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Abstract. Associated with a triangle in the real projective plane are three
standard transformations: inversion in the circumcircle, isogonal conjugation and
antigonal conjugation. These are investigated in terms of angular and related co-
ordinates, and are found to be part of a group of more general transformations.
This group can be identified with a group of automorphisms of a real two-torus.
The torus is in essence the surface obtained by starting with the projective plane,
performing blowups on the three vertices, and then collapsing the triangle’s cir-
cumcircle and the line at infinity. A conjecture concerning Hofstadter points is
proved as an immediate consequence of this viewpoint.
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1. Introduction

Advancement in the understanding of triangle geometry has benefited greatly from the in-
troduction of special coordinate systems. This is especially true for trilinear and barycentric
coordinates; less known is the angular coordinate system associated with a triangle, though
this notion has appeared in the literature for more than a century (cf. [3]). It is the intention
of this article to motivate the usage of these latter coordinates in certain circumstances, and
to investigate the consequences. Particular attention is paid to the singularities inherent in
working with angular coordinates. Upon resolving these, a number of elegant results are easily
revealed, some of which will be presented here.

For instance, our research explores a certain two-dimensional continuous group of transfor-
mations of the plane, which is shown to include some standard involutions, namely, isogonal
conjugation, antigonal conjugation and inversion in the circumcircle. A discrete subgroup
of this group, containing these three involutions, has an orbit consisting almost entirely of
Hofstadter points and similar points. Moreover, the elimination of the singularities that nat-
urally occur as a result of using angular coordinates produces, as a bonus, a demonstration
of Dyck’s famous result on the topological equivalence of two surfaces.
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A new coordinate system is also introduced in this article. These “tricyclic” coordinates
arise as a simple reparameterization of angular coordinates. They have the advantage of
being rationally related to trilinear and Cartesian coordinates; hence, plane transformations
which are rational in Cartesian coordinates are rational in tricyclic coordinates, and algebro-
geometric methods can be applied to eliminate singularities. As with trilinear coordinates, it
is useful to study both an exact version and a homogeneous version of the tricyclic coordinate
system.

Section 1 of this paper introduces basic concepts, notation and conventions used through-
out the paper, along with some preliminary results. Section 2 explores further the concepts of
angular and tricyclic coordinates. Section 3 looks at the three involutions mentioned earlier,
and provides a rapid proof of a theorem that relates these, and which was previously proven
by D. M. Bailey [2] and independently by J. Van Yzeren [11].

Section 4 identifies the singularities inherent in the usage of angular coordinates; in par-
ticular, points on the circumcircle cannot be distinguished by angular coordinates, and the
triangle vertices have ill-defined angular coordinates. Algebro-geometric constructions meant
to eliminate these issues are carried out in detail. Section 5 introduces the continuous group
mentioned above as a group of automorphisms of the torus of angular coordinates; it is iden-
tified as the set of plane transformations satisfying a property naturally expressed within the
framework introduced in Section 1.

1.1. Notation and conventions

Let A, B, and P be points in the plane. Define the directed angle ∡APB to be the angle

through which the line
←→
AP can be rotated about P to coincide with the line

←→
BP . The angle

is signed, with positive values indicating counterclockwise rotation, and is only well-defined
modulo π. Any equation involving directed angles should be considered modulo π.

We record some immediately observed properties of directed angles below:

Lemma 1.1. Let A, B, C, and P be points in the plane. Then

(i) ∡APB = −∡BPA,

(ii) ∡BAC + ∡CBA+ ∡ACB = 0,

(iii) ∡APB + ∡BPC + ∡CPA = 0.

The well-known theorem equating inscribed angles for a circle can be rewritten in terms
of directed angles as follows:

Lemma 1.2. Let A, B, P , and Q be points in the plane. Then A, B, P , and Q are concyclic
if and only if ∡APB = ∡AQB if and only if ∡PAQ = ∡PBQ.

Proof. The key difference from the traditional inscribed angle theorem can be seen as follows:
If P and Q are on opposite sides of a chord AB of a circle, then ∠APB = π − ∠AQB.
But the directed angles ∡APB and ∡AQB must have opposite orientation in this case, so
∡APB = π + ∡AQB = ∡AQB.

We will fix a triangle ∆ABC with circumcenter O, circumradius R, and with A, B,
and C not collinear. The interior angles at A, B, and C will be denoted by θ1, θ2, and θ3,
respectively. We will write Li = R sin θi and Mi = R cos θi. Observe that Li is half the
length of its corresponding edge and Mi is the signed distance from O to the corresponding
edge. This is shown in Figure 1.
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Figure 1: The quantities L1 and M1. For this triangle, M1 > 0.

A subscript used to indicate an edge or vertex of ∆ABC may be dropped when it can
be understood from context. Subscripts may also be dropped in expressions that would be
written the same way for each subscript. For example, L = R sin θ means that Li = R sin θi
for each i.

1.2. Angular and tricyclic coordinates

In [3, Chapter II] and [9], the angular coordinates for a point P inside a triangle ∆ABC are
given by the angles ∠BPC, ∠CPA, and ∠APB. In [11], directed angles are used instead.
This has the advantage of providing a unique triple (ψ1, ψ2, ψ3) for every point P not on the
circumcircle, where

ψ1 = ∡BPC, ψ2 = ∡CPA, ψ3 = ∡APB.

An alternative geometric description of angular coordinates can be seen as follows: By
Lemma 1.2, each circle through B and C can be uniquely identified by the directed angle
∡BPC, where P is any point on the circle other than B and C. In other words, the set of
circles through B and C is in one-to-one correspondence with the set of values for ψ1, provided
that the sideline is considered such a circle with infinite radius. The triple (ψ1, ψ2, ψ3) can
therefore be interpreted as specifying a configuration of three circles, one for each pair of
vertices of ∆ABC. That a point P has angular coordinates equal to this triple means that
the three circles intersect at P .

The circles in the above geometric description will play a prominent role in what follows.
For the sake of brevity, then, we will refer to any circle or line C through two vertices of
∆ABC as a Bailey circle1. To be specific, if the two vertices are A and B, then we will say
that C is a Bailey circle for the edge AB, and similarly for the other edges. As discussed, an
individual Bailey circle can be specified using a directed angle ψ, and any configuration of
three Bailey circles, one for each edge of ∆ABC, can be specified by a triple (ψ1, ψ2, ψ3).

Other quantities may be used in place of directed angles: Let C be a Bailey circle for an
edge E and let X be its center. The position of X along the perpendicular bisector E⊥ of
E determines C. Let c denote the directed distance from the circumcenter O to X , with the
outward-pointing normal to E indicating the positive direction. This is shown in Figure 2. If
X , Y , and Z are the centers of Bailey circles for edges BC, CA, and AB, respectively, then
this configuration can be specified by the triple (c1, c2, c3), with c1, c2, and c3 the directed
distances OX , OY , and OZ, respectively.

Remark 1.3. If the sidelines of ∆ABC are to be considered Bailey circles of infinite radius,
then the directed distance c described above should be considered as a value [c : d] in RP

1.

1in recognition of D. M. Bailey’s investigations into these circles (cf. [2])



44 T. Maienschein, M. Rieck: Angular Coordinates and Rational Maps

This will be done explicitly in Section 4, but elsewhere it will be restricted to R.

