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Abstract. A quartet of orthogonal circles — one of them being imaginary
— associated with a general point P taken on a given ellipse H is described.
The mutual intersections of these circles, their intersections with Barlotti’s circles
[

x2 + y2 = (a± b)2
]

and further, newly introduced points are peculiar under sev-
eral aspects. A major result is the finding (Theorem 2.10) of a complete, cyclic
quadrangle having two diagonal points in fixed positions on the ellipse minor axis;
these diagonal points are concyclic with the ellipse foci, in spite of the dependence
of the whole figure from the point P location. Two conics — the symbiotic ellipse
HΣ and hyperbola YΣ — are introduced, in association with P ; such conics are
characterized by the fact that they
(i) have P as center and the tangent and normal to H at P as axes of symmetry,
(ii) pass through the ellipse H center, and
(iii) admit the axes of symmetry of the ellipse H as tangent and normal.
Several relationships among these conics are described. The study of the symbi-
otic ellipse HΣ reveals new properties of the ellipse H .
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1. Introduction

New developments of the author’s research project [6, 7, 8] on the geometry of the ellipse are
presented. In an orthogonal cartesian reference frame (Figure 1), let H be the ellipse

x2

a2
+

y2

b2
= 1, a > b ; (1.1)

its general point — that is a point different from the apices — will be denoted throughout this
paper by P (a cos ε; b sin ε). For the reader’s convenience, some geometrical objects frequently
referred to are listed here:
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• the foci of the ellipse H :

F1(−c, 0); F2(c, 0) (1.2)

where, as usual, I have set c =
√
a2 − b2;

• the eccentric line e (the diameter with slope me = tan ε):

y = x tan ε ; (1.3)

• the symm-eccentric line e′ (the diameter with slope me′ = − tan ε):

y = −x tan ε ; (1.4)

• the tangent t to the ellipse at P :

y = −x
b

a
cot ε+

b

sin ε
; (1.5)

• the intercepts of the tangent (1.5):

Tx

( a

cos ε
; 0
)

, Ty

(

0;
b

sin ε

)

; (1.6)

• the normal n to the ellipse at P :

y = x
a

b
tan ε− c2

b
sin ε ; (1.7)

• the intercepts of the normal (1.7):

Nx

(

c2

a
cos ε ; 0

)

, Ny

(

0; −c2

b
sin ε

)

; (1.8)

• the points E and I where the normal (1.7) meets the eccentric (1.3) and the symm-
eccentric (1.4) line of P , respectively:

E ((a+ b) cos ε ; (a+ b) sin ε) , I ((a− b) cos ε; −(a− b) sin ε) ; (1.9)

• the locus of point E (1.9); hereinafter, Barlotti’s external circle :

Be : x2 + y2 = (a+ b)2 ; (1.10)

• the locus of point I (1.9); hereinafter, Barlotti’s internal circle :

Bi : x2 + y2 = (a− b)2 . (1.11)

The first mention of the circle (1.10) known to the author can be found in an exercise of
Salmon ([4], Chapter XIII, Article 231, p. 221). Afterwards, both circles Be (1.10) and Bi

(1.11) have been studied by A. Barlotti [1], R. Fritsch [3], and Ternullo [6].
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2. A triplet of orthogonal circles

Definition 1. The circle Φ1 has its center at the intersection Ty (1.6) of the tangent (1.5) to
H (1.1) at P with the minor axis and passes through the foci. It satisfies the equation

x2 +

(

y − b

sin ε

)2

= c2 +
b2

sin2 ε
. (2.1)

Definition 2. The circle Φ2 has its center at the intersection Ny (1.8) of the normal (1.7) to
H (1.1) at P with the minor axis and passes through the foci. It satisfies

x2 +

(

y +
c2

b
sin ε

)2

= c2 +

(

c2

b
sin ε

)2

. (2.2)

Definition 3. The circle Φ3 has its center at the intersection Tx (1.6) of the tangent (1.5)
to H (1.1) at P with the major axis and passes through the points E and I (1.9) [where
the normal (1.7) to H at P meets the eccentric (1.3) and the symm-eccentric (1.4) line of P ,
respectively]. Φ3 satisfies

(

x− a

cos ε

)2

+ y2 =
a2 sin2 ε+ b2 cos2 ε

cos2 ε
. (2.3)

Let Φi and Φj be two circles out of the triplet Φ1 (2.1), Φ2 (2.2) and Φ3 (2.3). The
corresponding radii ri and rj and the distance dij between the centers fulfill the relationship
r2i + r2j = d2ij ; accordingly, the following holds:

Theorem 2.1. The circles Φ1 (2.1), Φ2 (2.2), and Φ3 (2.3) are mutually orthogonal.

Figure 1: Illustrating Definitions 2.1, 2.2, and 2.3, Theorems 2.1 through 2.3, and Corollary 2.1:
Taken a P on the ellipse H, its eccentric and symm-eccentric line [e (1.3) and e′ (1.4), respectively],
the tangent t and the normal n to H at P as well as the circles Φ1 (2.1) [red], Φ2 (2.2) [blue] and
Φ3 (2.3) [magenta] are shown.
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The radical line of Φ1 and Φ2 is the x-axis, since both circles pass by definition through
the foci. As regards the pairs (Φ1, Φ3) and (Φ2, Φ3), the following holds:

Lemma 2.1. The radical line of the circles Φ1 (2.1) and Φ3 (2.3) is the normal (1.7) to H
at P . The circles Φ1 and Φ3 meet at the points E and I (1.9).

