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Abstract. This paper proposes a simple folding algorithm for the construction
of van der Laan’s plastic number using origami. Furthermore, it is shown how
the algorithm can be slightly modified to produce Rosenbusch’s “cubi ratio”, a
number which can be defined analogously to the plastic number.
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1. Introduction

In search for a suitable and original design tool, H. van der Laan1 invented a spatial
generalization of the golden rectangle, i.e., a rectangle that can be decomposed into a similar
rectangle and a square. It can be interpreted as one possible solution to the following problem.

Problem 1. Find a cuboid C which can be decomposed into a similar cuboid C ′ and a square
cuboid.

Van der Laan’s version of C is shown in Figure 1, left (the cuboid C ′ is shadowed out).
The following equations hold for its side lengths a, b and c :

a

b
=
b

c
= ψ, (1)

where ψ = 1.324717 . . . , called the plastic number (see [6] and [7]), is the unique real solution
to the cubic equation

x3 = 1 + x. (2)

From (1) and (2) follows

a− c
c

=
a

c
− 1 =

a

b
· b
c
− 1 = ψ2 − 1 = ψ−1,

which proves the similarity of C and C ′.

1Dom Hans van der Laan (1904–1991), a Dutch architect.
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Figure 1: Van der Laan’s generalization of the golden rectangle

According to [2], the side lengths of the cuboid C can be dynamically constructed from
a square ABCD with side length a by drawing a Thales circle t above AB and two parallel
lines l1 and l2 passing through B and D, respectively, such that l2 intersects BC at a point
which coincides with the projection F of the intersection point G of l1 and t on the edge BC
(see Figure 1, right). Under these conditions we have |FG| = b and |CF | = c.

Point G and its projections E, F and H define the ψ-decomposition of the square ABCD
into three similar rectangles AHGE, HBFG and EFCD.

A folding algorithm for the construction of a line segment of length ψ using origami is
provided in [8]. The goal of this paper is to propose a simple folding algorithm, implied in [2],
for the construction of the point G, from which the ψ-decomposition and the ψ-ratio itself can
be easily obtained. In the rest of this text, G will be called the center of the ψ-decomposition.

2. Axioms of paper folding

This section covers some preliminaries necessary for understanding the folding process which
will be described in the next section. Folds required by that process are obtained using
Huzita’s2 axioms (see [4]). There are six Huzita axioms in total3, but in this paper only
three axioms, as stated below, are needed.

Axiom 1 (Huzita’s third axiom). Given two straight lines l1 and l2, there is a fold that places
l1 onto l2.

Axiom 2 (Huzita’s fourth axiom). Given a point P and a straight line l, there is a fold
perpendicular to l that passes through P .

Axiom 3 (Huzita’s sixth axiom). Given two points P1, P2 and two straight lines l1, l2, there
is a fold that simultaneously places P1 onto l1 and P2 onto l2.

The most important is Axiom 3, which is also the most complicated one. It was origi-
nally discovered by Margherita P. Beloch4 in 1936, who used it as a tool for solving cubic
equations. For an outline of her work related to paper folding see [3].

2Humiaki Huzita (1924–2005), a Japanese-Italian mathematician and origami artist.
3Actually, the complete set of origami folding axioms contains, beside Huzita’s, one more axiom, discovered

independently by Jacques Justin and Koshiro Hatori (see [1]).
4Margherita Piazzolla Beloch (1879–1986), an Italian mathematician.
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2.1. Beloch fold

An interesting geometric interpretation of Axiom 3, found by Beloch, is based on the fol-
lowing Proposition.

Proposition 1. Given a point P and a straight line l, a fold that places P onto l is necessary
a tangent line to the parabola determined by the focus P and the directrix l.

Proof. Without loss of generality it can be assumed that P = (0, d) for some d > 0 and
l = {(x, y) | y = 0}. Every other possible placement of these objects is therefore achievable
by a single rotation and/or translation.

An arbitrary point (x, y) of the implied parabola, determined by the pair (P, l) of its
focus and directrix, respectively, is by definition equidistant from these objects. Therefore,
the implicit equation of that parabola is

|y| =
√
x2 + (y − d)2.

Squaring both sides of the above equation and simplifying rational expression yields its explicit
form

f(x) = y =
x2 + d2

2 d
. (3)

A fold that places P onto l is essentially an axis of symmetry ls that reflects point P onto
some point Q = (x0, 0) ∈ l. That line is the perpendicular bisector of the line segment PQ,

therefore passes through its midpoint
(
x0

2
,
d

2

)
(see Figure 2). The slopes of the lines PQ and

ls are negative reciprocals of each other. Since the slope of PQ is equal to − d

x0
, the slope of

ls equals
x0

d
. Hence ls is determined by the following equation:

g(x) =
x0
d

(
x− x0

2

)
+
d

2
. (4)

By subtracting the equations (3) and (4) one easily obtains

f(x)− g(x) =
(x− x0)2

2 d
,

which means that f(x) = g(x) if and only if x = x0. Since g is bijective, there exists exactly
one intersection T = (x0, y0) of the curves represented by the equations (3) and (4) (see
Figure 2).

