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Abstract. We consider ruled and quadric surfaces in the 3-dimensional Euclidean
space which are of coordinate finite type with respect to the third fundamental
form I11, i.e., their position vector  satisfies the relation Az = Ax where A
is a square matrix of order 3. We show that helicoids and spheres are the only
classes of surfaces mentioned above satisfying A x = A x.
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1. Introduction

Let S be a (connected) surface in a Euclidean 3-space E® referred to any system of coordinates
(u', u?), which does not contain parabolic points. We denote by b;; the components of the
second fundamental form I7 = b;;du'du’ of S. Let ¢(u',u?) and ¢ (u', u?) be two sufficient
differentiable functions on S. Then the first differential parameter of Beltrami with respect
to the second fundamental form of S is defined by

VH(S07 ¢) = bwgp/lw/]7

where ¢,; = % and (b"7) denotes the inverse tensor of (b;;).

Let e;; be the components of the third fundamental form /I of S. Then the second
differential parameter of Beltrami with respect to the third fundamental form of S is defined
by [9]

1 -
mar, . 1
A= ——\/E(\/Eﬁ’”%@/i)/j )
Lwith sign convention such that A = —6‘9—:2 - 8‘9—:2 for the metric ds? = dz? + dy?.
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where (e) denotes the inverse tensor of (e;;) and e := det(e;;).

In [9], S. STAMATAKIS and H. AL-ZOUBI showed for the position vector & = x(u', u?) of
S the relation

Aty = v (%,n) — % n, (1.1)
where n is the Gauss map, K the Gauss curvature and H the mean curvature of S. Moreover,
in this context, the same authors proved that the surfaces S: x = x(u',u?) satisfying the
condition
Ay = Nz, A eR,

i.e., for which all coordinate functions are eigenfunctions of A/ with the same eigenvalue )\,
are precisely either the minimal surfaces (A = 0), or parts of spheres (A = 2).

In [2] B.-Y. CHEN introduced the notion of Euclidean immersions of finite type. In terms
of B.-Y. CHEN’s theory, a surface S is said to be of finite type, if its coordinate functions
are a finite sum of eigenfunctions of the Beltrami operator A7, Therefore the two facts
mentioned above can be stated as follows

e S is minimal if and only if S is of null type 1.

e S lies in an ordinary sphere S? if and only if S is of type 1.

Following [2], we say that a surface S is of finite type with respect to the fundamental
form I11, or briefly of finite III-type if the position vector & of S can be written as a finite
sum of nonconstant eigenvectors of the operator A i.e., if

a::aco—l—Zac,-, Ay, =\ x;, 1=1,....,m, (1.2)

i=1
where x is a fixed vector and A\i, Ao, ..., A\, are eigenvalues of A”Y. When there are exactly
k nonconstant eigenvectors @i, @, ..., @ appearing in (1.2) which all belong to different
eigenvalues A1, A9, ..., \r, then S is said to be of III-type k, otherwise S is said to be of

infinite type. When \; = 0 for some 1 = 1,2,...,k, then S is said to be of null III-type k.
Up to now, very little is known about surfaces of finite II/-type. Concerning this problem,
the only known surfaces of finite III-type in E® are parts of spheres, the minimal surfaces
and the parallel of the minimal surfaces which are of null II/-type 2 (see [9]).
In this paper we shall be concerned with the ruled and quadric surfaces in E? which are
connected, complete and which are of coordinate finite I//-type, i.e., their position vector

x = x(u', u?) satisfies the relation
Al = N, (1.3)

where A is a square matrix of order 3.
In [6] F. DiLLEN, J. PAs and L. VERSTRAELEN studied coordinate finite type with
respect to the first fundamental form I = g;;du’du’ and they proved

Theorem 1. The only surfaces in R? satisfying
Az =Ax+ B, A€ M(3,3), B € M(3,1),
are the minimal surfaces, the spheres and the circular cylinders.

Here M(m,n) denotes the set of all matrices of the type (m,n). On the other hand, O.
GARAY showed in [7]
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Theorem 2. The only complete surfaces of revolution in R3, whose component functions are
eigenfunctions of their Laplacian, are catenoids, spheres and right circular cylinders.

Recently, H. AL-ZOUBI and S. STAMATAKIS studied coordinate finite type with respect
to the third fundamental form, more precisely, in [10] they proved

Theorem 3. A surface of revolution S in R? satisfies (1.3) if and only if S is a catenoid or
a part of a sphere.

2. Main results
Our main results are the following.

Proposition 1. The only ruled surfaces in the 3-dimensional Fuclidean space that satisfy
(1.3) are the helicoids.

Proposition 2. The only quadric surfaces in the 3-dimensional Fuclidean space that satisfy
(1.3) are the spheres.

Our discussion is local, which means that we show in fact that any open part of a ruled
or a quadric satisfies (1.3) if it is an open part of a helicoid or an open part of a sphere,
respectively.