Lemma 2.1 and Definition 1 imply:

Theorem 2.2. The points E and I (1.9) are concyclic with the ellipse foci F1 and F2 (1.2)
on the circle Φ1 (2.1).

Further special points concyclic with E and I and the ellipse foci on the circle Φ1 will be
described in Theorem 3.6.

Lemma 2.2. The radical line of the circles Φ2 and Φ3 is the line r3 with the equation

y = − ab

c2 sin ε cos ε
x+

b

sin ε
. (2.4)

The circles Φ2 and Φ3 share the points

Ψ1

(

(a− c sin ε) c2 cos ε

a2 cos2 ε+ b2 sin2 ε
;

(a− c sin ε) bc

a2 cos2 ε+ b2 sin2 ε

)

and

Ψ2

(

(a + c sin ε) c2 cos ε

a2 cos2 ε+ b2 sin2 ε
;

− (a+ c sin ε) bc

a2 cos2 ε+ b2 sin2 ε

)

.

(2.5)

Since the radical lines of the couples (Φ1, Φ2) and (Φ1, Φ3) (the x-axis and the normal n
to H at P , respectively) meet at Nx (1.8), by virtue of a theorem of Monge [4, Chapter VIII,
Article 108], the radical line r3 (2.4) of the couple (Φ2, Φ3) passes through the same point
Nx (the radical center of the circles Φ1, Φ2, and Φ3), too. Moreover, since the circle Φ1 is
orthogonal to both Φ2 and Φ3, the center of Φ1, i.e., the point Ty (1.6), belongs to the radical
line r3 of the circles Φ2 and Φ3. Therefore, we may state the following:

Theorem 2.3. The y-intercept Ty (1.6) of the tangent to H at P and the x-intercept Nx (1.8)
of the normal to H at P belong to the radical line r3 (2.4) of the circles Φ2 (2.2) and Φ3 (2.3).

The segment Ψ1Ψ2 is a chord belonging to both circles Φ2 and Φ3; its normal bisector

y =
c2 sin ε cos ε

ab
x− c2

b
sin ε (2.6)

passes, therefore, through the centers of Φ2 and Φ3, namely, through Ny and Tx, respectively.
Accordingly, Theorem 2.3 implies the following:

Corollary 2.1. The line NyTx (2.6) meets the line r3 (2.4) orthogonally at the midpoint of
the common chord Ψ1Ψ2 of the circles Φ2 and Φ3.

By invoking the definition of the polarity with respect to a conic, the following relation-
ships can easily be verified:

Lemma 2.3. The ellipse major axis is
(i) the polar line of the y-intercept Ny (1.8) of the normal (1.7) with respect to the circle

Φ1 (2.1), and
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(ii) the polar line of the y-intercept Ty (1.6) of the tangent (1.5) with respect to the circle
Φ2 (2.2).

Lemma 2.4. The normal (1.7) to H at P is
(i) the polar line of the x-intercept Tx (1.6) of the tangent (1.5) with respect to the circle

Φ1 (2.1), and

(ii) the polar line of the y-intercept Ty (1.6) of the tangent (1.5) with respect to the circle
Φ3 (2.3).

Lemma 2.5. The line r3 (2.4) is
(i) the polar line of the x-intercept Tx (1.6) of the tangent (1.5) with respect to the circle

Φ2 (2.2), and

(ii) the polar line of the y-intercept Ny (1.8) of the normal (1.7) with respect to the circle
Φ3 (2.3).

Lemmas 1.2 and 2.2 and Theorem 2.3 imply

Theorem 2.4. The following lines pass through the y-intercept Ty (1.6) of the tangent (1.5)
to the ellipse H at P :
(i) the tangents to the circle Φ2 (2.2) at the foci;

(ii) the tangents to the circle Φ3 (2.3) at E and I (1.9);

(iii) the radical line r3 (2.4) of the circles Φ2 and Φ3.

Lemmas 1.1 and 3.2 imply

Theorem 2.5. The following lines meet at the y-intercept Ny (1.8) of the normal (1.7) to the
ellipse H at P :
(i) the tangents to the circle Φ1 (2.1) at the foci;

(ii) the tangents to the circle Φ3 (2.3) at Ψ1 and Ψ2 (2.5).

From Lemmas 2.1 and 3.1 follows

Theorem 2.6. The following lines meet at the x-intercept Tx (1.6) of the tangent (1.5) to the
ellipse H at P :
(i) the tangents to the circle Φ1 (2.1) at E and I (1.9);

(ii) the tangents to the circle Φ2 (2.2) at Ψ1 and Ψ2 (2.5).

