Symbiotic Conics and Quartets of Four-Foci Orthogonal Circles #### Maurizio Ternullo INAF - Osservatorio Astrofisico di Catania v. S. Sofia 78, I-95123 Catania, Italia email: mternullo@oact.inaf.it Abstract. A quartet of orthogonal circles — one of them being imaginary — associated with a general point P taken on a given ellipse H is described. The mutual intersections of these circles, their intersections with Barlotti's circles $\left[x^2+y^2=(a\pm b)^2\right]$ and further, newly introduced points are peculiar under several aspects. A major result is the finding (Theorem 2.10) of a complete, cyclic quadrangle having two diagonal points in fixed positions on the ellipse minor axis; these diagonal points are concyclic with the ellipse foci, in spite of the dependence of the whole figure from the point P location. Two conics — the symbiotic ellipse H_{Σ} and hyperbola Y_{Σ} — are introduced, in association with P; such conics are characterized by the fact that they - (i) have P as center and the tangent and normal to H at P as axes of symmetry, - (ii) pass through the ellipse H center, and - (iii) admit the axes of symmetry of the ellipse H as tangent and normal. Several relationships among these conics are described. The study of the symbiotic ellipse H_{Σ} reveals new properties of the ellipse H. Key Words: Ellipse, Monge's circle, Barlotti's circles, concyclic points, collinear points, complete quadrangle MSC 2010: 51M04, 51N20 ### 1. Introduction New developments of the author's research project [6, 7, 8] on the geometry of the ellipse are presented. In an orthogonal cartesian reference frame (Figure 1), let H be the ellipse $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad a > b; \tag{1.1}$$ its general point — that is a point different from the apices — will be denoted throughout this paper by $P(a\cos\varepsilon;\ b\sin\varepsilon)$. For the reader's convenience, some geometrical objects frequently referred to are listed here: • the foci of the ellipse H: $$F_1(-c,0); \quad F_2(c,0)$$ (1.2) where, as usual, I have set $c = \sqrt{a^2 - b^2}$; • the eccentric line e (the diameter with slope $m_e = \tan \varepsilon$): $$y = x \tan \varepsilon; \tag{1.3}$$ • the symm-eccentric line e' (the diameter with slope $m_{e'} = -\tan \varepsilon$): $$y = -x \tan \varepsilon; \tag{1.4}$$ • the tangent t to the ellipse at P: $$y = -x \frac{b}{a} \cot \varepsilon + \frac{b}{\sin \varepsilon}; \tag{1.5}$$ • the intercepts of the tangent (1.5): $$T_x\left(\frac{a}{\cos\varepsilon};\ 0\right), \quad T_y\left(0;\ \frac{b}{\sin\varepsilon}\right);$$ (1.6) • the normal n to the ellipse at P: $$y = x \frac{a}{h} \tan \varepsilon - \frac{c^2}{h} \sin \varepsilon; \qquad (1.7)$$ • the intercepts of the normal (1.7): $$N_x \left(\frac{c^2}{a}\cos\varepsilon; 0\right), N_y \left(0; -\frac{c^2}{b}\sin\varepsilon\right);$$ (1.8) • the points E and I where the normal (1.7) meets the eccentric (1.3) and the symmeccentric (1.4) line of P, respectively: $$E((a+b)\cos\varepsilon; (a+b)\sin\varepsilon), \quad I((a-b)\cos\varepsilon; -(a-b)\sin\varepsilon);$$ (1.9) • the locus of point E (1.9); hereinafter, Barlotti's external circle: $$B_e: x^2 + y^2 = (a+b)^2;$$ (1.10) • the locus of point I (1.9); hereinafter, Barlotti's internal circle: $$B_i: \quad x^2 + y^2 = (a - b)^2.$$ (1.11) The first mention of the circle (1.10) known to the author can be found in an exercise of Salmon ([4], Chapter XIII, Article 231, p. 221). Afterwards, both circles B_e (1.10) and B_i (1.11) have been studied by A. Barlotti [1], R. Fritsch [3], and Ternullo [6]. # 2. A triplet of orthogonal circles **Definition 1.** The circle Φ_1 has its center at the intersection T_y (1.6) of the tangent (1.5) to H (1.1) at P with the minor axis and passes through the foci. It satisfies the equation $$x^{2} + \left(y - \frac{b}{\sin \varepsilon}\right)^{2} = c^{2} + \frac{b^{2}}{\sin^{2} \varepsilon}.$$ (2.1) **Definition 2.** The circle Φ_2 has its center at the intersection N_y (1.8) of the normal (1.7) to H (1.1) at P with the minor axis and passes through the foci. It satisfies $$x^{2} + \left(y + \frac{c^{2}}{b}\sin\varepsilon\right)^{2} = c^{2} + \left(\frac{c^{2}}{b}\sin\varepsilon\right)^{2}.$$ (2.2) **Definition 3.** The circle Φ_3 has its center at the intersection T_x (1.6) of the tangent (1.5) to H (1.1) at P with the major axis and passes through the points E and I (1.9) [where the normal (1.7) to H at P meets the eccentric (1.3) and the symm-eccentric (1.4) line of P, respectively]. Φ_3 satisfies $$\left(x - \frac{a}{\cos \varepsilon}\right)^2 + y^2 = \frac{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}{\cos^2 \varepsilon}.$$ (2.3) Let Φ_i and Φ_j be two circles out of the triplet Φ_1 (2.1), Φ_2 (2.2) and Φ_3 (2.3). The corresponding radii r_i and r_j and the distance d_{ij} between the centers fulfill the relationship $r_i^2 + r_j^2 = d_{ij}^2$; accordingly, the following holds: **Theorem 2.1.