Differentiating equation (3) yields

f ′(x) =
x

d
,

which implies that the slope of ls is equal to f ′(x0). Therefore, ls is the tangent line to the
given parabola at point T , what completes the proof.

Corollary 1 (Beloch fold). Given two points P1, P2 and two lines l1, l2, a fold that places
P1 onto l1 and P2 onto l2 is a simultaneous tangent to two parabolas determined by the focus-
directrix pairs (P1, l1) and (P2, l2).



36 L. Marohnić: Plastic Number and Origami

b

b

b

b

T
P

Q
ls

l

Figure 2: Beloch fold

3. A folding algorithm producing the center of a ψ-decomposition

A square sheet of paper (i.e., origami paper) contains a point being the center of a ψ-
decomposition. One possible folding algorithm for constructing that point, divided into three
steps each one utilizing one of Huzita’s axioms, is shown below.

Step 1. Axiom 1 implies a fold that places the left edge of the paper onto the right edge. The
resulting crease divides the piece of paper into two rectangular halves. Folding the longer
sides of each of these rectangles on top of each other gains two more creases parallel to the
first one. Finally, there is a fold that places the lower edge of the paper onto the upper edge,
producing a crease perpendicular to the previous three.
Let l0 denote the leftmost vertical crease, P1 the intersection of l0 with the upper edge of
the paper and P2 the vertex of the square which is nearest to P1. Furthermore, let Q and R
denote the upper and lower right vertices, respectively (see Figure 3a).

Step 2. Let l1 and l2 denote the rightmost vertical and the horizontal crease, respectively (see
Figure 3b). Axiom 3 implies a fold that simultaneously places point P1 onto the crease l1 and
point P2 onto the crease l2 (see Figure 3b).

Step 3. Let l3 be the crease obtained in the previous step. Axiom 2 implies a fold that passes
through R and is perpendicular to l3, yielding the crease l4. Similarly, there is a fold that
passes through Q and is perpendicular to l4, producing the final crease l5 (see Figure 3c).
That completes the algorithm.

Proposition 2. The intersection of the creases l4 and l5, as shown in Figure 3c, is the center
of a ψ-decomposition of the corresponding square.

Proof. Corollary 1 implies that the line l3 is a common tangent to the parabolas defined by the
focus-directrix pairs (P1, l1) and (P2, l2). In order to obtain equations defining these curves,
the creases and points obtained in the above algorithm need to be interpreted in the context
of a coordinate system. Let such system be defined with the abscissa P2Q, the ordinate l1
and the unit length |P1P2| = 1. Under these conditions, P1 = (−2, 0), P2 = (−3, 0) and x = 0
resp. y = −2 are equations of the lines l1 resp. l2. Therefore, the equation of the parabola
defined by the pair (P1, l1) is

|x| =
√

(x+ 2)2 + y2; squaring yields x = f(y) = −4 + y2

4
. (5)
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Figure 3: Construction of the center of ψ-decomposition

Analogously, the equation of the parabola defined by (P2, l2) is

|y + 2| =
√

(x+ 3)2 + y2; squaring yields y = g(x) =
x2 + 6x+ 5

4
. (6)

Let p denote the slope of the line l3. The latter has exactly one point Qk = (xk, yk) in common
with the parabola defined by (Pk, lk) for k = 1, 2. The components of these points can be
expressed in terms of p only, as given below.

Since l3 is a tangent to f at point Q1, the equation
df

dy
(y1) = p−1 must hold. By differen-

tiating f with respect to y, one obtains

y1 = −2

p
. (7)

Since Q1 lies on the graph of function f , from (5) and (7) follows

x1 = f(y1) = −1− 1

p2
. (8)

Analogously to the above, the equation
dg

dx
(x2) = p must hold, which yields

x2 = 2 p− 3. (9)

Since Q2 lies on the graph of the function g, from (6) and (9) follows

y2 = g(x2) = p2 − 1. (10)

The line l3 contains the points (x1, y1) and (x2, y2), which means that there exists a real number
q such that yk = p xk + q for k = 1, 2. Subtracting these two equations and substituting (7),
(8), (9), and (10) yields

0 = p (x2 − x1)− (y2 − y1) =
p3 − 2 p2 + p− 1

p
. (11)
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Since it would be impossible to place point P1 on the line l1 in the case p = 0, it follows
p 6= 0. Therefore, in order to solve equation (11), it is enough to obtain the real roots of the
following cubic function:

h(x) = p3 − 2 p2 + p− 1. (12)