The distances of the foci F1 and F2 (1.2) from the center Tx (1.6) of the circle Φ3 (2.3) are
F1Tx = a/ cos ε+ c and F2Tx = a/ cos ε − c, respectively; multiplying them yields (a sin2 ε +
b cos2 ε)/ cos2 ε . Since this product equals the circle’s Φ3 squared radius, we conclude that
the foci are conjugate with respect to (hereinafter ‘w.r.t.’, in brief) the circle Φ3 (2.3). For
symmetry reasons, the foci are also conjugate w.r.t. the reflection of the circle Φ3 in the y-axis:

(

x+
a

cos ε

)2

+ y2 =
a2 sin2 ε+ b2 cos2 ε

cos2 ε
. (2.7)

Accordingly, we can state:

Theorem 2.7. The foci are conjugate w.r.t. the circle Φ3 (2.3) and its reflection in the y-axis
(2.7).
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Monge’s orthoptic circle (hereinafter denoted by M) is the following:

x2 + y2 = a2 + b2. (2.8)

Taking pairs of the equations (2.1), (2.3) and (2.8), one easily finds that the radical lines of
the couples (M, Φ1) and (M, Φ3) are y = b sin ε and x = a cos ε, respectively. Since these
lines meet at the ellipse point P , we may state:

Theorem 2.8. The radical center of the circles Φ1 (2.1), Φ3 (2.3) and M (2.8) coincides with
the ellipse point P (a cos ε ; b sin ε).

Figure 2: Illustrating Theorem 2.9: Barlotti’s internal circle Bi [blue] meets the circle Φ1 [red] at
the points I and SIy and the circle Φ3 [magenta] at I and SIx. The points SIy and SIx lie on the
eccentric line OE. Analogously, Barlotti’s external circle Be [green] meets the circle Φ1 at E and
SEy and the circle Φ3 at E and SEx. The points SEy and SEx lie on the symm-eccentric line OI.

Since the circle Bi (1.11) is (see Figure 2) the locus of point I [6, Theorem 2], and, on the
other hand, both circles Φ1 (2.1) and Φ3 (2.3) pass through I (by virtue of Theorem 2.2 and
by Definition 3, respectively), the circle Bi shares further points — let them be SIy and SIx

— with Φ1 and Φ3, respectively. Analogously, as Be (1.10) is the locus of E [6, Theorem 1],
and both Φ1 and Φ3 pass through E, the circle Be shares further points — let them be SEy

and SEx — with Φ1 and Φ3, respectively. The following holds:

Theorem 2.9. [Figure 2] The points SIy and SIx are symmetric to I w.r.t. the y- and the
x-axis, respectively, and they are diametrically opposite on the circle Bi (1.11). They belong
to the eccentric line (1.3) of P .
The points SEy and SEx are symmetric to E w.r.t. the y- and the x-axis, respectively, and
they are diametrically opposite on the circle Be (1.10). They belong to the symm-eccentric
line (1.4) of P .

Indeed, the symmetry properties (of I and SIy w.r.t. the y-axis and of I and SIx w.r.t. the
x-axis) are obvious consequences of the symmetry of the circles Bi and Φ1 w.r.t. the y-axis
and of Bi and Φ3 w.r.t. the x-axis. These symmetries imply, in turn, that SIy and SIx are
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symmetric w.r.t. O. Accordingly, SIy and SIx are diametrically opposite on the circle Bi and
belong, moreover, to a unique diameter of the ellipse H . Since the line OI is the symm-
eccentric line (1.4) and the line SIyOSIx is symmetric to OI w.r.t. the x-axis, we conclude
that the line SIyOSIx coincides with the eccentric line (1.3). Similarly, the second proposition
of Theorem 2.9 can be demonstrated.

The newly introduced four points are

SIy (−(a− b) cos ε ; −(a− b) sin ε) , SIx ((a− b) cos ε ; (a− b) sin ε) ; (2.9)

SEy (−(a + b) cos ε ; (a+ b) sin ε) , SEx ((a+ b) cos ε ; −(a + b) sin ε) . (2.10)

The points SIx (2.9), SEx (2.10), and Ψ1 and Ψ2 (2.5) belong to the circle Φ3. Accordingly,
joining them in pairs, a complete cyclic quadrangle results (Figure 3). An unexpected property
of this complete quadrangle is that two of its diagonal points are fixed points, in spite of the
dependence of the figure on the point’s P arbitrary location on the ellipse H :

Figure 3: Illustrating Theorem 2.10: The points SIx (2.9), SEx (2.10), and Ψ1 and Ψ2 (2.5),
belonging to the circle Φ3 [magenta], define a complete cyclic quadrangle [red] (the lines SIxSEx

and Ψ1Ψ2 are not drawn), whose opposite sides (SIxΨ1, Ψ2SEx) and (SIxΨ2, Ψ1SEx) concur in the
points F3 and F4, lying on the ellipse minor axis, at the invariant distance c from O, respectively.

Theorem 2.10. [Figure 3] Let the complete quadrangle SIxΨ1SExΨ2 be constructed. Its
diagonal points have the following properties:

• the lines SExSIx and Ψ1Ψ2 meet at the x-intercept Nx of the normal to H at P ;

• the lines SExΨ1 and SIxΨ2 invariably meet at the point F4(0, c);

• the lines SIxΨ1 and SExΨ2 invariably meet at the point F3(0, −c).