** The circles Φ_1 (2.1), Φ_2 (2.2), and Φ_3 (2.3) are mutually orthogonal. Figure 1: Illustrating Definitions 2.1, 2.2, and 2.3, Theorems 2.1 through 2.3, and Corollary 2.1: Taken a P on the ellipse H, its eccentric and symm-eccentric line $[e\ (1.3)\ and\ e'\ (1.4),\ respectively]$, the tangent t and the normal n to H at P as well as the circles $\Phi_1\ (2.1)\ [red],\ \Phi_2\ (2.2)\ [blue]$ and $\Phi_3\ (2.3)\ [magenta]$ are shown. The radical line of Φ_1 and Φ_2 is the x-axis, since both circles pass by definition through the foci. As regards the pairs (Φ_1, Φ_3) and (Φ_2, Φ_3) , the following holds: **Lemma 2.1.** The radical line of the circles Φ_1 (2.1) and Φ_3 (2.3) is the normal (1.7) to H at P. The circles Φ_1 and Φ_3 meet at the points E and I (1.9). Lemma 2.1 and Definition 1 imply: **Theorem 2.2.** The points E and I (1.9) are concyclic with the ellipse foci F_1 and F_2 (1.2) on the circle Φ_1 (2.1). Further special points concyclic with E and I and the ellipse foci on the circle Φ_1 will be described in Theorem 3.6. **Lemma 2.2.** The radical line of the circles Φ_2 and Φ_3 is the line r_3 with the equation $$y = -\frac{ab}{c^2 \sin \varepsilon \cos \varepsilon} x + \frac{b}{\sin \varepsilon}. \tag{2.4}$$ The circles Φ_2 and Φ_3 share the points $$\Psi_{1} \left(\frac{(a-c\sin\varepsilon)c^{2}\cos\varepsilon}{a^{2}\cos^{2}\varepsilon+b^{2}\sin^{2}\varepsilon}; \frac{(a-c\sin\varepsilon)bc}{a^{2}\cos^{2}\varepsilon+b^{2}\sin^{2}\varepsilon} \right) and$$ $$\Psi_{2} \left(\frac{(a+c\sin\varepsilon)c^{2}\cos\varepsilon}{a^{2}\cos^{2}\varepsilon+b^{2}\sin^{2}\varepsilon}; \frac{-(a+c\sin\varepsilon)bc}{a^{2}\cos^{2}\varepsilon+b^{2}\sin^{2}\varepsilon} \right).$$ (2.5) Since the radical lines of the couples (Φ_1, Φ_2) and (Φ_1, Φ_3) (the x-axis and the normal n to H at P, respectively) meet at N_x (1.8), by virtue of a theorem of Monge [4, Chapter VIII, Article 108], the radical line r_3 (2.4) of the couple (Φ_2, Φ_3) passes through the same point N_x (the radical center of the circles Φ_1 , Φ_2 , and Φ_3), too. Moreover, since the circle Φ_1 is orthogonal to both Φ_2 and Φ_3 , the center of Φ_1 , i.e., the point T_y (1.6), belongs to the radical line r_3 of the circles Φ_2 and Φ_3 . Therefore, we may state the following: **Theorem 2.3.** The y-intercept T_y (1.6) of the tangent to H at P and the x-intercept N_x (1.8) of the normal to H at P belong to the radical line r_3 (2.4) of the circles Φ_2 (2.2) and Φ_3 (2.3). The segment $\Psi_1\Psi_2$ is a chord belonging to both circles Φ_2 and Φ_3 ; its normal bisector $$y = \frac{c^2 \sin \varepsilon \cos \varepsilon}{ab} x - \frac{c^2}{b} \sin \varepsilon \tag{2.6}$$ passes, therefore, through the centers of Φ_2 and Φ_3 , namely, through N_y and T_x , respectively. Accordingly, Theorem 2.3 implies the following: Corollary 2.1. The line N_yT_x (2.6) meets the line r_3 (2.4) orthogonally at the midpoint of the common chord $\Psi_1\Psi_2$ of the circles Φ_2 and Φ_3 . By invoking the definition of the polarity with respect to a conic, the following relationships can easily be verified: Lemma 2.3. The ellipse major axis is (i) the polar line of the y-intercept N_y (1.8) of the normal (1.7) with respect to the circle Φ_1 (2.1), and (ii) the polar line of the y-intercept T_y (1.6) of the tangent (1.5) with respect to the circle Φ_2 (2.2). ### **Lemma 2.4.** The normal (1.7) to H at P is - (i) the polar line of the x-intercept T_x (1.6) of the tangent (1.5) with respect to the circle Φ_1 (2.1), and - (ii) the polar line of the y-intercept T_y (1.6) of the tangent (1.5) with respect to the circle Φ_3 (2.3). ## Lemma 2.5. The line r_3 (2.4) is - (i) the polar line of the x-intercept T_x (1.6) of the tangent (1.5) with respect to the circle Φ_2 (2.2), and - (ii) the polar line of the y-intercept N_y (1.8) of the normal (1.7) with respect to the circle Φ_3 (2.3). Lemmas 1.2 and 2.2 and Theorem 2.3 imply **Theorem 2.4.** The following lines pass through the y-intercept T_y (1.6) of the tangent (1.5) to the ellipse H at P: - (i) the tangents to the circle Φ_2 (2.2) at the foci; - (ii) the tangents to the circle Φ_3 (2.3) at E and I (1.9); - (iii) the radical line r_3 (2.4) of the circles Φ_2 and Φ_3 . Lemmas 1.1 and 3.2 imply **Theorem 2.5.** The following lines meet at the y-intercept N_y (1.8) of the normal (1.7) to the ellipse H at P: - (i) the tangents to the circle Φ_1 (2.1) at the foci; - (ii) the tangents to the circle Φ_3 (2.3) at Ψ_1 and Ψ_2 (2.5). From Lemmas 2.1 and 3.1 follows **Theorem 2.6.** The following lines meet at the x-intercept T_x (1.6) of the tangent (1.5) to the ellipse H at P: - (i) the tangents to the circle Φ_1 (2.1) at E and I (1.9); - (ii) the tangents to the circle Φ_2 (2.2) at Ψ_1 and Ψ_2 (2.5). The distances of the foci F_1 and F_2 (1.2) from the center T_x (1.6) of the circle Φ_3 (2.3) are $F_1T_x = a/\cos\varepsilon + c$ and $F_2T_x = a/\cos\varepsilon - c$, respectively; multiplying them yields $(a\sin^2\varepsilon + b\cos^2\varepsilon)/\cos^2\varepsilon$. Since this product equals the circle's Φ_3 squared radius, we conclude that the foci are conjugate with respect to (hereinafter 'w.r.t.', in brief) the circle Φ_3 (2.3). For symmetry reasons, the foci are also conjugate w.r.t. the reflection of the circle Φ_3 in the y-axis: $$\left(x + \frac{a}{\cos \varepsilon}\right)^2 + y^2 = \frac{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}{\cos^2 \varepsilon}.$$ (2.7) Accordingly, we can state: **Theorem 2.7.