Angular coordinates arise by specifying the three Bailey circles through P using the triple
(ψ1, ψ2, ψ3) of directed angles. Another coordinate system may be defined by specifying the
same three Bailey circles using the triple (c1, c2, c3). It will be convenient to use non-standard
terminology and refer to this triple as the exact tricyclic coordinates of P . For any λ ∈ R

∗, we
will refer to (λc1 : λc2 : λc3) as the homogeneous tricyclic coordinates of P . We will see that,
unlike angular coordinates, this coordinate system is rationally related to Cartesian, trilinear,
and barycentric coordinates.

Remark 1.4. Note that

(i) Points not on the circumcircle have unique, well-defined angular and tricyclic coordi-
nates, with the caveat that points on the sidelines have one infinite tricyclic coordinate.

(ii) Points on the circumcircle other than A, B, and C cannot be distinguished using angular
or tricyclic coordinates, but the coordinate triples are well-defined.

(iii) If P = A, B, or C, then P does not have well-defined angular or tricyclic coordinates.
There are infinitely many configurations of Bailey circles such that each Bailey circle
passes through P .

We establish the relationship between c and ψ in Lemma 1.5 and Lemma 1.6.

Lemma 1.5. cot(ψ) =
M − c

L
and cot(θ − ψ) =

M −R2 c−1

L
.

Proof. We prove the first assertion for the edge E = BC. Let C be a Bailey circle for BC
with center X . Let P and Q be the two points at which C meets E⊥, chosen so that P and
X are on the same side of BC. This is shown in Figure 2.

B

C

A

O X P

r
L

M
c

Figure 2: A Bailey circle with radius r.

By the inscribed angle theorem, ∠BPC = 1
2
∠BXC = ∠QXC. Observe that the rotation

of
←→
PB onto

←→
PC is a clockwise acute angle when c > M and a counterclockwise acute angle

when c < M , and similarly for the rotation of
←→
XQ onto

←→
XC. Since ∠BPC and ∠QXC are

oriented the same way,
ψ = ∡BPC = ∡QXC.

Now let σ = sgn(M − c) so that ∡QXC = σ∠QXC and the absolute distance from X to BC
is σ(M − c). Then

cot∡QXC = σ cot∠QXC = σ
σ(M − c)

L
=
M − c

L
.
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For the other equality,

cot(θ − ψ) =
cot(θ) cot(ψ) + 1

cot(ψ)− cot(θ)
·
L2

L2
=

M(M − c) + L2

L(M − c)− LM
=
R2 −Mc

−Lc
.

The last equality follows from the fact that M2 + L2 = R2.

Lemma 1.6. c = R
sin(ψ − θ)

sin(ψ)
.

Proof. The result is obtained by replacing L = R sin θ and M = R cos θ in Lemma 1.5:

c = R cos(θ)−R sin(θ) cot(ψ) = R
cos(θ) sin(ψ)− sin(θ) cos(ψ)

sin(ψ)
.

2. Properties of angular and tricyclic coordinates

2.1. Exactness

Proposition 2.1. If (ψ1, ψ2, ψ3) are the angular coordinates of a point P , then

ψ1 + ψ2 + ψ3 = 0. (2.1)

Proof. By definition, ψ1 +ψ2 + ψ3 = ∡BPC +∡CPA+∡APB. The right-hand side is 0 by
Lemma 1.1.

A partial converse is given in Proposition 2.3. Before proceeding, we establish a condition
for neighboring Bailey circles to be tangent.

Lemma 2.2. Let C1 and C2 be Bailey circles for edges BC and CA, and let ψ1 and ψ2 be
their respective ψ-coordinates. Then C1 and C2 are tangent if and only if ψ1 + ψ2 = −θ3.

Proof. From Figure 2, one can deduce that

∡OCX = ∡OCB + ∡BCX = (π/2− θ1) + (π/2 + ψ1) = ψ1 − θ1.

By a symmetrical argument, ∡OCY = −(ψ2 − θ2). Therefore

∡Y CX = ∡Y CO + ∡OCX = (ψ2 − θ2) + (ψ1 − θ1) = ψ1 + ψ2 + θ3.

But C1 and C2 are tangent precisely when ∡Y CX = 0.

Proposition 2.3. Let ψ1, ψ2, and ψ3 be any triple of directed angles such that

ψ1 + ψ2 + ψ3 = 0.

The configuration of Bailey circles given by (ψ1, ψ2, ψ3) satisfies exactly one of the following:

(i) All three Bailey circles are sidelines (ψ1 = ψ2 = ψ3 = 0),

(ii) At least one Bailey circle is the circumcircle and the other two are tangent,

(iii) There is a common point of intersection P not on the circumcircle.

The case that all three Bailey circles are the circumcircle (ψ = θ) is a special case of (ii).
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Proof. Clearly (i), (ii), and (iii) are each possible and are mutually exclusive. We will show
they are exhaustive. L et C1, C2, and C3 denote the Bailey circles in the configuration for the
edges BC, CA, and AB, respectively.

Suppose C1 and C2 intersect at a point P not on the circumcircle. Let K be the circle
APB and ψ̊ its ψ-coordinate. Then the angular coordinates of P are (ψ1, ψ2, ψ̊), so by
Proposition 2.1, ψ1 + ψ2 + ψ̊ = 0. Hence ψ3 = ψ̊ and C3 = K. This is case (iii).

If C1 and C2 intersect at a point on the circumcircle other than C, then at least one of
C1 and C2 must be the circumcircle. Given the condition that ψ1 + ψ2 + ψ3 = 0, Lemma 2.2
implies that two Bailey circles are tangent if and only if the other is the circumcircle. So this
is case (ii).

Finally, if C1 and C2 intersect only at C, then they are either tangent, which is case (ii),
or they are both sidelines. If they are both sidelines, then ψ1 = ψ2 = 0. This implies ψ3 = 0,
which is case (i).

Proposition 2.4. If (c1, c2, c3) are the exact tricyclic coordinates of a point P , then

R(L1c1 + L2c2 + L3c3) = L1c2c3 + L2c1c3 + L3c1c2. (2.2)

Proof. It is sufficient to show that (2.2) is equivalent to (2.1). Let Θ = eiθ, so that RΘ =
M + iL. Then

e2iψ =
cotψ + i

cotψ − i
=

(M − c) + Li

(M − c)− Li
=
RΘ− c

RΘ− c
, (2.3)

where the middle equality follows from Lemma 1.5. Now let

ξ = (RΘ1 − c1)(RΘ2 − c2)(RΘ3 − c3).

Then

e2i(ψ1+ψ2+ψ3) =
(RΘ1 − c1)(RΘ2 − c2)(RΘ3 − c3)

(RΘ1 − c1)(RΘ2 − c2)(RΘ3 − c3)
= ξ/ξ.

Therefore (2.1) holds if and only if ξ/ξ = 1, or equivalently Im(ξ) = 0.