Concerning the first item, observe that, as the points E and I (1.9) belong by definition to
the normal (1.7), the line SExSIx mirrors the normal in the x-axis because the point SEx and
SIx are the reflections of E and I w.r.t. the x-axis, respectively. Accordingly, the x-intercepts
of both lines (normal and SExSIx) coincide with Nx. Since the line Ψ1Ψ2 also passes through
Nx (Theorem 2.3), the first item is demonstrated.
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Concerning the second item, it suffices to construct the following determinants ∆1 and ∆2

by means of the coordinates of SEx, Ψ1 and F4(0, c) for the former and SIx, Ψ2 and F4(0, c)
for the latter and verify that both determinants vanish identically:

∆1 :

∣

∣

∣

∣

∣

∣

∣

(a+ b) cos ε −(a + b) sin ε 1
(a− c sin ε) c2 cos ε

a2 cos2 ε+ b2 sin2 ε

(a− c sin ε) bc

a2 cos2 ε+ b2 sin2 ε
1

0 c 1

∣

∣

∣

∣

∣

∣

∣

, ∆2 :

∣

∣

∣

∣

∣

∣

∣

(a− b) cos ε (a− b) sin ε 1
(a+ c sin ε) c2 cos ε

a2 cos2 ε+ b2 sin2 ε
− (a+ c sin ε) bc

a2 cos2 ε+ b2 sin2 ε
1

0 c 1

∣

∣

∣

∣

∣

∣

∣

.

Similarly, the next item is demonstrated. Of course, the quadrangle obtained by replacing
SIxΨ1SExΨ2 by its reflection w.r.t. the x-axis has the same properties.

The points F3(0,−c) and F4(0, c) are concyclic with the foci on the following circle T :

x2 + y2 = a2 − b2. (2.11)

Theorem 2.11. The circle T (2.11) is orthogonal to Φ3 (2.3). The radical line of the circles
T and Φ3 contains the x-intercept Nx (1.8) of the normal.

Indeed, as Φ1 and Φ2 are orthogonal to Φ3 (Theorem 2.1), any circle belonging to the
pencil determined by Φ1 and Φ2 — like T — is orthogonal to Φ3, too. The comparison of
(2.11) and (2.3) allows us to verify the second part of the statement.

3. Symbiotic conics

The fact that any point P on the ellipse H (1.1) is associated with a couple of orthogonal
lines, namely, the tangent (1.5) and the normal (1.7) to H at P , has inspired to consider the
conics for which the axes of symmetry of H on the one hand and the tangent and normal on
the other hand exchange their roles. This is better told below.

Definition 4. [Figure 4] For any point P taken on the ellipse H , the symbiotic conics of H
about P

(i) have P as center and the tangent and normal to H at P as axes of symmetry,

(ii) pass through the center O of the ellipse H , and

(iii) have the axes of symmetry of H as normal and tangent at O.

The major axis of H may be either normal or tangent to a symbiotic conic at O. Accord-
ingly, two symbiotic conics exist for any P . By means of elementary and well-known methods
they are determined as follows:

• the conic whose tangent at O is the minor axis of the ellipse H ,

x2
a2 − b2 cos2 ε

a2 cos2 ε
− 2xy

b

a
tan ε− 2x

c2

a cos ε
+ y2 = 0, (3.1)

• the conic whose tangent at O is the major axis of the ellipse H ,

x2 b2

a2
tan2 ε− 2xy

b

a
tan ε+ y2

(

1− c2

a2 cos2 ε

)

+ 2y
c2

a2 cos2 ε
b sin ε = 0. (3.2)
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Figure 4: Illustrating the Definition of symbiotic conics and some related Theorems:
The ellipse HΣ [red] and the hyperbola YΣ [blue] are the symbiotic conics of the ellipse H about
its point P . Both HΣ and YΣ share the tangent and normal to H at P as their axes of symmetry.
They pass through the center O of H, admit here the axes of H as tangent and normal, and they
are confocal (their foci E and I are the intersection of the normal n to H at P with the eccentric
line e of P and the symm-eccentric e′, respectively).
The eccentric and symm-eccentric lines of O, regarded as a point of HΣ, are the focal radii PF1

and PF2 of the H point P . Barlotti’s internal circle BiΣ [brown] associated with HΣ passes through
the homolateral focus F2 of H, where it meets both circles Φ1 [orange] and Φ2 [indaco]. BiΣ further
meets Φ1 and Φ2 at Sht and Shn, respectively. These points are symmetric to the homolateral focus
F2 w.r.t. the tangent and normal to H at P , respectively, and belong to the focal radius F1P .
Barlotti’s external circle BeΣ [green] passes through the contralateral focus F1, where it meets both
circles Φ1 and Φ2. BeΣ further meets Φ1 and Φ2 at Sct and Scn, respectively. These points are not
displayed in the figure. Sct and Scn are symmetric to the contralateral focus F1 w.r.t. the tangent
and normal to H at P , respectively, and belong to the focal radius F2P . The hyperbola YΣ has the
focal radii PF1 and PF2 as asymptotes.
The symbiotic conics of the ellipse HΣ about O are the ellipse H and the adjoint hyperbola Y +

[magenta]. The asymptotes of Y + coincide with the eccentric and symm-eccentric line of P .