Before starting the proof of our main results, we first show that the surfaces mentioned in
the above propositions indeed satisfy the condition (1.3). On a helicoid the mean curvature
vanishes, so, by virtue of (1.1), A"z = 0. Therefore a helicoid satisfies (1.3), where A is the
null matrix in M (3, 3).

Let S%(r) be a sphere of radius r centered at the origin. If  denotes the position vector
field of S?(r), then the Gauss map m is given by —%. For the Gauss curvature K and the

mean curvature H of S?(r) we have K = %2 and H = % So, by virtue of (1.1), we obtain

Ay = 2g,

and we find that S?(r) satisfies (1.3) with

3. Proof of Proposition 1

Let S be a ruled surface in E2. We suppose that S is a non-cylindrical ruled surface. This
surface can be expressed in terms of a directrix curve a(s) and a unit vectorfield 3(s) pointing
along the rulings as

S:ox(s,t) =a(s)+tPB(s), se€J —oo<t<oo.

Moreover, we can take the parameter s to be the arc length along the spherical curve 3(s).
Then we have

<CI£,,,6> =0, <,6,ﬁ> =1, <B,aﬁl> =1, (31)
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where the prime denotes the derivative with respect to s. The first fundamental form of S is
I = qds® + dt?,
while the second fundamental form is

1] = ialsZ—l—%alsalt,

it
where
q = (&, ) +2(a, BVt + 12,
p = (o,8,a")+[(,3,8")+ (B.8,a")|t+ (B,8,8")

A= (,8,8).

For convenience, we put

=

o), A= (.8
= (o, 8,0 )

b’:
I

and thus we have
q=1"42\t + K, p = ut* + vt + p.

For the Gauss curvature K of S we find
K=-=. (3.2)

The Beltrami operator with respect to the third fundamental form can be expressed, after a
lengthy computation, as follows.

mo_ _ 49 2282_12@5_2( @_&)2
A= —mae T waa \mta)wet et B ) 5

2
L (9P _ Pas _ paA"  qq L e 2qppe | O (3.3)
A3 2A3 A 2A2 2A4 At ot
82
= Qla 3 +Q28 8t+Q3 +Q4 +Q5 BIER

where
dq 0q Op Op

Qtzaa QS_ga pt_aa ps_%a

and Q1,Qs, ..., Qs are polynomials in ¢t with functions in s as coefficients, and deg(Q;) < 6.
More precisely we have

Q1 = —F[t2+2>\t+,‘<&]
Qy = F[ut4+(2)\,u+1/)t3+(2)\1/+p+/w)t2+(2)\p+/-w)t+/{p],

Qs = % [ut3+3m2 + (W = p+ 2+ XA+ LA - >\p+m/] ,
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Q) = % [—3u2t5 + (WA — pA — dpy — At
+ (WA= vA + 20" A = 20 p A’ — NpA — A% — 10 \uv — 2up — v* — dkp®)t3
+ (ki A — kA — %/{’,uA + 2\ A =20 A — NvA
—pA" + p'A — 3XNA? — 3\? — 6A\pp — 6k )t
+ (kA — kv A" — %FLIVA + 2 A = 2 pA" — NpA
— kA2 — 202 A% — 2K1% + p? — 2X\vp — dkup)t

+ (kp'A — kpA' — %m’pA + Ap? — KAAZ — 2m/p)] ,

1
Qs = i w28 + Quu + 223 0 + (2up + v + A \uv + kp? + A?)t?
+ (2up + A pp + 2002 + 2kuv + ANA?) 3 + (p? + ddvp + 26up + K1?
+4AN2A% 4+ 2k AR + (20\0% + 26vp + AARADE + (kp? + /{2A2)] .
Applying (3.3) for the position vector x, one finds

Ag = Q" + Q28 + Qs + QuB + (18" + Q38 t. (3.4)

Let © = (21,2, 73), @ = (a1, a0, 3) and B = (B, [a, B3) be the coordinate functions of x, a
and 3. By virtue of (3.4) we obtain

ATz, = Qo) + Qo + Qsal + Qufi + (Q1 8! + Q3B8)t, i=1,2,3. (3.5)

We denote the entries of the matrix A by A;; for i, j = 1,2,3. Using (3.5) and condition (1.3),
we have for i =1,2,3

Q107 4+ Qa8+ Qs + Qufi + (Q18 + Q38:)t = Ao + Nincva + Nigars + (M1 B1 + Mo B2 + Niz ).
Consequently

=326 7 + [(WA — pA — dpw — TARP) B; + BuABYt* + [pAc) — A%B) + (2vA + TARA) B
+ (VA= vA + 20 A = 20 A — NpA — A% — 100w — 2pp — V2 — 4kp?) 3] 3

+ [(kpf A — kp A — K A + 20/ A — 200 A — NvA — pA' + p'A — 3XA? — 3\/?