Observe that Θ1Θ2Θ3 = ei(θ1+θ2+θ3) = −1, so Im(Θ1Θ2Θ3) = 0. Also, Θ1Θ2 = −Θ3, so
Im(Θ1Θ2) = Im(Θ3) = L3; similarly, Im(Θ1Θ3) = L2 and Im(Θ2Θ3) = L1. Expanding ξ and
extracting the imaginary part yields

Im(ξ) = R(L1c2c3 + L2c1c3 + L3c1c2)−R
2(L1c1 + L2c2 + L3c3).

Setting this equal to zero and rearranging yields (2.2).

Corollary 2.5. If P is not on the circumcircle and has homogeneous tricyclic coordinates
(c1 : c2 : c3), then it has exact tricyclic coordinates (Kc1, Kc2, Kc3), where

K = R
L1c1 + L2c2 + L3c3

L1c2c3 + L2c1c3 + L3c1c2
. (2.4)
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2.2. Trilinear and cartesian coordinates

In order to establish the relationship between tricyclic and trilinear coordinates, it will be
useful to first make an observation concerning antipedal triangles.

Lemma 2.6. Let P be a point not on the circumcircle or sidelines of ∆ABC. Let ∆XY Z be
the triangle with vertices at the centers of the three Bailey circles through P . Then ∆XY Z
is the antipedal triangle of ∆ABC with respect to P , scaled by 1

2
.

Proof. Let P be as in the statement of the lemma and let X and Y denote the centers
of the circles BPC and CPA, respectively. Since PC is a chord of both of these circles,

its perpendicular bisector passes through both X and Y . That is, the sideline
←→
XY is the

perpendicular bisector of PC. The same reasoning shows that the sidelines
←→
Y Z and

←→
ZX are

the perpendicular bisectors of PA and PB, respectively. This is shown in Figure 3.
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Figure 3: ∆XY Z is half the antipedal triangle of ∆ABC with respect to P .

Proposition 2.7. Let P be a point not on the sidelines of ∆ABC. Let (ℓ1, ℓ2, ℓ3) and
(c1, c2, c3) denote the exact trilinear and exact tricyclic coordinates, respectively, of P . Then
for each i,

2ciℓi = −P, (2.5)

where P = |OP |2 −R2 is the power of P for the circumcircle, and

ciℓi =
|∆ABC|

L1c
−1
1 + L2c

−1
2 + L3c

−1
3

. (2.6)

Proof. If P is on the circumcircle, then (2.5) is clearly true. Now assume P is not on the
circumcircle, and let ∆XY Z be the triangle formed by the centers of the Bailey circles induced

by P , as in Figure 3. Observe that
−−→
PB ·

−−→
OX = ℓ1c1. Also, since

−−→
PB · (

−−→
XP +

−−→
PB/2) = 0, it
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follows that 2
−−→
PB ·

−−→
PX = |PB|2. Therefore

2c1ℓ1 = 2
−−→
PB · (

−→
OP +

−−→
PX)

= 2
−−→
PB ·

−→
OP + |PB|2

= |
−→
OP +

−−→
PB|2 − |OP |2

= R2 − |OP |2.

The arguments for c2ℓ2 and c3ℓ3 are similar, so (2.5) holds.
Since

L1ℓ1 + L2ℓ2 + L3ℓ3 = |∆ABC|,

it follows that

−PL1c
−1
1 − PL2c

−1
2 − PL3c

−1
3 = 2|∆ABC|.

Solving for P yields (2.6).

Applying Lemma 1.6, (2.5) can be rewritten as

2Rℓ = −P
sin(ψ)

sin(ψ − θ)
.

This is proved in [3, Chapter II], which discusses the notion of “power”, although the angular
coordinates in [3] differ slightly from those defined here.

Corollary 2.8. Let P be a point not on the circumcircle or sidelines of ∆ABC. Let (ℓ1 : ℓ2 :
ℓ3) and (c1 : c2 : c3) denote the homogeneous trilinear and homogeneous tricyclic coordinates,
respectively, of P . Then

(ℓ1 : ℓ2 : ℓ3) = (c−1
1 : c−1

2 : c−1
3 ) (2.7)

Proof. This follows directly from Proposition 2.7.

Corollary 2.9. Let P be a point not on the circumcircle or sidelines of ∆ABC. Suppose
that the Cartesian coordinates of P are given by dehomogenizing (x : y : z) ∈ RP

2 at z = 1,
and that the Cartesian coordinates of A, B, and C are given by (x1, y1), (x2, y2), and (x3, y3),
respectively. Let (c1 : c2 : c3) denote the homogeneous tricyclic coordinates of P . Then



x
y
z


 =



x1 x2 x3
y1 y2 y3
1 1 1






L1 c

−1
1

L2 c
−1
2

L3 c
−1
3


 . (2.8)

Proof. From (2.7), the barycentric coordinates of P are

(L1 c
−1
1 : L2 c

−1
2 : L3 c

−1
3 ).

The result follows.

Remark 2.10. Both Colloraries 2.8 and 2.9 can be extended to the case that P is on a side-
line of ∆ABC by considering each tricyclic coordinate as belonging to RP

1 and scaling the
homogeneous quantities in the typical way. This is discussed further in Section 4.
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3. Transformations

Given a triangle ∆ABC, we will say that a birational automorphism of the plane F preserves
Bailey circles if, for any Bailey circle C for an edge of ∆ABC, there is a Bailey circle C′ for
the same edge such that F restricts to a map C 99K C′.

Each tricyclic coordinate specifies the Bailey circle for one edge of ∆ABC. Hence, a map
F preserves Bailey circles if and only if it is “diagonal” when written in tricyclic coordinates,
in the sense that F can be expressed as

(c1, c2, c3) 7→ (f1(c1), f2(c2), f3(c3)) (3.1)

for some functions fi. The same principle holds for angular coordinates.

3.1. Three involutions

Antigonal conjugation, isogonal conjugation, and inversion in the circumcircle each preserve
Bailey circles, and can therefore be expressed in the form of (3.1). The formulas in terms of
angular coordinates are equivalent to the “characteristic equations” appearing in [11].

What we refer to here as antigonal conjugates are referred to as reflective points in [2],
reflective conjugates in [4], and antigonal pairs in [11]: Let P be a point in the plane other
than A, B, and C, and consider the three Bailey circles induced by P . Reflect each circle
in its corresponding edge. The reflected circles will intersect in a unique point P ′ called the
antigonal conjugate of P .

Proposition 3.1. Antigonal conjugation is given in angular coordinates as

(ψ1, ψ2, ψ3) 7→ (−ψ1,−ψ2,−ψ3)

and in exact tricyclic coordinates as

(c1, c2, c3) 7→ (2M1 − c1, 2M2 − c2, 2M3 − c3) .

Proof. The first formula appears in [11].
Fix an edge E of ∆ABC, let C be a Bailey circle for E, and let C′ be its image under

antigonal conjugation. Let c and c′ be the coordinates of C and C′, respectively. Since the

midpoint of E is exactly between the centers of C and C′,
c+ c′

2
=M .

Isogonal conjugation is defined as follows: Let P be a point in the plane. Reflect the

lines
←→
AP ,

←→
BP , and

←→
CP over the internal angle bisectors at A, B, and C, respectively. The

reflected lines will intersect in a point P ′, called the isogonal conjugate of P .