The conic (3.1) is an ellipse and (3.2) a hyperbola — hereinafter denoted by HΣ and YΣ,
respectively.

The semiaxes of the symbiotic ellipse HΣ (3.1) are

aHΣ
= a and bHΣ

= c cos ε . (3.3)

The semiaxes of the symbiotic hyperbola YΣ (3.2) are

aYΣ
= b and bYΣ

= c sin ε . (3.4)

From (3.3) and (3.4) follows that the foci of both symbiotic conics HΣ (3.1) and YΣ (3.2) lie
at the same distance cΣ from their common center P ,

cΣ =
√

a2HΣ
− b2HΣ

=
√

a2YΣ
+ b2YΣ

=
√

a2 sin2 ε+ b2 cos2 ε. (3.5)
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Therefore, the symbiotic conics HΣ (3.1) and YΣ (3.2) are confocal and, accordingly, mutually
orthogonal, too. On the other hand, since the points E and I (1.9) lie on the major axis n
(1.7) of HΣ, symmetric w.r.t. P , at the common distance cΣ (3.5) from P , we may state:

Lemma 3.1. The points E and I (1.9) coincide with the foci of the symbiotic conics HΣ (3.1)
and YΣ (3.2) of the ellipse H about P .

The symbiotic ellipse HΣ (3.1) admits, in turn, symbiotic conics about any of its general
points. Definition 4 leads us to the identify the symbiotic ellipse of HΣ about O with H
(1.1). This conclusion implies that, if an object Ω (a point, line, circle etc.) is defined by a
statement associated to the ellipse H and its point P and, on the other hand, an object Ω′

plays the same role w.r.t. HΣ and its point O — namely, if Ω′ is homologous to Ω — then Ω is
homologous to Ω′. The correspondence associating a geometrical object with its homologous
one is involutory. On this basis, we may identify the points homologous to E and I with
the foci of the ellipse H . Accordingly, the foci of H may be denoted also by EΣ and IΣ.
Remembering that
(i) E and I have been introduced as the points where the normal to H at P meets the

eccentric and the symm-eccentric lines of P , and that

(ii) the x-axis is the normal to HΣ at O,
the eccentric and the symm-eccentric lines of O (regarded as a point ofHΣ) are to be identified
with the lines linking the center P of HΣ with the foci of H . More precisely, the focus of H
which lies on the same side as P w.r.t. the minor axis (the homolateral focus Fh) coincides
with IΣ and the focal radius of H linking this focus with P coincides with the symm-eccentric
line of O. The focus of H which lies on the other side (the contralateral focus Fc) and the
associated focal radius of H coincide with EΣ and the eccentric line of O, respectively.

As shown in [6, Theorems 1 and 2] by the author, the loci of E and I (1.9) are the external
and internal circles Be (1.10) and Bi (1.11). These circles are concentric with the ellipse H
and have radii a ± b. Analogously, Barlotti’s external and internal circles for the ellipse HΣ

are the following circles (hereinafter, BeΣ and BiΣ, respectively):

(x− a cos ε)2 + (y − b sin ε)2 = (a+ c cos ε)2 , (3.6)

(x− a cos ε)2 + (y − b sin ε)2 = (a− c cos ε)2 . (3.7)

The circles BeΣ (3.6) and BiΣ (3.7) are concentric with HΣ; they have the radii aΣ ± bΣ and
pass through EΣ and IΣ (namely, through the contralateral and the homolateral focus of H),
respectively.

The asymptotes of the symbiotic hyperbola YΣ (3.2) are easily determined as follows:

y − b sin ε =
b sin ε

a cos ε± c
(x− a cos ε) . (3.8)

They coincide with the focal radii PF1 and PF2 of the point P . The lines homologous to
the focal radii PF1 and PF2 are the focal radii OE and OI of the point O (regarded as a
point of HΣ). The latter are, therefore, the asymptotes of the symbiotic hyperbola of HΣ

about O (hereinafter, the adjoint hyperbola Y +). Since the symbiotic conics HΣ and YΣ of
a given ellipse H about P are confocal and orthogonal to each other, we conclude that the
adjoint hyperbola Y + is confocal with and orthogonal to the ellipse H . It passes through P
and admits the eccentric and symm-eccentric lines of P as its asymptotes,

x2

c2 cos2 ε
− y2

c2 sin2 ε
= 1 . (3.9)
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The following statement summarizes the previous findings:

Theorem 3.1. For any point P taken on the ellipse H (1.1), the following holds:
(i) There exist two symbiotic conics: the ellipse HΣ (3.1) and the hyperbola YΣ (3.2)1. HΣ

and YΣ have as tangents at O the minor and major axis of the ellipse H, respectively,
and share the foci, which are the points E and I (1.9));
Barlotti’s circles Be (1.10)) and Bi (1.11)) associated with the ellipse H pass through
the foci E and I of the ellipse HΣ

2.
The focal radii PF1 and PF2 of the point P are also

• the eccentric and symm-eccentric line of O (regarded as a point of the ellipse HΣ)

• and the asymptotes of the symbiotic hyperbola YΣ (3.2).