** The foci are conjugate w.r.t. the circle Φ_3 (2.3) and its reflection in the y-axis (2.7). Monge's orthoptic circle (hereinafter denoted by M) is the following: $$x^2 + y^2 = a^2 + b^2. (2.8)$$ Taking pairs of the equations (2.1), (2.3) and (2.8), one easily finds that the radical lines of the couples (M, Φ_1) and (M, Φ_3) are $y = b \sin \varepsilon$ and $x = a \cos \varepsilon$, respectively. Since these lines meet at the ellipse point P, we may state: **Theorem 2.8.** The radical center of the circles Φ_1 (2.1), Φ_3 (2.3) and M (2.8) coincides with the ellipse point $P(a\cos\varepsilon; b\sin\varepsilon)$. Figure 2: Illustrating Theorem 2.9: Barlotti's internal circle B_i [blue] meets the circle Φ_1 [red] at the points I and S_{Iy} and the circle Φ_3 [magenta] at I and S_{Ix} . The points S_{Iy} and S_{Ix} lie on the eccentric line OE. Analogously, Barlotti's external circle B_e [green] meets the circle Φ_1 at E and S_{Ey} and the circle Φ_3 at E and S_{Ex} . The points S_{Ey} and S_{Ex} lie on the symm-eccentric line OI. Since the circle B_i (1.11) is (see Figure 2) the locus of point I [6, Theorem 2], and, on the other hand, both circles Φ_1 (2.1) and Φ_3 (2.3) pass through I (by virtue of Theorem 2.2 and by Definition 3, respectively), the circle B_i shares further points — let them be S_{Iy} and S_{Ix} — with Φ_1 and Φ_3 , respectively. Analogously, as B_e (1.10) is the locus of E [6, Theorem 1], and both Φ_1 and Φ_3 pass through E, the circle B_e shares further points — let them be S_{Ey} and S_{Ex} — with Φ_1 and Φ_3 , respectively. The following holds: **Theorem 2.9.** [Figure 2] The points S_{Iy} and S_{Ix} are symmetric to I w.r.t. the y- and the x-axis, respectively, and they are diametrically opposite on the circle B_i (1.11). They belong to the eccentric line (1.3) of P. The points S_{Ey} and S_{Ex} are symmetric to E w.r.t. the y- and the x-axis, respectively, and they are diametrically opposite on the circle B_e (1.10). They belong to the symm-eccentric line (1.4) of P. Indeed, the symmetry properties (of I and S_{Iy} w.r.t. the y-axis and of I and S_{Ix} w.r.t. the x-axis) are obvious consequences of the symmetry of the circles B_i and Φ_1 w.r.t. the y-axis and of B_i and Φ_3 w.r.t. the x-axis. These symmetries imply, in turn, that S_{Iy} and S_{Ix} are symmetric w.r.t. O. Accordingly, S_{Iy} and S_{Ix} are diametrically opposite on the circle B_i and belong, moreover, to a unique diameter of the ellipse H. Since the line OI is the symmetric line (1.4) and the line $S_{Iy}OS_{Ix}$ is symmetric to OI w.r.t. the x-axis, we conclude that the line $S_{Iy}OS_{Ix}$ coincides with the eccentric line (1.3). Similarly, the second proposition of Theorem 2.9 can be demonstrated. The newly introduced four points are $$S_{Iy}\left(-(a-b)\cos\varepsilon; -(a-b)\sin\varepsilon\right), \quad S_{Ix}\left((a-b)\cos\varepsilon; (a-b)\sin\varepsilon\right);$$ (2.9) $$S_{Ey}(-(a+b)\cos\varepsilon; (a+b)\sin\varepsilon), \quad S_{Ex}((a+b)\cos\varepsilon; -(a+b)\sin\varepsilon).$$ (2.10) The points S_{Ix} (2.9), S_{Ex} (2.10), and Ψ_1 and Ψ_2 (2.5) belong to the circle Φ_3 . Accordingly, joining them in pairs, a *complete* cyclic quadrangle results (Figure 3). An unexpected property of this complete quadrangle is that two of its diagonal points are fixed points, in spite of the dependence of the figure on the point's P arbitrary location on the ellipse H: Figure 3: Illustrating Theorem 2.10: The points S_{Ix} (2.9), S_{Ex} (2.10), and Ψ_1 and Ψ_2 (2.5), belonging to the circle Φ_3 [magenta], define a complete cyclic quadrangle [red] (the lines $S_{Ix}S_{Ex}$ and $\Psi_1\Psi_2$ are not drawn), whose opposite sides $(S_{Ix}\Psi_1, \Psi_2S_{Ex})$ and $(S_{Ix}\Psi_2, \Psi_1S_{Ex})$ concur in the points F_3 and F_4 , lying on the ellipse minor axis, at the invariant distance c from O, respectively. **Theorem 2.10.** [Figure 3] Let the complete quadrangle $S_{Ix}\Psi_1S_{Ex}\Psi_2$ be constructed. Its diagonal points have the following properties: - the lines $S_{Ex}S_{Ix}$ and $\Psi_1\Psi_2$ meet at the x-intercept N_x of the normal to H at P; - the lines $S_{Ex}\Psi_1$ and $S_{Ix}\Psi_2$ invariably meet at the point $F_4(0, c)$; - the lines $S_{Ix}\Psi_1$ and $S_{Ex}\Psi_2$ invariably meet at the point $F_3(0, -c)$. Concerning the first item, observe that, as the points E and I (1.9) belong by definition to the normal (1.7), the line $S_{Ex}S_{Ix}$ mirrors the normal in the x-axis because the point S_{Ex} and S_{Ix} are the reflections of E and I w.r.t. the x-axis, respectively. Accordingly, the x-intercepts of both lines (normal and $S_{Ex}S_{Ix}$) coincide with N_x . Since the line $\Psi_1\Psi_2$ also passes through N_x (Theorem 2.3), the first item is demonstrated. Concerning the second item, it suffices to construct the following determinants Δ_1 and Δ_2 by means of the coordinates of S_{Ex} , Ψ_1 and $F_4(0, c)$ for the former and S_{Ix} , Ψ_2 and $F_4(0, c)$ for the latter and verify that both determinants vanish identically: $$\Delta_1: \begin{vmatrix} (a+b)\cos\varepsilon & -(a+b)\sin\varepsilon & 1\\ \frac{(a-c\sin\varepsilon)c^2\cos\varepsilon}{a^2\cos^2\varepsilon + b^2\sin^2\varepsilon} & \frac{(a-c\sin\varepsilon)bc}{a^2\cos^2\varepsilon + b^2\sin^2\varepsilon} & 1\\ 0 & c & 1 \end{vmatrix}, \ \Delta_2: \begin{vmatrix} (a-b)\cos\varepsilon & (a-b)\sin\varepsilon & 1\\ \frac{(a+c\sin\varepsilon)c^2\cos\varepsilon}{a^2\cos^2\varepsilon + b^2\sin^2\varepsilon} & -\frac{(a+c\sin\varepsilon)bc}{a^2\cos^2\varepsilon + b^2\sin^2\varepsilon} & 1\\ 0 & c & 1 \end{vmatrix}.