Proposition 3.2. Isogonal conjugation is given in angular coordinates as

(ψ1, ψ2, ψ3) 7→ (−ψ1 + θ1,−ψ2 + θ2,−ψ3 + θ3)

and in exact tricyclic coordinates as

(c1, c2, c3) 7→
(
R2 c−1

1 , R2 c−1
2 , R2 c−1

3

)
.

Proof. The first formula appears in [11]. It follows by Lemma 1.6 that

c′ = R
(ψ′ − θ)

(ψ′)
= R

sin(−ψ)

sin(−ψ + θ)
=

sin(ψ)

sin(ψ − θ)
=
R2

c
.
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Remark 3.3. Proposition 3.2 implies that isogonal conjugation preserves Bailey circles. This
can be seen directly as follows: Let P and P ′ be isogonal conjugates and let C and C

′ denote

the circles ABP and ABP ′. Moving P along C will rotate
←→
AP and

←→
BP some common angle

α about A and B, respectively. Hence the reflections
←→
AP ′ and

←−→
BP ′ are rotated the common

angle −α, which has the effect of moving P ′ about the circle C′.

Inversion scales the coordinates of a point P by R2/|P |2. It is well known that this
transformation preserves the set of circles and lines in the plane, and it clearly fixes A, B,
and C. Therefore it must also preserve Bailey circles.

Proposition 3.4. Inversion in the circumcircle is given in angular coordinates as

(ψ1, ψ2, ψ3) 7→ (−ψ1 + 2θ1,−ψ2 + 2θ2,−ψ3 + 2θ3)

and in exact tricyclic coordinates as

(c1, c2, c3) 7→

(
R2 c1

2M1c1 −R2
,

R2 c2
2M2c2 −R2

,
R2 c3

2M3c3 − R2

)
.

Proof. The first formula appears in [11]. Since ψ′ = −ψ + 2θ can be rearranged as θ − ψ′ =
−(θ−ψ), it follows that cot(θ− ψ′) = − cot(θ−ψ). Therefore, by Lemma 1.5, M −R2/c′ =
M −R2/c. Solving for c′ yields the second formula.

3.2. Bailey’s theorem and dihedral groups

The following theorem is not new, appearing as [2, Theorem 5] and [4, Theorem 13]. It is also
proved in [11] by a technique equivalent to using angular coordinates. All subsequent results
and proofs reported in this article are new.

Theorem 3.5. Isogonal conjugation maps inverse points to antigonal conjugates.

Proof. Let a denote antigonal conjugation, s isogonal conjugation, and v inversion. By
Propositions 3.1, 3.2, and 3.4,

(s ◦ v)(ψ) = s(−ψ + 2θ) = −(−ψ + 2θ) + θ = ψ − θ

and
(a ◦ s)(ψ) = a(−ψ + θ) = −(−ψ + θ) = ψ − θ.

Therefore s ◦ v = a ◦ s, which is equivalent to the statement of the theorem.

The next theorem characterizes the group generated by isogonal conjugation and inver-
sion.

Theorem 3.6. Let s denote isogonal conjugation and v inversion. If the interior angles of
∆ABC are rational multiples of π, written in lowest terms as θi = πki/ni, then

(i) The order of v ◦ s is n = lcm(n1, n2, n3),

(ii) v and s generate the dihedral group of order 2n.

If the interior angles of ∆ABC are not all rational multiples of π, then

(i) v ◦ s has infinite order,

(ii) v and s generate the infinite dihedral group.
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Proof. By Propositions 3.2 and 3.4,

(v ◦ s)(ψ1, ψ2, ψ3) = (ψ1 + θ1, ψ2 + θ2, ψ3 + θ3),

so in the first case,

(v ◦ s)n(ψ1, ψ2, ψ3) =

(
ψ1 + π

nk1
n1

, ψ2 + π
nk2
n2

, ψ3 + π
nk3
n3

)
.

The smallest n such that each πnki/ni is a multiple of π is lcm(n1, n2, n3). The second case
is clear, since if nθi is a multiple of π for some n, then θi is a rational multiple of π.

Remark 3.7. Inversion may be replaced with antigonal conjugation in the statement of The-
orem 3.6 with no significant change in the proof.

4. Resolution of singularities

Points in the plane are not in one-to-one correspondence with angular or tricyclic coordinate
triples satisfying (2.1) and (2.2). In this section, we will modify the plane using algebro-
geometric methods in order to obtain a surface whose points are in one-to-one correspondence
with such triples. We will see that this surface is a torus, and that any birational automor-
phism of the plane that preserves Bailey circles is a regular automorphism of this torus, with
no singularities.

As described in Subsection 1.2, triples of angular or tricyclic coordinates can be regarded
as a geometric configuration of circles; the ambiguity of these coordinates for a point on the
circumcircle corresponds to a degenerate configuration. Distinguishing degenerate geometric
configurations using algebraic geometry has an extensive history; for example, Semple’s study
of the space of triangles in [10] utilizes ideas dating back to Schubert the 19th century.

The steps carried out in the rest of this section can be motivated as follows: First, points
on the circumcircle other than A, B, and C all have the same representation, since the only
Bailey circle through such points is the circumcircle. That is, c1 = c2 = c3 = 0. This suggests
that the circumcircle should be collapsed to a point.

Second, the vertices of ∆ABC have ambiguous representation: If P = A, for example,
then the Bailey circle for BC must be the circumcircle. But, as suggested by Proposition 2.3,
any other two Bailey circles which are tangent at A will yield a configuration given by a triple
(c1, c2, c3) satisfying (2.2). The fact that there is one triple of exact coordinates for each line
of tangency through A suggests that the plane should be blown up at A: This replaces A
with its exceptional divisor EA ≃ RP

1, representing each direction through A.
We therefore carry out the following steps: First extend the plane to include the line at

infinity and blow up each vertex of ∆ABC. Then collapse the circumcircle to a point P0 and
the line at infinity to a point P∞. Theorem 4.3 shows that the result is the desired surface.

4.1. Construction

We will consider homogeneous tricyclic coordinates explicitly as triples of values in RP
1, each

written as [c : d]. The value c in R corresponds to [c : 1] in RP
1. Denote [1 : 0] by ∞ and

[0 : 1] by 0. Let T 3
c be the 3-torus of all possible coordinate triples.

The surface of exact tricyclic coordinates given by (2.2) is defined on that subset R3 ⊂ T 3
c

where d1 = d2 = d3 = 1. Its closure Σ ⊂ T 3
c is given by the equation

R(L1 c1d2d3 + L2 d1c2d3 + L3 d1d2c3) = L1 d1c2c3 + L2 c1d2c3 + L3 c1c2d3.
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The surface Σ is in fact a 2-torus. This can be seen as follows: First, the set of all triples
(ψ1, ψ2, ψ3) is a 3-torus T 3

ψ. The surface of angular coordinates Σψ ⊂ T 3
ψ is given by ψ1+ψ2+

ψ3 = 0, which is a 2-torus. Extending Lemma 1.6 as

[c : d] = [R sin(ψ − θ) : sin(ψ)]

defines an isomorphism T 3
c

∼
−→ T 3

ψ which restricts to Σ
∼
−→ Σψ.