(ii) W.r.t. the ellipse HΣ (3.1) and its point O, there exist two symbiotic conics: the ellipse
H (1.1) and the adjoint hyperbola Y + (3.9)3. H and Y + admit as tangent at P the
minor and major axis of the ellipse HΣ, respectively, and share the foci F1 and F2.
Barlotti’s circles BeΣ (3.6) and BiΣ (3.7) associated with the ellipse HΣ pass through the
foci of the ellipse H.
The focal radii OE and OI of the point O are

• the eccentric and symm-eccentric line of P (regarded as a point of the ellipse H)

• and the asymptotes of the adjoint hyperbola Y + (3.9).

3.1. The effectiveness of the symbiotic conics approach

From any statement related to the ellipse H , a twin statement related to the ellipse HΣ

may be deduced, provided that any object entering the original statement is replaced by its
homologous. In some cases, the new statement — far from being a trivial duplicate of the old
one — may help us to see the geometrical facts under a new perspective, and even, to find
new properties of H . This approach, which could be defined as studying an ellipse by means
of its symbiotic, requires that further couples of homologous objects are identified.

(i) The point Tx, where the tangent t to H at P meets the major axis x of H , coincides with
the point, where the normal to HΣ at O (namely, the x-axis) meets the minor axis t of HΣ.
Therefore Tx plays, w.r.t. HΣ and its point O, the same role as point Ny plays w.r.t. H and
its point P . Analogously, the point Ny, where the normal n to H at P meets the minor axis
y of H , coincides with the point, where the tangent to HΣ at O (namely, the y-axis) meets
the major axis n of HΣ. Therefore Ny plays w.r.t. HΣ and its point O the same role as point
Tx w.r.t. H and its point P . Hence, points Tx and Ny are homologous to each other.

(ii) The point Ty, where the tangent t to H at P meets the minor axis y of H , coincides
with the point, where the tangent y to HΣ at O meets the minor axis t of HΣ. As an effect
of the exchange of roles between the lines t and y, the point Ty retains with HΣ the same

1According to Definition 4, the center of both symbiotic conics HΣ and YΣ is P . Their axes of symmetry
are the normal and the tangent to H at P . HΣ and YΣ pass through the center O of the ellipse H (1.1),
admitting here the axes of H as tangent and normal.

2These properties of Barlotti’s circles have already been described in [6]. They are repeated here to
emphasize the symmetries between the ellipses H and HΣ

3 According to Definition 4, the center of both symbiotic conics H and Y + is O. Their axes of symmetry
are the normal and tangent to HΣ at O, namely, the x- and y- axis, respectively. H and Y + pass through
the center P of the ellipse HΣ, admitting here the axes of HΣ as tangent and normal.
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role as with H ; it is an auto-homologous point. The same holds for the point Nx (because
of the exchange of roles between the normal n to H at P and the major axis x of H) and,
accordingly, for the whole line TyNx. Since this line coincides, by virtue of Theorem 2.3, with
the radical line r3 of Φ1 and Φ2, the points Ψ1 and Ψ2 – belonging to the line r3 by definition
– are auto-homologous, too.

(iii) As regards the circle Φ1, its homologous should be (according to Definition 1) a circle
with the center homologous to Ty, namely, Ty itself, and passing through points homologous
to the H foci, namely, through the HΣ foci E and I (Lemma 3.1). Since E and I have been
proved (Theorem 2.2) to be concyclic with the H foci on the circle Φ1, we conclude that the
circle Φ1 coincides with its homologous one. The circle homologous to Φ2 coincides with Φ3,
since the latter admits as center Tx (which is homologous to the Φ2 center Ny) and passes
through the HΣ foci E and I (Lemma 3.1). Indeed, Φ2 and Φ3 are homologous to each other.

Bearing these results in mind, the following may be easily understood:

(i) Since the normal n to H at P may be regarded as the major axis of the ellipse HΣ and the
focal radii of P may be regarded as the eccentric and symm-eccentric lines of O (considered
as a point of the ellipse HΣ), the Theorem stating that “the normal to the ellipse H at P
bisects the angle formed by the focal radii of P” appears as a consequence of the symmetry of
the eccentric and symm-eccentric lines of O about the major axis n of HΣ.

(ii) The author has shown in [6, Theorems 1 and 2] that the circle K constructed on the
segment TyTx of the tangent to H at P intercepted between the axes as diameter, passes
through the points E and I (Figure 5). By virtue of these results and remembering that E
and I have been shown to coincide with the foci of HΣ, we may conclude that the circle KΣ

— which is constructed on the segment TyNy of the tangent (x = 0) to HΣ at O intercepted
between the axes of HΣ (namely, between the tangent and normal to H at P ) as diameter —
passes through the foci of the ellipse H . In this way, we have refound a well known Theorem
(for example, see [5, p. 86] or [2, Chapter VI, p. 215]).