$$ Similarly, the next item is demonstrated. Of course, the quadrangle obtained by replacing $S_{Ix}\Psi_1S_{Ex}\Psi_2$ by its reflection w.r.t. the x-axis has the same properties. The points $F_3(0,-c)$ and $F_4(0,c)$ are concyclic with the foci on the following circle T: $$x^2 + y^2 = a^2 - b^2. (2.11)$$ **Theorem 2.11.** The circle T (2.11) is orthogonal to Φ_3 (2.3). The radical line of the circles T and Φ_3 contains the x-intercept N_x (1.8) of the normal. Indeed, as Φ_1 and Φ_2 are orthogonal to Φ_3 (Theorem 2.1), any circle belonging to the pencil determined by Φ_1 and Φ_2 —like T—is orthogonal to Φ_3 , too. The comparison of (2.11) and (2.3) allows us to verify the second part of the statement. # 3. Symbiotic conics The fact that any point P on the ellipse H (1.1) is associated with a couple of orthogonal lines, namely, the tangent (1.5) and the normal (1.7) to H at P, has inspired to consider the conics for which the axes of symmetry of H on the one hand and the tangent and normal on the other hand exchange their roles. This is better told below. **Definition 4.** [Figure 4] For any point P taken on the ellipse H, the symbiotic conics of H about P - (i) have P as center and the tangent and normal to H at P as axes of symmetry, - (ii) pass through the center O of the ellipse H, and - (iii) have the axes of symmetry of H as normal and tangent at O. The major axis of H may be either normal or tangent to a symbiotic conic at O. Accordingly, two symbiotic conics exist for any P. By means of elementary and well-known methods they are determined as follows: • the conic whose tangent at O is the minor axis of the ellipse H, $$x^{2} \frac{a^{2} - b^{2} \cos^{2} \varepsilon}{a^{2} \cos^{2} \varepsilon} - 2xy \frac{b}{a} \tan \varepsilon - 2x \frac{c^{2}}{a \cos \varepsilon} + y^{2} = 0, \tag{3.1}$$ • the conic whose tangent at O is the major axis of the ellipse H, $$x^{2} \frac{b^{2}}{a^{2}} \tan^{2} \varepsilon - 2xy \frac{b}{a} \tan \varepsilon + y^{2} \left(1 - \frac{c^{2}}{a^{2} \cos^{2} \varepsilon} \right) + 2y \frac{c^{2}}{a^{2} \cos^{2} \varepsilon} b \sin \varepsilon = 0.$$ (3.2) Figure 4: Illustrating the Definition of symbiotic conics and some related Theorems: The ellipse H_{Σ} [red] and the hyperbola Y_{Σ} [blue] are the symbiotic conics of the ellipse H about its point P. Both H_{Σ} and Y_{Σ} share the tangent and normal to H at P as their axes of symmetry. They pass through the center O of H, admit here the axes of H as tangent and normal, and they are confocal (their foci E and I are the intersection of the normal n to H at P with the eccentric line e of P and the symm-eccentric e', respectively). The eccentric and symm-eccentric lines of O, regarded as a point of H_{Σ} , are the focal radii PF_1 and PF_2 of the H point P. Barlotti's internal circle $B_{i_{\Sigma}}$ [brown] associated with H_{Σ} passes through the homolateral focus F_2 of H, where it meets both circles Φ_1 [orange] and Φ_2 [indaco]. $B_{i_{\Sigma}}$ further meets Φ_1 and Φ_2 at S_{ht} and S_{hn} , respectively. These points are symmetric to the homolateral focus F_2 w.r.t. the tangent and normal to H at P, respectively, and belong to the focal radius F_1P . Barlotti's external circle $B_{e_{\Sigma}}$ [green] passes through the *contralateral* focus F_1 , where it meets both circles Φ_1 and Φ_2 . $B_{e_{\Sigma}}$ further meets Φ_1 and Φ_2 at S_{ct} and S_{cn} , respectively. These points are not displayed in the figure. S_{ct} and S_{cn} are symmetric to the contralateral focus F_1 w.r.t. the tangent and normal to H at P, respectively, and belong to the focal radius F_2P . The hyperbola Y_{Σ} has the focal radii PF_1 and PF_2 as asymptotes. The symbiotic conics of the ellipse H_{Σ} about O are the ellipse H and the adjoint hyperbola Y^+ [magenta]. The asymptotes of Y^+ coincide with the eccentric and symm-eccentric line of P. The conic (3.1) is an ellipse and (3.2) a hyperbola — hereinafter denoted by H_{Σ} and Y_{Σ} , respectively. The semiaxes of the symbiotic ellipse H_{Σ} (3.1) are $$a_{H_{\Sigma}} = a \text{ and } b_{H_{\Sigma}} = c \cos \varepsilon.$$ (3.3) The semiaxes of the symbiotic hyperbola Y_{Σ} (3.2) are $$a_{Y_{\Sigma}} = b \text{ and } b_{Y_{\Sigma}} = c \sin \varepsilon.$$ (3.4) From (3.3) and (3.4) follows that the foci of both symbiotic conics H_{Σ} (3.1) and Y_{Σ} (3.2) lie at the same distance c_{Σ} from their common center P, $$c_{\Sigma} = \sqrt{a_{H_{\Sigma}}^2 - b_{H_{\Sigma}}^2} = \sqrt{a_{Y_{\Sigma}}^2 + b_{Y_{\Sigma}}^2} = \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}.$$ (3.5) Therefore, the symbiotic conics H_{Σ} (3.1) and Y_{Σ} (3.2) are confocal and, accordingly, mutually orthogonal, too. On the other hand, since the points E and I (1.9) lie on the major axis n (1.7) of H_{Σ} , symmetric w.r.t. P, at the common distance c_{Σ} (3.5) from P, we may state: **Lemma 3.1.