The conversion to Cartesian coordinates, (2.8), extends to a rational map T 3
c 99K RP

2

given by 

x
y
z


 =



x1 x2 x3
y1 y2 y3
1 1 1






L1 d1 c2 c3
L2 c1 d2 c3
L3 c1 c2 d3


 . (4.1)

This map is undefined only when d1c2c3 = c1d2c3 = c1c2d3 = 0. This occurs only at (∞,∞,∞)
and the lines (−, 0, 0), (0,−, 0), and (0, 0,−).

Let Φ denote (4.1) restricted to Σ. Then Φ is undefined only at (∞,∞,∞) and (0, 0, 0).
Note that Φ does not extend to (∞,∞,∞) because, away from this point, d1 = 0, d2 = 0, and
d3 = 0 map to the sidelines BC, AC, and AB, respectively, which have no point in common.
Similarly, Φ does not extend to (0, 0, 0) because, away from this point, c1 = 0, c2 = 0, and
c3 = 0 collapse to A, B, and C, respectively.

Let Σ̊ ⊂ Σ be given by removing (∞,∞,∞) and the curves c1 = 0, c2 = 0, and c3 = 0.

Let R̊P2 ⊂ RP
2 be given by removing the line at infinity and the circumcircle. The geometric

definition of exact tricyclic coordinates shows that Φ restricts to an isomorphism Σ̊→ R̊P
2.

Lemma 4.1. Let R̃P2 denote the blowup of RP2 at the vertices A, B, and C. Then Φ lifts
to a rational map Φ̃ as in the following diagram:

R̃P
2

��

Σ
Φ

//❴❴❴

Φ̃

>>⑥
⑥

⑥
⑥

⑥
RP

2

Like Φ, the map Φ̃ is undefined only at (∞,∞,∞) and (0, 0, 0). Let Z̊1 denote the curve
c1 = 0 minus the point (0, 0, 0), and define Z̊2 and Z̊3 analogously. Let E̊A denote the excep-
tional divisor of A minus the direction tangent to the circumcircle, and define E̊B and E̊C
analogously. Then whereas Φ collapses each Z̊i to a point, Φ̃ restricts to isomorphisms

Z̊1
∼
−→ E̊A, Z̊2

∼
−→ E̊B, Z̊3

∼
−→ E̊C .

Proof. There is clearly a rational map Φ̃ : Σ 99K R̃P
2 that is identical to Φ, excluding

from the domain those points mapping to A, B, or C. From (4.1), it can be deduced that

Φ−1(A) = Z̊1, and similarly for B and C. It must be shown that Φ̃ extends to Z̊1, mapping it
isomorphically onto E̊A, and similarly for Z̊2 and Z̊3. We will demonstrate the first assertion,
the others being analogous.

To understand how Φ̃ behaves near c1 = 0, consider the open subset of R̃P2 which excludes
EB, EC , and the line at infinity. This is identical to the original plane, minus B and C,
blown up at A = (x1, y1). Points in this blowup can be understood as consisting of a point
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P = (x, y) along with a direction through A, with the restriction that if P 6= A, the direction

must coincide with
←→
AP . By (4.1), the direction of

←→
AP is given by

[x− x1 : y − y1]
T =

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)(
L2 d2c3
L3 c2d3

)
. (4.2)

This clearly extends to Z̊1, and we may consider (4.2) as a rational map Z̊1 99K E̊A. Now
consider the parameterization of c1 = 0 in Σ by the parameter [u : v] ∈ RP

1:

[c1 : d1] = [0 : 1],

[c2 : d2] = [L2
3 u+ L2

2 v : R
−1L1L3 u],

[c3 : d3] = [L2
3 u+ L2

2 v : R
−1L1L2 v].

Away from [u : v] = [L2
2 : −L

2
3], which corresponds to (0, 0, 0), it is easily verified that along

this parameterization, the quantity [L2 d2c3 : L3 c2d3] appearing in (4.2) simplifies to [u : v].

Hence Φ̃ maps the point [u : v] on c1 = 0 to the direction u
−→
AB+v

−→
AC through A. The missing

direction L2
2

−→
AB−L2

3

−→
AC is tangent to the circumcircle, as shown below. So (4.2) is in fact an

isomorphism Z̊1
∼
−→ E̊A.

Let P be a point in the plane and suppose that
←→
AP is tangent to the circumcircle. Let u

and v satisfy
−→
AP = u

−→
AB + v

−→
AC. Then

0 =
−→
OA ·

−→
AP = u

−→
OA ·

−→
AB + v

−→
OA ·

−→
AC,

so

[u : v] = [−
−→
OA ·

−→
AC :

−→
OA ·

−→
AB].

Now observe that

4L2
2 = |
−→
AC|2 = (

−→
OC −

−→
OA) · (

−→
OC −

−→
OA)

= 2R2 − 2
−→
OA ·

−→
OC

= 2
−→
OA · (

−→
OA−

−→
OC) = −2

−→
OA ·

−→
AC.

Similarly, 4L2
3 = |
−→
AB|2 = −2

−→
OA ·

−→
AB. Therefore [u : v] = [L2

2 : −L
2
3].

Lemma 4.2. Let Σ̃ denote the blowup of Σ at (∞,∞,∞) and (0, 0, 0). Then Φ̃ extends to

an isomorphism Ψ̃ as in the following diagram:

Σ̃

��

Ψ̃ // R̃P2

Σ
Φ̃

>>⑥
⑥

⑥
⑥

⑥

The exceptional divisors of (∞,∞,∞) and (0, 0, 0) map isomorphically via Ψ̃ onto the line at

infinity and the proper transform of the circumcircle in R̃P
2, respectively.
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Proof. Let E∞ and E0 denote the exceptional divisors of (∞,∞,∞) and (0, 0, 0), respectively,

in Σ̃. Let Ψ̃ : Σ̃ 99K R̃P
2 be the rational map which is undefined on E∞ and E0 but is otherwise

identical to Φ̃. It must be shown that Ψ̃ extends to E∞ and E0 as in the statement of the
lemma.

First we determine how Ψ̃ behaves near E∞. Consider the open subset V ⊂ T 3
c obtained

by dehomogenizing at ci = 1 for each i. Then V ≃ R
3
(d1,d2,d3)

and the point (∞,∞,∞) ∈ T 3
c

is given by 0̂ ∈ V . Let Ṽ denote the blowup of V at 0̂. That is, Ṽ is the set of

(
(d1, d2, d3), [β1 : β2 : β3]

)
∈ V × RP

2

satisfying [β1 : β2 : β3] = [d1 : d2 : d3] when d̂ 6= 0̂. The map Ṽ 99K RP
2 given by



x
y
z


 =



x1 x2 x3
y1 y2 y3
1 1 1






L1 β1
L2 β2
L3 β3


 (4.3)

agrees with (4.1) away from d̂ = 0̂. Now consider the intersection of Σ with V , defined by the
equation

L1d1 + L2d2 + L3d3 − R(L1d2d3 + L2d1d3 + L3d1d2) = 0.

The tangent plane to Σ at 0̂ ∈ V is given by L1d1 + L2d2 + L3d3 = 0, so E∞ sits inside of
{0̂} ×RP

2 ⊂ Ṽ as L1β1 + L2β2 + L3β3 = 0. Clearly (4.3) extends to E∞, and in fact maps it

isomorphically onto z = 0, the line at infinity. Moreover, this determines the extension of Ψ̃
to E∞, since the image of E∞ under (4.3) does not include A, B, or C.