The converse of the afore mentioned Theorem is the following:

Theorem 3.2. Let r and s be the following orthogonal lines through P :

y = b sin ε+m (x− a cos ε) ; y = b sin ε− 1

m
(x− a cos ε) . (3.10)

If Ry and Sy denoted the y-intercepts of the lines r and s, the circle constructed on the segment
RySy as diameter passes through the ellipse foci if, and only if, the lines r and s are tangent
and normal to the ellipse at P .

Indeed, the points Ry and Sy are Ry (0; b sin ε− am cos ε) and Sy (0; b sin ε+ a cos ε/m),
respectively. The circle with the segment RySy as diameter is

x2 +

(

y − 2mb sin ε+ a cos ε (1−m2)

2m

)2

=
(a cos ε

2m

(

1 +m2
)

)2

. (3.11)

Setting x2 = a2 − b2 and y = 0 in (3.11) and solving it for m, we get

m1 =
a

b
tan ε ; m2 = − b

a
cot ε . (3.12)

The slopes (3.12) identify the normal and tangent to H at P .

(iii) Theorem 2.7 has shown that the foci of H are conjugate w.r.t. the circle Φ3 (2.3). The
replacement of the objects in such statement by their homologous ones results in the following
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Figure 5: The circle K [magenta] is constructed taking as diameter the segment TyTx of the tangent
to the ellipse H [black] at P intercepted between the axes. It passes through the foci E and I of
the symbiotic ellipse HΣ [red]. On the other hand, TyNy is a segment of the tangent (x = 0) to
HΣ at O, intercepted between the axes of HΣ. Accordingly, the circle KΣ [blue], constructed on the
segment TyNy as diameter, is homologous to the circle K. Therefore, the circle KΣ passes through
the foci of the ellipse H.

Theorem 3.3. [Figure 4] The points E and I (1.9) are conjugate w.r.t. the circle Φ2 (2.2).

(iv) Theorem 2.8 has shown that the radical center of Monge’s circle M , Φ1 (2.1) and Φ3 (2.3)
coincides with point P on the H ellipse. Remembering the expressions (3.3) for the ellipse’s
HΣ semiaxes, Monge’s circle MΣ for HΣ is

(x− a cos ε)2 + (y − b sin ε)2 = a2 + c2 cos2 ε . (3.13)

Therefore, we may write the following statement, homologous to Theorem 2.8:

Theorem 3.4. The radical center of the circles Φ1 (2.1), Φ2 (2.2) and MΣ (3.13) coincides
with the center O of the ellipse H.

(v) Theorem 2.9 has described properties of the points SIy and SIx (2.9) and SEy and SEx

(2.10), which represent intersections of Barlotti’s circles Be and Bi with the circles Φ1 and
Φ3. The following Theorem 3.5 regards the homologous four points, which represent, in turn,
intersections of the ellipse’s HΣ Barlotti’s circles BeΣ (3.6) and BiΣ (3.7) with the circles Φ1

and Φ2. It should be stressed that the circles BeΣ and BiΣ may be redefined as circles about
P , passing through the foci of H , avoiding any explicit reference to the symbiotic ellipse HΣ.

Theorem 3.5. [Figure 4] Taken a point P on the ellipse H, the following special points exist:

Shn

(

(c+ a cos ε) cos ε− a sin2 ε

a+ c cos ε
c ;

2bc sin ε cos ε

a+ c cos ε

)

; Sht

(

(a2 + b2) cos ε+ ac

a+ c cos ε
;

2ab sin ε

a+ c cos ε

)

(3.14)

Scn

(

(c− a cos ε) cos ε+ a sin2 ε

a− c cos ε
c ;

−2bc sin ε cos ε

a− c cos ε

)

; Sct

(

(

a2 + b2
)

cos ε− ac

a− c cos ε
;

2ab sin ε

a− c cos ε

)

(3.15)
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(a) Shn is common to the circles BiΣ (3.7) and Φ2 (2.2), belongs to the focal radius PFc and
is symmetric to the homolateral focus Fh w.r.t. the normal to H at P .

(b) Sht is common to the circles BiΣ (3.7) and Φ1 (2.1), belongs to the focal radius PFc and
is symmetric to the homolateral focus Fh w.r.t. the tangent to H at P .

(c) Scn is common to the circles BeΣ (3.6) and Φ2 (2.2), belongs to the focal radius PFh and
is symmetric to the contralateral focus Fc w.r.t. the normal to H at P .

(d) Sct is common to the circles BeΣ (3.6) and Φ1 (2.1), belongs to the focal radius PFh and
is symmetric to the contralateral focus Fc w.r.t. the tangent to H at P .

The following should be explicited mentioned:

Corollary 3.1. The points Shn and Sht are collinear on the focal radius PFc. The points Scn

and Sct are collinear on the focal radius PFh.

Theorem 2.2 may be integrated by Theorem 3.5, items (b) and (d), which results in the
following new formulation:

Theorem 3.6. The foci of H, the points E and I (1.9), the point Sht (3.14) (that is the point
symmetric to the homolateral focus Fh w.r.t. the tangent to H at P ), and the point Sct (3.15)
(that is the point symmetric to the contralateral focus Fc w.r.t. the tangent to H at P ) are
concyclic on the circle Φ1 (2.1).