** The points E and I (1.9) coincide with the foci of the symbiotic conics H_{Σ} (3.1) and Y_{Σ} (3.2) of the ellipse H about P. The symbiotic ellipse H_{Σ} (3.1) admits, in turn, symbiotic conics about any of its general points. Definition 4 leads us to the identify the symbiotic ellipse of H_{Σ} about O with H (1.1). This conclusion implies that, if an object Ω (a point, line, circle etc.) is defined by a statement associated to the ellipse H and its point P and, on the other hand, an object Ω' plays the same role w.r.t. H_{Σ} and its point O—namely, if Ω' is homologous to Ω —then Ω is homologous to Ω' . The correspondence associating a geometrical object with its homologous one is involutory. On this basis, we may identify the points homologous to E and are the folion of the ellipse E and are the folion of E and E and E and E are the folion of E and E and E are the folion of E and E and E are the folion of a - (i) E and I have been introduced as the points where the normal to H at P meets the eccentric and the symm-eccentric lines of P, and that - (ii) the x-axis is the normal to H_{Σ} at O, the eccentric and the symm-eccentric lines of O (regarded as a point of H_{Σ}) are to be identified with the lines linking the center P of H_{Σ} with the foci of H. More precisely, the focus of H which lies on the same side as P w.r.t. the minor axis (the homolateral focus F_h) coincides with I_{Σ} and the focal radius of H linking this focus with P coincides with the symm-eccentric line of O. The focus of H which lies on the other side (the contralateral focus F_c) and the associated focal radius of H coincide with E_{Σ} and the eccentric line of O, respectively. As shown in [6, Theorems 1 and 2] by the author, the loci of E and I (1.9) are the external and internal circles B_e (1.10) and B_i (1.11). These circles are concentric with the ellipse H and have radii $a \pm b$. Analogously, Barlotti's external and internal circles for the ellipse H_{Σ} are the following circles (hereinafter, $B_{e_{\Sigma}}$ and $B_{i_{\Sigma}}$, respectively): $$(x - a\cos\varepsilon)^2 + (y - b\sin\varepsilon)^2 = (a + c\cos\varepsilon)^2,$$ (3.6) $$(x - a\cos\varepsilon)^2 + (y - b\sin\varepsilon)^2 = (a - c\cos\varepsilon)^2. \tag{3.7}$$ The circles $B_{e_{\Sigma}}$ (3.6) and $B_{i_{\Sigma}}$ (3.7) are concentric with H_{Σ} ; they have the radii $a_{\Sigma} \pm b_{\Sigma}$ and pass through E_{Σ} and I_{Σ} (namely, through the contralateral and the homolateral focus of H), respectively. The asymptotes of the symbiotic hyperbola Y_{Σ} (3.2) are easily determined as follows: $$y - b\sin\varepsilon = \frac{b\sin\varepsilon}{a\cos\varepsilon \pm c} (x - a\cos\varepsilon). \tag{3.8}$$ They coincide with the focal radii PF_1 and PF_2 of the point P. The lines homologous to the focal radii PF_1 and PF_2 are the focal radii OE and OI of the point O (regarded as a point of H_{Σ}). The latter are, therefore, the asymptotes of the symbiotic hyperbola of H_{Σ} about O (hereinafter, the adjoint hyperbola Y^+). Since the symbiotic conics H_{Σ} and Y_{Σ} of a given ellipse H about P are confocal and orthogonal to each other, we conclude that the adjoint hyperbola Y^+ is confocal with and orthogonal to the ellipse H. It passes through P and admits the eccentric and symm-eccentric lines of P as its asymptotes, $$\frac{x^2}{c^2\cos^2\varepsilon} - \frac{y^2}{c^2\sin^2\varepsilon} = 1. \tag{3.9}$$ The following statement summarizes the previous findings: ## **Theorem 3.1.** For any point P taken on the ellipse H (1.1), the following holds: - (i) There exist two symbiotic conics: the ellipse H_{Σ} (3.1) and the hyperbola Y_{Σ} (3.2)¹. H_{Σ} and Y_{Σ} have as tangents at O the minor and major axis of the ellipse H, respectively, and share the foci, which are the points E and I (1.9)); - Barlotti's circles B_e (1.10)) and B_i (1.11)) associated with the ellipse H pass through the foci E and I of the ellipse H_{Σ}^2 . The focal radii PF_1 and PF_2 of the point P are also - the eccentric and symm-eccentric line of O (regarded as a point of the ellipse H_{Σ}) - and the asymptotes of the symbiotic hyperbola Y_{Σ} (3.2). - (ii) W.r.t. the ellipse H_{Σ} (3.1) and its point O, there exist two symbiotic conics: the ellipse H (1.1) and the adjoint hyperbola Y^+ (3.9)³. H and Y^+ admit as tangent at P the minor and major axis of the ellipse H_{Σ} , respectively, and share the foci F_1 and F_2 . Barlotti's circles $B_{e_{\Sigma}}$ (3.6) and $B_{i_{\Sigma}}$ (3.7) associated with the ellipse H_{Σ} pass through the foci of the ellipse H. The focal radii OE and OI of the point O are - the eccentric and symm-eccentric line of P (regarded as a point of the ellipse H) - and the asymptotes of the adjoint hyperbola Y^+ (3.9). ## 3.1. The effectiveness of the symbiotic conics approach From any statement related to the ellipse H, a twin statement related to the ellipse H_{Σ} may be deduced, provided that any object entering the original statement is replaced by its homologous. In some cases, the new statement — far from being a trivial duplicate of the old one — may help us to see the geometrical facts under a new perspective, and even, to find new properties of H. This approach, which could be defined