We now determine the behavior of Ψ̃ near E0. Consider the open subset U ⊂ T 3
c obtained

by dehomogenizing at di = 1 for each i. Then U ≃ R
3
(c1,c2,c3)

and the point (0, 0, 0) ∈ T 3
c is

given by 0̂ ∈ U . Let Ũ denote the blowup of U at 0̂, which is the set of

(
(c1, c2, c3), [α1 : α2 : α3]

)
∈ U × RP

2

satisfying [α1 : α2 : α3] = [c1 : c2 : c3] when ĉ 6= 0̂. The map Ũ 99K RP
2 given by



x
y
z


 =



x1 x2 x3
y1 y2 y3
1 1 1






L1 α2α3

L2 α1α3

L3 α1α2


 (4.4)

agrees with (4.1) away from ĉ = 0̂. The intersection of Σ with U is defined by the equation

L1c1 + L2c2 + L3c3 − R
−1(L1c2c3 + L2c1c3 + L3c1c2) = 0.

The tangent plane to Σ at 0̂ ∈ U is given by L1c1 + L2c2 + L3c3 = 0, so E0 sits inside of
{0̂} × RP

2 ⊂ Ũ as L1α1 + L2α2 + L3α3 = 0. Observe that (4.4) extends to E0.

The image of E0 under (4.4) includes A, B, and C, so to determine Ψ̃, we must also
determine a direction through A, B, and C. Again assuming ĉ 6= 0̂, (4.2) shows that the
direction through A is given by

L2α3
−→
AB + L3α2

−→
AC. (4.5)

This extends to E0 as well, and directions through the other vertices can be determined
similarly. We have therefore determined how Ψ̃ extends to E0, but it remains to be shown
that it maps E0 isomorphically onto the proper transform of the circumcircle.
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By (2.6) and (2.5), assuming exact tricyclic coordinates,

R2 − |OP |2 =
2 |∆ABC| c1c2c3

L1c2c3 + L2c1c3 + L3c1c2
.

For homogeneous tricyclic coordinates, each ci must be scaled according to (2.4). This yields

R2 − |OP |2 =
2R |∆ABC| c1c2c3(L1c1 + L2c2 + L3c3)

(L1c2c3 + L2c1c3 + L3c1c2)2
.

It follows that away from 0̂ in U , the surface L1c1 + L2c2 + L3c3 = 0 maps via (4.1) to

the circumcircle. By continuity, Ψ̃ must therefore map E0 to the proper transform of the
circumcircle. It remains to be seen that it is an isomorphism.

Observe that [0 : −L3 : L2] is the only point of E0 with α1 = 0, and therefore the only

point of E0 mapped by (4.4) to A. By (4.5), it is sent to the direction L2
2

−→
AB − L2

3

−→
AC in the

exceptional divisor of A which, as discussed in Lemma 4.1, is the direction tangent to the
circumcircle. The same principle holds for the two points of E0 with α2 = 0 and α3 = 0,
respectively.

Finally, let E̊0 denote E0 minus the three points with α1 = 0, α2 = 0, and α3 = 0, and let C̊
denote the proper transform of the circumcircle minus the three points meeting the exceptional
divisors of the vertices. All that remains to be shown is that the map E̊0 → C̊ induced by
(4.4) is an isomorphism. This is true, since (4.4) is invertible away from α1α2α3 = 0.

Theorem 4.3. Suppose the line at infinity and the proper transform of the circumcircle in R̃P
2

are collapsed to points P∞ and P0, respectively, yielding a surface T . Then the isomorphism
Ψ̃ descends to an isomorphism Ψ as in the following diagram:

Σ̃

��

Ψ̃ // R̃P2

��
Σ Ψ // T

The points (∞,∞,∞) and (0, 0, 0) map via Ψ to P∞ and P0, respectively.

Proof. This follows immediately from Lemma 4.2.

Remark 4.4. A slight modification of Theorem 4.3 illustrates Dyck’s theorem: If E∞ is col-
lapsed to a point in Σ̃, the result is the same as Σ blown up at one point; topologically, this

is T 2#RP
2. If the line at infinity is collapsed to a point in R̃P

2, the result is the same as a
sphere blown up at three points; topologically this is RP

2#RP
2#RP

2. The isomorphism Ψ̃
descends to an isomorphism between these surfaces.

4.2. Features on the torus

The construction of the surface T is described topologically in Figures 4 and 5. The curves
di = 0 in Σ map onto the sidelines of ∆ABC. These are represented by dashed lines in
Figures 4 and 5. The curves ci = 0 in Σ map onto the exceptional divisors of A, B, and C.
These are represented by solid lines in Figures 4 and 5.
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∞

A B

C

Figure 4: Blowing up at A, B, and C.

A B

CP0

A B

C

P∞

A A

B

B

C

P∞

P0

Figure 5: Inside and outside the circumcircle; the torus T .

Remark 4.5. Points in Σ are in one-to-one correspondence with configurations of Bailey circles
(ψ1, ψ2, ψ3) satisfying ψ1+ψ2+ψ3 = 0. Such configurations were classified in Proposition 2.3:
Case (i), in which all three Bailey circles are sidelines, corresponds to P∞. Case (ii), in
which one Bailey circle is the circumcircle and the other two are tangent, corresponds to the
exceptional divisors of the vertices, shown as solid lines in Figures 4 and 5; the special case
that all three Bailey circles are the circumcircle corresponds to their intersection P0.

In Proposition 4.6 we summarize the coordinates for several points on T . The angular
coordinates in this list agree with those found in [9]. Hofstadter points and related centers are
investigated in Subsection 5.3. Other points, including Brocard points, isodynamic points, and
isogonic centers, fit naturally into the perspective of Bailey circles and angular coordinates,
but we omit these from the list.

Proposition 4.6. Let H, O, and I denote the orthocenter, circumcenter, and incenter, re-
spectively. The following table shows angular and exact tricyclic coordinates.

c ψ

P∞ ∞ 0

P0 0 θ

I R (θ + π)/2

O R2/(2M) 2θ

H 2M −θ

Proof. The coordinates for P∞ and P0 follow directly from Theorem 4.3. The angular
coordinates for I, O, and H can be determined as follows:

The angular coordinate ψ1 for I is ∡BIC = π− θ2/2− θ3/2. This is equal (modulo π, as
usual) to (θ1 + π)/2. The coordinates ψ2 and ψ3 can be deduced similarly.
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The angular coordinate ψ1 for O is ∡BOC; by the inscribed angle theorem this is equal
to 2∡BAC = 2θ1. The other coordinates are similar. It is well known that H and O are
isogonal conjugates; by Proposition 3.2 it follows that H has angular coordinates ψ = −θ.

The exact tricyclic coordinates can now be determined using Lemma 1.6.