The discriminant of the polynomial h is negative, as one can easily check by direct computa-
tion. Therefore, h has exactly one real root. Now, using (2), one obtains

h
(
ψ2
)

= ψ6 − 2ψ4 + ψ2 − 1 = (ψ6 − ψ4)− (ψ4 − ψ2)− 1 = ψ3 − ψ − 1 = 0,

hence p = ψ2 is the only real solution of the equation (11).
The creases l3 and l5 are parallel, therefore they have the same slope. That means |QR|

and |RS| (see Figure 3c) are in the ratio ψ2, i.e., the triangle QRS is similar to the triangle
FCD in Figure 1. Hence the intersection G is the center of a ψ-decomposition, being the
common point of l4, l5 and the Thales circle over QR.

4. Extending the algorithm to the Rosenbusch number

Another solution to the Problem 1, found by L. Rosenbusch5 independently of Hans van
der Laan (see [5]), is shown in Figure 4, left. For the side lengths of the Rosenbusch cuboid
a, b and c the following equations hold:

b

a
=
c

b
= ρ, (13)

where ρ = 0.682327 . . . , called the cubi ratio, is the unique real solution to the cubic equation
quite similar to (2):

x3 = 1− x. (14)

As found by Rosenbusch himself (see [8]), for a given square of side length a the lengths
of two shorter sides b and c of a Rosenbusch’s cuboid can be dynamically constructed
analogously to the center of the ψ-decomposition shown in Figure 1, the only difference being
that the line l1 resp. l2 now passes through the other lower resp. other upper vertex of the
square (see Figure 4, right). The point G, thus obtained, determines another decomposition
of a square into three rectangles EBCF , AEGH and HGFD, which may be called a ρ-
decomposition. The sides of the first two rectangles are in the ratio ρ, while in the third

rectangle the ratio is 1 + ρ. To prove the latter statement, let d = |AE|. Now
d

c
= ρ, so from

(13) follows

ρ3 =
b

a
· c
b
· d
c

=
d

a
. (15)

The ratio r of the last rectangle in the ρ-decomposition is equal to

r =
a− c
d

=
a

d
− c

d
=

1

ρ3
− 1

ρ
=

1− ρ2

ρ3
.

But (14) implies 1 − ρ2 = (1 − ρ) (1 + ρ) = ρ3 (1 + ρ), hence r = 1 + ρ. The point G will
further be called the center of the ρ-decomposition.

For a given square, the center of a ρ-decomposition can be obtained using the algorithm
defined in the previous section, with one small modification of Step 2: l1 should denote the
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Figure 4: Rosenbusch’s generalization of the golden rectangle
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Figure 5: Construction of the center of a ρ-decomposition

horizontal, and l2 the middle vertical crease. The rest of the algorithm should remain the
same. The execution of the modified algorithm is shown in Figure 5.

Proposition 3. The intersection of the creases l4 and l5, as shown in Figure 5c, is the center
of a ρ-decomposition of the corresponding square.

Proof. The proof is completely analogous to the proof of Proposition 2. In the coordinate
system with the abscissa P2Q, the ordinate l2 and the unit length |P1P2| = 1 follows P1 =
(−1, 0) and P2 = (−2, 0), while y = −2 and x = 0 are equations of the lines l1 and l2,
respectively. The parabolas f and g, implied by the focus-directrix pairs (P1, l1) and (P2, l2),
are defined with the equations

f(x) =
x2 + 2x− 3

4
and g(y) = −y

2

4
− 1.

If p denotes the slope of the line l3, the coordinates of its common point with the parabola f
are

x1 = 2 p− 1 and y1 = p2 − 1,

while the coordinates of its common point with the parabola g are

x2 = −1− 1

p2
and y2 = −2

p
.

5Lambert Rosenbusch (1940–2009), a German architect.
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Substituting these coordinates into the equation p (x2 − x1)− (y2 − y1) = 0 yields

p3 + p− 1

p
= 0.

Since p 6= 0, it follows p3 + p − 1 = 0; so p satisfies (14), which implies p = ρ. Therefore,
|QS| : |QR| = ρ (see Figure 5c), hence the triangle SQR is similar to the triangle EBC
in Figure 4. The statement now follows by the same argumentation as used in the proof of
Proposition 2.

5. Conclusion

Problem 1 has only two solutions, found by van der Laan and Rosenbusch. These solu-
tions are based on two special constants ψ and ρ, which are interpreted as three-dimensional
generalizations of the golden ratio ϕ = 1.618033 . . . , equal to the ratio of the golden rectangle.
Although origami algorithms yielding line segments of these lengths are already provided in
[8], they represent two quite different sets of folding operations. Focusing on the construction
of the centers of ψ- and ρ-decompositions, from which the ratios ψ and ρ are easy obtained,
results in two very similar folding algorithms.
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