as *studying an ellipse by means of its symbiotic*, requires that further couples of homologous objects are identified. - (i) The point T_x , where the tangent t to H at P meets the major axis x of H, coincides with the point, where the normal to H_{Σ} at O (namely, the x-axis) meets the minor axis t of H_{Σ} . Therefore T_x plays, w.r.t. H_{Σ} and its point O, the same role as point N_y plays w.r.t. H and its point P. Analogously, the point N_y , where the normal n to H at P meets the minor axis y of H, coincides with the point, where the tangent to H_{Σ} at O (namely, the y-axis) meets the major axis n of H_{Σ} . Therefore N_y plays w.r.t. H_{Σ} and its point O the same role as point T_x w.r.t. H and its point P. Hence, points T_x and N_y are homologous to each other. - (ii) The point T_y , where the tangent t to H at P meets the minor axis y of H, coincides with the point, where the tangent y to H_{Σ} at O meets the minor axis t of H_{Σ} . As an effect of the exchange of roles between the lines t and y, the point T_y retains with H_{Σ} the same ¹According to Definition 4, the center of both symbiotic conics H_{Σ} and Y_{Σ} is P. Their axes of symmetry are the normal and the tangent to H at P. H_{Σ} and Y_{Σ} pass through the center O of the ellipse H (1.1), admitting here the axes of H as tangent and normal. ²These properties of Barlotti's circles have already been described in [6]. They are repeated here to emphasize the symmetries between the ellipses H and H_{Σ} ³ According to Definition 4, the center of both symbiotic conics H and Y^+ is O. Their axes of symmetry are the normal and tangent to H_{Σ} at O, namely, the x- and y- axis, respectively. H and Y^+ pass through the center P of the ellipse H_{Σ} , admitting here the axes of H_{Σ} as tangent and normal. role as with H; it is an *auto-homologous* point. The same holds for the point N_x (because of the exchange of roles between the normal n to H at P and the major axis x of H) and, accordingly, for the whole line T_yN_x . Since this line coincides, by virtue of Theorem 2.3, with the radical line r_3 of Φ_1 and Φ_2 , the points Ψ_1 and Ψ_2 – belonging to the line r_3 by definition – are auto-homologous, too. (iii) As regards the circle Φ_1 , its homologous should be (according to Definition 1) a circle with the center homologous to T_y , namely, T_y itself, and passing through points homologous to the H foci, namely, through the H_{Σ} foci E and I (Lemma 3.1). Since E and I have been proved (Theorem 2.2) to be concyclic with the H foci on the circle Φ_1 , we conclude that the circle Φ_1 coincides with its homologous one. The circle homologous to Φ_2 coincides with Φ_3 , since the latter admits as center T_x (which is homologous to the Φ_2 center N_y) and passes through the H_{Σ} foci E and I (Lemma 3.1). Indeed, Φ_2 and Φ_3 are homologous to each other. Bearing these results in mind, the following may be easily understood: - (i) Since the normal n to H at P may be regarded as the major axis of the ellipse H_{Σ} and the focal radii of P may be regarded as the eccentric and symm-eccentric lines of O (considered as a point of the ellipse H_{Σ}), the Theorem stating that "the normal to the ellipse H at P bisects the angle formed by the focal radii of P" appears as a consequence of the symmetry of the eccentric and symm-eccentric lines of O about the major axis n of H_{Σ} . - (ii) The author has shown in [6, Theorems 1 and 2] that the circle K constructed on the segment T_yT_x of the tangent to H at P intercepted between the axes as diameter, passes through the points E and I (Figure 5). By virtue of these results and remembering that E and I have been shown to coincide with the foci of H_{Σ} , we may conclude that the circle K_{Σ} —which is constructed on the segment T_yN_y of the tangent (x=0) to H_{Σ} at O intercepted between the axes of H_{Σ} (namely, between the tangent and normal to H at P) as diameter—passes through the foci of the ellipse H. In this way, we have refound a well known Theorem (for example, see [5, p. 86] or [2, Chapter VI, p. 215]). The converse of the afore mentioned Theorem is the following: **Theorem 3.2.** Let r and s be the following orthogonal lines through P: $$y = b\sin\varepsilon + m(x - a\cos\varepsilon); \quad y = b\sin\varepsilon - \frac{1}{m}(x - a\cos\varepsilon).$$ (3.10) If R_y and S_y denoted the y-intercepts of the lines r and s, the circle constructed on the segment R_yS_y as diameter passes through the ellipse foci if, and only if, the lines r and s are tangent and normal to the ellipse at P. Indeed, the points R_y and S_y are R_y (0; $b \sin \varepsilon - am \cos \varepsilon$) and S_y (0; $b \sin \varepsilon + a \cos \varepsilon/m$), respectively. The circle with the segment $R_y S_y$ as diameter is $$x^{2} + \left(y - \frac{2mb\sin\varepsilon + a\cos\varepsilon(1 - m^{2})}{2m}\right)^{2} = \left(\frac{a\cos\varepsilon}{2m}\left(1 + m^{2}\right)\right)^{2}.$$ (3.11) Setting $x^2 = a^2 - b^2$ and y = 0 in (3.11) and solving it for m, we get $$m_1 = \frac{a}{b} \tan \varepsilon; \quad m_2 = -\frac{b}{a} \cot \varepsilon.