Birational automorphisms of the plane which preserve Bailey circles can be viewed as
automorphisms of the torus T . On the one hand, when viewed as acting on the plane,
(i) Antigonal conjugation is undefined at H and fixes the sidelines,

(ii) Isogonal conjugation is not defined on the circumcircle,

(iii) Inversion in the circumcircle is undefined at O and fixes the circumcircle.
On the other hand, when viewed as automorphisms of T , Propositions 3.1, 3.2, 3.4, and 4.6
show that
(i) Antigonal conjugation exchanges H ↔ P0 and fixes P∞,

(ii) Isogonal conjugation exchanges P0 ↔ P∞,

(iii) Inversion in the circumcircle exchanges O ↔ P∞ and fixes P0.

5. Angular translations and reflections

5.1. Characterization

Consider a point P with angular coordinates (α1, α2, α3). Then the map

ψ 7→ −(ψ − α) + α (5.1)

fixes P . We will refer to this map as angular reflection about P . By Propositions 3.1, 3.2,
and 3.4, we see that the following maps are angular reflections:

(i) Antigonal conjugation: Reflection about P∞ (α = 0)

(ii) Isogonal conjugation: Reflection about the incenter (α = (θ + π)/2)

(iii) Inversion in the circumcircle: Reflection about P0 (α = θ)

Let ω1, ω2, and ω3 be any triple satisfying ω1 + ω2 + ω3 = 0. The map

ψ 7→ ψ + ω (5.2)

will be referred to as an angular translation. The transformations v ◦ s and a ◦ s (where a
denotes antigonal conjugation, s isogonal conjugation, and v inversion) of Theorems 3.5 and
3.6 are angular translations.

The collection of angular reflections and angular translations forms a continuous group
of automorphisms of the torus T described in Section 4. The dihedral group of Theorem 3.6
forms a discrete subgroup of this group. Each of these transformations can be viewed as a
birational automorphism of the plane which preserves Bailey circles. In Theorem 5.1 we show
that, in fact, the converse is true.

Theorem 5.1. Any birational automorphism of the plane which preserves Bailey circles must
be an angular reflection or an angular translation.

Proof. Let F be any birational automorphism of the plane which preserves Bailey circles.
Recall that such a map may be written in the form (3.1). Moreover, by (2.8), each fi must be
a birational map of one variable, hence a Möbius transformation. Without loss of generality,

we may write the matrix defining fi as

(
AR BR2

C DR

)
for some Ai, Bi, Ci, and Di.
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Let z = e2iψ and Θ = eiθ. By (2.3), z is equal to the Möbius transformation

(
−1 RΘ
−1 RΘ

)

applied to c. Hence c is equal to the Möbius transformation

(
RΘ −RΘ
1 −1

)
applied to z. It

follows that fi is given by the Möbius transformation in z with matrix
(
α β
γ δ

)
=

1

R2

(
−1 RΘ
−1 RΘ

)(
AR BR2

C DR

)(
RΘ −RΘ
1 −1

)
(5.3)

=

(
−(AΘ+B) + Θ(CΘ+D) (AΘ+B)−Θ(CΘ+D)
−(AΘ+B) + Θ(CΘ+D) (AΘ+B)−Θ(CΘ+D)

)
.

Observe that β = −α + ζ, γ = α − ζ , and δ = −α, where ζ = (Θ−Θ)(CΘ+D). Moreover,
ζ 6= 0 since θ is not a multiple of π.

The transformation F must map exact triples to exact triples. Exactness is equivalent to
z1z2z3 = e2i(ψ1+ψ2+ψ3) = 1. Similarly, z′1z

′

2z
′

3 = 1, so

1 = z′1z
′

2z
′

3 =
(α1z1 + β1)(α2z2 + β2)(α3z3 + β3)

(γ1z1 + δ1)(γ2z2 + δ2)(γ3z3 + δ3)
.

Therefore

(α1z1 + β1)(α2z2 + β2)(α3z3 + β3)− (γ1z1 + δ1)(γ2z2 + δ2)(γ3z3 + δ3) = 0.

Expanding, replacing z3 = 1/(z1z2), and multiplying through by z1z2 yields
[
(α1α2α3 − γ1γ2γ3) + (β1β2β3 − δ1δ2δ3)

]
z1z2 +

[α1α2β3 − γ1γ2δ3] z
2
1z

2
2 + [α1β2α3 − γ1δ2γ3] z1 +

[α1β2β3 − γ1δ2δ3] z
2
1z2 + [β1α2α3 − δ1γ2γ3] z2 +

[β1α2β3 − δ1γ2δ3] z1z
2
2 + [β1β2α3 − δ1δ2γ3] = 0.

That is, the polynomial on the left-hand side must vanish whenever |z1| = |z2| = 1. But this
implies that the polynomial is identically zero, so each quantity in square brackets must be
zero. In particular,

(α1 − ζ1)α2α3 = α1(α2 − ζ2)(α3 − ζ3),

α1(α2 − ζ2)α3 = (α1 − ζ1)α2(α3 − ζ3),

α1α2(α3 − ζ3) = (α1 − ζ1)(α2 − ζ2)α3.

Observe that if αi = 0 for any i, then αi = 0 for all i. Similarly, if αi = ζi for any i, then

αi = ζi for all i. In the first case, the matrix (5.3) is

(
0 ζ
−ζ 0

)
. In the second case, the matrix

(5.3) is

(
ζ 0

0 −ζ

)
. These are angular reflection and angular translation, respectively.

Finally, suppose αi 6= 0, ζi for any i. Let ξ = (α − ζ)/α. Then the equations above can
be rewritten as

ξ1 = ξ2ξ3, ξ2 = ξ1ξ3, ξ3 = ξ1ξ2.

Therefore ξ3 = ξ1ξ2 = ξ1ξ1ξ3. Since ξ3 6= 0, it follows that |ξ1| = 1. Repeating this argument
yields

|ξ1| = |ξ2| = |ξ3| = 1.
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Hence |α| = |α− ζ |, so there exists ρ such that |ρ| = 1 and α − ζ = ρα. The matrix (5.3) is

therefore

(
α −αρ
αρ −α

)
. But this is the constant map z 7→ ρ, which is impossible.

5.2. Angular reflections

Inversion in the circumcircle exchanges the regions inside and outside the circumcircle. In
[2, Theorem 6], it is proved that antigonal conjugation also exchanges two regions, with
the sidelines acting as boundaries between these. These are special cases of a more general
phenomenon: Inversion and antigonal conjugation are both angular reflections; we will show
that every angular reflection exchanges two regions of the plane.

The torus of angular coordinates is shown in Figure 6. The vertical lines have fixed ψ1

value, the horizontal lines have fixed ψ2 value, and the diagonal lines have fixed ψ3 value
(since ψ1 + ψ2 + ψ3 = 0). In terms of the isomorphism given in Theorem 4.3, the features
of the diagram map to the modified plane in the following way: The dashed lines through
P∞ correspond to the sidelines of ∆ABC; the dotted lines through P0 correspond to the
exceptional divisors of A, B, and C (hence these lines collapse to the vertices in the original
plane); and the solid lines correspond to the Bailey circles through P .

When viewed as acting on the ψ1ψ2-plane, angular reflection about P simply reflects each
point through P or, equivalently, rotates about P through an angle of π. This exchanges the
shaded and unshaded regions shown in Figure 6. These two regions correspond to two regions
in the original plane; angular reflection about P exchanges these.

