the process. The tool to do so is yet to be designed.

It would be a great step forward if such consderations were already in the stylists’ mind.
Such a step of integration would considerably accelerate car development and engineering.
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