$$ (3.12) The slopes (3.12) identify the normal and tangent to H at P. (iii) Theorem 2.7 has shown that the foci of H are conjugate w.r.t. the circle Φ_3 (2.3). The replacement of the objects in such statement by their homologous ones results in the following Figure 5: The circle K [magenta] is constructed taking as diameter the segment T_yT_x of the tangent to the ellipse H [black] at P intercepted between the axes. It passes through the foci E and I of the symbiotic ellipse H_{Σ} [red]. On the other hand, T_yN_y is a segment of the tangent (x=0) to H_{Σ} at O, intercepted between the axes of H_{Σ} . Accordingly, the circle K_{Σ} [blue], constructed on the segment T_yN_y as diameter, is homologous to the circle K. Therefore, the circle K_{Σ} passes through the foci of the ellipse H. **Theorem 3.3.** [Figure 4] The points E and I (1.9) are conjugate w.r.t. the circle Φ_2 (2.2). (iv) Theorem 2.8 has shown that the radical center of Monge's circle M, Φ_1 (2.1) and Φ_3 (2.3) coincides with point P on the H ellipse. Remembering the expressions (3.3) for the ellipse's H_{Σ} semiaxes, Monge's circle M_{Σ} for H_{Σ} is $$(x - a\cos\varepsilon)^2 + (y - b\sin\varepsilon)^2 = a^2 + c^2\cos^2\varepsilon.$$ (3.13) Therefore, we may write the following statement, homologous to Theorem 2.8: **Theorem 3.4.** The radical center of the circles Φ_1 (2.1), Φ_2 (2.2) and M_{Σ} (3.13) coincides with the center O of the ellipse H. (v) Theorem 2.9 has described properties of the points S_{Iy} and S_{Ix} (2.9) and S_{Ey} and S_{Ex} (2.10), which represent intersections of Barlotti's circles B_e and B_i with the circles Φ_1 and Φ_3 . The following Theorem 3.5 regards the homologous four points, which represent, in turn, intersections of the ellipse's H_{Σ} Barlotti's circles $B_{e_{\Sigma}}$ (3.6) and $B_{i_{\Sigma}}$ (3.7) with the circles Φ_1 and Φ_2 . It should be stressed that the circles $B_{e_{\Sigma}}$ and $B_{i_{\Sigma}}$ may be redefined as circles about P, passing through the foci of H, avoiding any explicit reference to the symbiotic ellipse H_{Σ} . **Theorem 3.5.** [Figure 4] Taken a point P on the ellipse H, the following special points exist: $$S_{hn}\left(\frac{(c+a\cos\varepsilon)\cos\varepsilon - a\sin^{2}\varepsilon}{a + c\cos\varepsilon}c; \frac{2bc\sin\varepsilon\cos\varepsilon}{a + c\cos\varepsilon}\right); \quad S_{ht}\left(\frac{(a^{2} + b^{2})\cos\varepsilon + ac}{a + c\cos\varepsilon}; \frac{2ab\sin\varepsilon}{a + c\cos\varepsilon}\right)$$ $$S_{cn}\left(\frac{(c-a\cos\varepsilon)\cos\varepsilon + a\sin^{2}\varepsilon}{a - c\cos\varepsilon}c; \frac{-2bc\sin\varepsilon\cos\varepsilon}{a - c\cos\varepsilon}\right); \quad S_{ct}\left(\frac{(a^{2} + b^{2})\cos\varepsilon - ac}{a - c\cos\varepsilon}; \frac{2ab\sin\varepsilon}{a - c\cos\varepsilon}\right)$$ $$(3.14)$$ - (a) S_{hn} is common to the circles $B_{i_{\Sigma}}$ (3.7) and Φ_{2} (2.2), belongs to the focal radius PF_{c} and is symmetric to the homolateral focus F_{h} w.r.t. the normal to H at P. - (b) S_{ht} is common to the circles $B_{i_{\Sigma}}$ (3.7) and Φ_{1} (2.1), belongs to the focal radius PF_{c} and is symmetric to the homolateral focus F_{h} w.r.t. the tangent to H at P. - (c) S_{cn} is common to the circles $B_{e_{\Sigma}}$ (3.6) and Φ_2 (2.2), belongs to the focal radius PF_h and is symmetric to the contralateral focus F_c w.r.t. the normal to H at P. - (d) S_{ct} is common to the circles $B_{e_{\Sigma}}$ (3.6) and Φ_1 (2.1), belongs to the focal radius PF_h and is symmetric to the contralateral focus F_c w.r.t. the tangent to H at P. The following should be explicited mentioned: Corollary 3.1. The points S_{hn} and S_{ht} are collinear on the focal radius PF_c . The points S_{cn} and S_{ct} are collinear on the focal radius PF_h . Theorem 2.2 may be integrated by Theorem 3.5, items (b) and (d), which results in the following new formulation: **Theorem 3.6.** The foci of H, the points E and I (1.9), the point S_{ht} (3.14) (that is the point symmetric to the homolateral focus F_h w.r.t. the tangent to H at P), and the point S_{ct} (3.15) (that is the point symmetric to the contralateral focus F_c w.r.t. the tangent to H at P) are concyclic on the circle Φ_1 (2.1). Definition 2 and Theorem 3.5, and the items (a) and (c) may be synthesized as follows: **Theorem 3.7.** The foci of H and the points S_{hn} (3.14) and S_{cn} (3.15) are concyclic on the circle Φ_2 (2.2). (vi) In Section 2 it has been shown (Theorem 2.10, Figure 3) that any point P taken on the ellipse H may be associated with the quadrangle $S_{Ix}\Psi_1S_{Ex}\Psi_2$ inscribed in the circle Φ_3 . Analogously, the point O, taken on the ellipse H_{Σ} , may be associated (Figure 6) with the quadrangle $S_{hn}\Psi_1S_{cn}\Psi_2$, which is inscribed in the circle Φ_2 and is homologous to $S_{Ix}\Psi_1S_{Ex}\Psi_2$. Indeed, S_{hn} and S_{cn} correspond to S_{Ix} and S_{Ex} , respectively, while Ψ_1 and Ψ_2 correspond to themselves. Accordingly, Theorem 2.10 may be invoked for the complete quadrangle $S_{hn}\Psi_1S_{cn}\Psi_2$, resulting in the following statement, where any explicit mention of the symbiotic ellipse H_{Σ} is avoided: **Theorem 3.8.