Definition 2 and Theorem 3.5, and the items (a) and (c) may be synthesized as follows:

Theorem 3.7. The foci of H and the points Shn (3.14) and Scn (3.15) are concyclic on the
circle Φ2 (2.2).

(vi) In Section 2 it has been shown (Theorem 2.10, Figure 3) that any point P taken on the
ellipse H may be associated with the quadrangle SIxΨ1SExΨ2 inscribed in the circle Φ3. Anal-
ogously, the point O, taken on the ellipse HΣ, may be associated (Figure 6) with the quadran-
gle ShnΨ1ScnΨ2, which is inscribed in the circle Φ2 and is homologous to SIxΨ1SExΨ2. Indeed,
Shn and Scn correspond to SIx and SEx, respectively, while Ψ1 and Ψ2 correspond to them-
selves. Accordingly, Theorem 2.10 may be invoked for the complete quadrangle ShnΨ1ScnΨ2,
resulting in the following statement, where any explicit mention of the symbiotic ellipse HΣ

is avoided:

Theorem 3.8. [Figure 6] Let us consider the complete quadrangle ShnΨ1ScnΨ2. The opposite
sides (Ψ1Shn, ScnΨ2), and (Ψ1Scn, ShnΨ2) meet in the points F3Σ and F4Σ, which lie on the
tangent to H at P and are concyclic with E and I, on a circle denoted by TΣ. The circle TΣ

is orthogonal to Φ2.

3.2. The fourth circle

Further symmetry relations among the circles Φ1, Φ2 and Φ3 and the ellipses H and HΣ

appear, if we introduce the following objects:
• the imaginary foci of the ellipse H ,

F i
1 (0, ic) , F i

2 (0, −ic) ; (3.16)
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Figure 6: Illustrating Theorem 3.8: The points Ψ1 and Ψ2 (representing the intersections of the
circles Φ2 [blue] and Φ3 [magenta]), and the points Shn (3.14) (symmetric to the homolateral focus
F2 w.r.t. the normal n to H at P ) and Scn (3.15) (symmetric to the contralateral focus F1 w.r.t.
the normal n to H at P ) define a complete quadrangle [red]; the opposite sides (Ψ1Scn, Ψ2Shn) and
(Ψ1Shn, Ψ2Scn) concur in F3Σ and F4Σ , respectively. These points belong to the tangent to H at P ,
which is also the minor axis of the symbiotic ellipse HΣ [blue]. F3Σ and F4Σ lie symmetrically w.r.t.
P at the distance cΣ = PE = PI. Accordingly, F3Σ and F4Σ are concyclic with the foci E and I of
HΣ on the circle TΣ [brown], orthogonal to Φ2.

• the imaginary foci of the ellipse HΣ,

Ei
Σ (a(cos ε− i sin ε); b(sin ε+ i cos ε)) ; I i2 (a(cos ε+ i sin ε); b(sin ε− i cos ε)) ;

(3.17)

• the imaginary circle centered at the radical center Nx (1.8) of the circles Φ1, Φ2 and Φ3,
orthogonal to all of them (hereinafter, the circle Φ4):

(

x− c2

a
cos ε

)2

+ y2 = − c2

a2
(

a2 sin2 ε+ b2 cos2 ε
)

. (3.18)

Repeating, for the sake of completeness, some already stated facts4, we may state the
following Theorem, whose genuine novel parts can be demonstrated analytically:

Theorem 3.9. The circles Φ1, Φ2, Φ3, and Φ4 (3.18) have the following properties:
(i) the circle Φ1 passes through the foci of the ellipses H and HΣ;

(ii) the circle Φ2 passes through the foci of H and the imaginary foci of HΣ;

(iii) the circle Φ3 passes through the foci of HΣ and the imaginary foci of H;

(iv) the circle Φ4 (3.18) passes through the imaginary foci of the ellipses H and HΣ.

4Item 1 is just a new version of Theorem 2.2, reformulated so as to take into account the fact that the points
E and I are the foci of the ellipse HΣ. The passage of Φ2 through the foci of H is part of the definition of
the circle Φ2. The passage of Φ3 through the foci of HΣ is part of the definition of the circle Φ3, reformulated
so as to take into account the fact that the points E and I are the foci of the ellipse HΣ
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Remark on Corollary 3.1. Because of the orthogonality of the ellipse H and the adjoint
hyperbola Y + (3.9), the tangent and normal to H at P may be regarded as normal and
tangent to Y + at P , respectively. Accordingly, the points symmetric to the focus Fh [Fc]
w.r.t. the tangent and the normal to Y + (3.9) at P are Shn and Sht [Scn and Sct], respectively.
Such points are collinear on the focal radius PFc [PFh]. Therefore Corollary 3.1 holds also
for P taken on a hyperbola. Moreover, if a point P (x0; y0) is taken on the parabola Π :

y2 = 2px, the points symmetric to the focus F
(

p

2
; 0
)

w.r.t. the tangent and the normal to

Π at P are SFt

(

−p

2
; y0

)

and SFn

(

2x0 +
p

2
; y0

)

, respectively. The line connecting such two

points is parallel to the parabola’s axis of symmetry and passes, therefore, through the focus
at infinity of the parabola.
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