Let RT denote the shaded region of the torus shown in Figure 6, and let R denote the
corresponding region in the plane. To understand what R looks like, observe that containment
in RT flips exactly when a solid line is crossed. Hence, containment in R flips exactly when
a Bailey circle for P is crossed.

The dotted lines correspond to the exceptional divisors of the vertices, so each point on a
dotted line can be interpreted as an infinitesimal line segment through a vertex in the plane.
The points of intersection with solid lines correspond to those infinitesimal line segments
tangent to a Bailey circle for P . Following along a dotted line in the torus, containment in
RT flips exactly when a solid line is crossed. Hence, as an infinitesimal line segment through
a vertex is rotated, containment in R flips exactly when it passes through a direction tangent
to a Bailey circle for P .

ψ1

ψ2

P∞

(0, 0) (π, 0)

(0, π)

P0

P

Figure 6: Two regions on the torus of angular coordinates.
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A

B
C

P

Figure 7: Angular reflection about P exchanges the shaded and unshaded regions.

This observation is summarized in Theorem 5.2, leaving reflection about P0 and about
P∞ as special cases. These cases correspond to inversion in the circumcircle and antigonal
conjugation, respectively. The fact that R is the region inside the circumcircle in the case
P = P0 is illustrated by Figures 4 and 5. A general example is shown in Figure 7.

Theorem 5.2. Let P be a point not on the circumcircle.

Let B denote the union of the three Bailey circles for P . Each Bailey circle divides the plane
into two open regions; let D1, D2, and D3 denote one of those regions for each Bailey circle.
Finally, let R (respectively, R′) denote the regions consisting of those points not in B which
are contained in an even (respectively, odd) number of Di.

Then angular reflection about P maps R to R′ and vice-versa.

5.3. Hofstadter points

In [6], the Hofstadter r-point Hr is defined as follows for r 6= 0, 1: Rotate the sideline
←→
BC

counterclockwise about B through an angle of rθ2 and clockwise about C through an angle of

rθ3. The resulting lines intersect at a point A′. Construct B′ and C ′ analogously. Then
←→
AA′,

←−→
BB′, and

←−→
CC ′ are concurrent, and Hr is defined as their intersection. This point is shown to

have homogeneous trilinear coordinates

ℓ =
sin(rθ)

sin(rθ − θ)
. (5.4)

The construction of Hr can be modified slightly: Rotate the sidelines through an angle
of rθ + π/2 instead of rθ, then continue the construction as before. It is easily verified

that the proof appearing in [6], that
←→
AA′,

←−→
BB′, and

←−→
CC ′ are concurrent and intersect in a

point with trilinear coordinates given by (5.4), applies virtually unchanged to this modified
construction. Thus the resulting point, which we denote by H⊥

r , exists and has homogeneous
trilinear coordinates

ℓ =
sin(rθ + π/2)

sin((rθ + π/2)− θ)
=

cos(rθ)

cos(rθ − θ)
. (5.5)

We now determine the angular coordinates of Hr and H
⊥

r .

Lemma 5.3. Hr and H
⊥

r have angular coordinates ψ = rθ and ψ = rθ + π/2, respectively.
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Proof. Let Pr and P⊥

r be the points with angular coordinates as in the statement of the
lemma. By Lemma 1.6, Pr has exact tricyclic coordinates

c = R
sin(rθ − θ)

sin(rθ)

and P⊥

r has exact tricyclic coordinates

c = R
sin((rθ + π/2)− θ)

sin(rθ + π/2)
= R

cos(rθ − θ)

cos(rθ)
.

By (2.7), it follows that Pr and P⊥

r have trilinear coordinates given by (5.4) and (5.5), re-
spectively. So Hr = Pr and H

⊥

r = P⊥

r .

The following theorem appears as a conjecture of Randy Hutson in entry X(360) and
X(5961) of [8]. Part (ii) of the theorem is already known, and can be found in [6] without
the restriction on r (that is, it is in fact true that H0 and H1 are isogonal conjugates).

Theorem 5.4. Let Hr denote the Hofstadter r-point. Then

(i) The inverse-in-circumcircle of Hr is H2−r when r 6= 0, 1, 2,

(ii) The isogonal conjugate of Hr is H1−r when r 6= 0, 1,

(iii) The antigonal conjugate of Hr is H−r when r 6= −1, 0, 1.

Proof. Let r 6= 0, 1. By Lemma 5.3, Hr has angular coordinates ψ = rθ. By Proposition 3.4,
the inverse of Hr has angular coordinates

ψ = −rθ + 2θ = (2− r)θ.

By Proposition 3.2, the isogonal conjugate of Hr has angular coordinates

ψ = −rθ + θ = (1− r)θ.

By Proposition 3.1, the antigonal conjugate of Hr has angular coordinates

ψ = −rθ.

By Lemma 5.3, the right-hand sides match the angular coordinates of H2−r, H1−r, and Hr,
respectively, provided the listed constraints on r are observed.

Let h denote the angular translation given by ψ 7→ ψ + (π + θ)/2. Let ρ = h2. Observe
that ρ can be taken as the rotation in the dihedral group of Theorem 3.6, and is given by
isogonal conjugation followed by inversion.

Theorem 5.5. The maps h and ρ = h2 act on the points Hr and H
⊥

r+1/2 as in Figure 8.

Proof. As described in Theorem 4.3, the point P∞ has angular coordinates ψ = 0.
Hence hn(P∞) has angular coordinates ψ = (n/2)(π + θ). When n = 2r, this becomes

ψ = rθ. Therefore h2r(P∞) = Hr, provided that r 6= 0, 1. Similarly, when n = 2r + 1,
ψ =

(
r + 1

2

)
θ + π

2
. So h2r+1(P∞) = H⊥

r+1/2.

Remark 5.6. Some of the points in Figure 8 are labeled according to their designation in [8];
other points in the sequence with such a designation include:

H−4 = X(5964), H−3 = X(5962), H4 = X(5961), H5 = X(5963).

To the authors’ knowedge, this exhausts the list of points in the sequence appearing in [8].

Remark 5.7. The points H0 and H1 are missing from the diagram in Theorem 5.5, and these
are exactly the “special” Hofstadter points which are obtained as a limit of other Hofstadter
points as r → 0 and r → 1.
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X(265) H O X(186)

· · · // H−2
r

h
��✷
✷✷
✷✷
✷
✤ ρ

// H−1
r

h
��✷
✷✷
✷✷
✷
✤ ρ

// P∞r

h
��✷
✷✷
✷✷
✷
✤ ρ

// P0r

h
��✷
✷✷
✷✷
✷
✤ ρ

// H2r

h
��✷
✷✷
✷✷
✷
✤ ρ

// H3
✤ · · ·

· · · // H⊥

−1.5

▲
h

FF☞☞☞☞☞☞
✤
ρ
// H⊥

−0.5

▲
h

FF☞☞☞☞☞☞
✤
ρ

// H⊥

0.5

▲
h

FF☞☞☞☞☞☞
✤
ρ

// H⊥

1.5

▲
h

FF☞☞☞☞☞☞
✤
ρ

// H⊥

2.5

▲
h

FF☞☞☞☞☞☞
✤ · · ·

X(80) I X(36)

Figure 8: The maps h and ρ acting on Hofstadter points.
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