** [Figure 6] Let us consider the complete quadrangle $S_{hn}\Psi_1S_{cn}\Psi_2$. The opposite sides $(\Psi_1S_{hn}, S_{cn}\Psi_2)$, and $(\Psi_1S_{cn}, S_{hn}\Psi_2)$ meet in the points $F_{3\Sigma}$ and $F_{4\Sigma}$, which lie on the tangent to H at P and are concyclic with E and I, on a circle denoted by T_{Σ} . The circle T_{Σ} is orthogonal to Φ_2 . ## 3.2. The fourth circle Further symmetry relations among the circles Φ_1 , Φ_2 and Φ_3 and the ellipses H and H_{Σ} appear, if we introduce the following objects: • the imaginary foci of the ellipse H, $$F_1^i(0, ic), \quad F_2^i(0, -ic);$$ (3.16) Figure 6: Illustrating Theorem 3.8: The points Ψ_1 and Ψ_2 (representing the intersections of the circles Φ_2 [blue] and Φ_3 [magenta]), and the points S_{hn} (3.14) (symmetric to the homolateral focus F_2 w.r.t. the normal n to H at P) and S_{cn} (3.15) (symmetric to the contralateral focus F_1 w.r.t. the normal n to H at P) define a complete quadrangle [red]; the opposite sides ($\Psi_1 S_{cn}$, $\Psi_2 S_{hn}$) and ($\Psi_1 S_{hn}$, $\Psi_2 S_{cn}$) concur in $F_{3_{\Sigma}}$ and $F_{4_{\Sigma}}$, respectively. These points belong to the tangent to H at P, which is also the minor axis of the symbiotic ellipse H_{Σ} [blue]. $F_{3_{\Sigma}}$ and $F_{4_{\Sigma}}$ lie symmetrically w.r.t. P at the distance $c_{\Sigma} = PE = PI$. Accordingly, $F_{3_{\Sigma}}$ and $F_{4_{\Sigma}}$ are concyclic with the foci E and E on the circle E [brown], orthogonal to E and E are concyclic with the foci E and E and E are concyclic with the foci E and E and E are concyclic with the foci E and E and E are concyclic with the foci E and E are concyclic with the foci E are E and E are E are E and • the imaginary foci of the ellipse H_{Σ} , $$E_{\Sigma}^{i}\left(a(\cos\varepsilon - i\sin\varepsilon); b(\sin\varepsilon + i\cos\varepsilon)\right); \quad I_{2}^{i}\left(a(\cos\varepsilon + i\sin\varepsilon); b(\sin\varepsilon - i\cos\varepsilon)\right);$$ $$(3.17)$$ • the imaginary circle centered at the radical center N_x (1.8) of the circles Φ_1 , Φ_2 and Φ_3 , orthogonal to all of them (hereinafter, the circle Φ_4): $$\left(x - \frac{c^2}{a}\cos\varepsilon\right)^2 + y^2 = -\frac{c^2}{a^2}\left(a^2\sin^2\varepsilon + b^2\cos^2\varepsilon\right). \tag{3.18}$$ Repeating, for the sake of completeness, some already stated facts⁴, we may state the following Theorem, whose genuine novel parts can be demonstrated analytically: **Theorem 3.9.** The circles Φ_1 , Φ_2 , Φ_3 , and Φ_4 (3.18) have the following properties: - (i) the circle Φ_1 passes through the foci of the ellipses H and H_{Σ} ; - (ii) the circle Φ_2 passes through the foci of H and the imaginary foci of H_{Σ} ; - (iii) the circle Φ_3 passes through the foci of H_{Σ} and the imaginary foci of H; - (iv) the circle Φ_4 (3.18) passes through the imaginary foci of the ellipses H and H_{Σ} . ⁴Item 1 is just a new version of Theorem 2.2, reformulated so as to take into account the fact that the points E and I are the foci of the ellipse H_{Σ} . The passage of Φ_2 through the foci of H is part of the definition of the circle Φ_2 . The passage of Φ_3 through the foci of H_{Σ} is part of the definition of the circle Φ_3 , reformulated so as to take into account the fact that the points E and I are the foci of the ellipse H_{Σ} Remark on Corollary 3.1. Because of the orthogonality of the ellipse H and the adjoint hyperbola Y^+ (3.9), the tangent and normal to H at P may be regarded as normal and tangent to Y^+ at P, respectively. Accordingly, the points symmetric to the focus F_h $[F_c]$ w.r.t. the tangent and the normal to Y^+ (3.9) at P are S_{hn} and S_{ht} $[S_{cn}$ and $S_{ct}]$, respectively. Such points are collinear on the focal radius PF_c $[PF_h]$. Therefore Corollary 3.1 holds also for P taken on a hyperbola. Moreover, if a point $P(x_0; y_0)$ is taken on the parabola Π : $y^2 = 2px$, the points symmetric to the focus $F\left(\frac{p}{2}; 0\right)$ w.r.t. the tangent and the normal to Π at P are $S_{Ft}\left(-\frac{p}{2}; y_0\right)$ and $S_{Fn}\left(2x_0 + \frac{p}{2}; y_0\right)$, respectively. The line connecting such two points is parallel to the parabola's axis of symmetry and passes, therefore, through the focus at infinity of the parabola. ## References - [1] A. Barlotti: Affinité et polygones réguliers: Extension d'un théorème classique relatif au triangle. Mathematica et Paedagogia 9, 43–52 (1955-1956). - [2] J. Casey: A Treatise on the Analytical Geometry of the Point, Line, Circle and Conic Sections. second ed., Dublin and London 1893. - [3] R. Fritsch: Bemerkungen zum Satz von Napoleon-Barlotti im Unterricht. In Mathematik erfahren und lehren Festschrift für Hans-Joachim Vollrath, Ernst Klett Schulbuchverlag, Stuttgart, Düsseldorf, Berlin, Leipzig 1994, pp. 89–95. - [4] G. Salmon: A Treatise on Conic Sections. sixth ed., Chelsea Publishing Company, New York 1960. - [5] C. Taylor: Geometry of Conics. Deighton Bell, Cambridge 1903. - [6] M. TERNULLO: A 10-point circle is associated with any general point of the ellipse. New properties of Fagnano's point. J. Geom. 87, 179–187 (2007). - [7] M. TERNULLO: Two new sets of ellipse-related concyclic points. J. Geom. **94**, 159–173 (2009). - [8] M. Ternulo: Triplets of mutually orthogonal circles associated with any Ellipse. J. Geom. 104, 383–393 (2013). Received December 11, 2015; final form March 22, 2016