— 6Aup — 6ruv)B; + 3ApAa; — 2VA2B! — Aol + (NA + 5 v + dkp + p) A ¢

+ (3K A+ 3kv + 3Ap) AB] + (kA — kv A" — Lk'VA + 2Xp'A — 2XpA’ — NpA (3.6)
— kA% = 202A? — 2k1% + p? — 20wp — Akpup) B — 2AA%Q) — kA3

+ (AW = p+26p + NA) A}t — A* (N1 B + Aiofa + NisBs)

+ (kA — kpA' — 3K/ pA + Xp? — KAA? — 2k0p) B; — kA2 + 2kpAP]

+ (%/{’A — Ap + kv)Ad; — AY(Ajjag + Npa + Nizaz) = 0.

For i = 1,2, 3, the left hand side of (3.6) is a polynomial in ¢ with functions in s as coefficients
. This implies that the coefficients of the powers of ¢ in (3.6) must be zeros, so we obtain, for
1 =1,2,3, the following equations.

3,U25i =
(WA = pA" — 4w — TA) B + 3pAB, = 0,
pAal, — A28 + (A + TAuA) B+ (VA —vA + 2\ A
—2A\uA — NpA — A% — 10 v — 2up — v* — 4kp®)B; = 0, (3.8)

=

(3.7)
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(k' A — kpA' — IR pA + 20/ A — 20 A" — NVvA — pA' + p'A — 3XA% — 3\?
—6Apup — 6kuv) B + 3ApAal — 20A2BY — A% + (VA + 5 v + dsp + p)ABL = 0,
(kA — kv A — SEVA 4 2Xp' A = 2Xp A — NpA — kA? — 2X2A% — 2k

+p? = 20vp — dkpp) B; — 2AA% — KA?B! + (3K’ A + 3kv + 3Ap)ABL (3.10)

+ (A — p+26u + NA)Ad), = A* (N1 1 + MiaBa + NisBs),

(kp'A — kpA' — L/ p A+ Np?* — KAA? — 2k1p) B; + 2KpAP;

+ (3K'A = Mp + k) Al — kA2 = AY(Aian + Apas + Nizas).

(3.9)

(3.11)

From (3.7) one finds
p=(8.8.8")=0, (3.12)

which implies that the vectors @', 3 and 3" are linearly dependent, and hence there exist two
functions o1 = 01(s) and 09 = 09(s) such that

B =018+ 00 (3.13)
Upon differentiating (3', 3') = 1, we obtain (3, 3") = 0. So from (3.13) we have
ﬁ” = Ulﬁ. (314)

By taking the derivative of (3, 3) = 1 twice, we find that

(8.8)+(B8.8") =0.

But (3, 3') = 1, and taking into account (3.14) we find that ;(s) = —1. Thus (3.14) becomes
" = —3 which implies that
Z(/: —B;, i=1,2,3. (315)

Using (3.12) and (3.15), Equation (3.8) reduces to
WAL+ (VA —vA — 1B =0, 1=1,2,3,

or, in vector notation,

wAB + (VA —-vA — 1B =0. (3.16)

By taking the derivative of (3,3) = 1, we find that the vectors B and B3 are linearly inde-
pendent, and so from (3.16) we obtain that vA = 0. We note that A # 0, since from (3.2)
the Gauss curvature vanishes, so we are left with v = 0. Then Equation (3.9) becomes

A2 + (NA+p)AB + (A — pA' — AAD)B =0, i=1,2,3,
or, in vector notation,
—A%a” + (NA+p)AB + (A — pA — \A?)B = 0. (3.17)

Taking the inner product of both sides of the above equation with 3’, we find in view of (3.1)
that
—A%(a",B') + pA+ NA*=0. (3.18)

On differentiating A = (a/, 3') with respect to s, by virtue of (3.15) and (3.1), we get

N =(a",B)+ (', B8") = (", ) — (. B) = (", ). (3.19)
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Hence, (3.18) reduces to pA = 0, which implies that p = 0. Thus the vectors o/, 8 and o
are linearly dependent, and so there exist two functions o3 = 03(s) and o4 = 04(s) such that
o’ = Ugﬁ + 040/. (320)

Taking the inner product of both sides of the last equation with 3, we find in view of (3.1)
that o3 = (a”, 3).
Now, by taking the derivative of (a/,3) = 0, we find (a”, 3) + (', 3') = 0, that is

(", B8) +X=0, (3.21)
and hence o3 = —\. Taking again the inner product of both sides of Equation (3.20) with 3,

we find in view of (3.1) that
(", B') = ou). (3.22)

Using (3.19), we find \' = o4 A. Thus o4 = /\X/ Therefore

/
o’ = -3+ )\Xo/. (3.23)
We distinguish two cases.

Case 1, A = 0. Because of p = 0 Equation (3.17) would yield A = 0, which is clearly
impossible for the surfaces under consideration.

Case 2, A # 0. From (3.17), (3.23) and p = 0 we find that
/
—%Aza/—i—)\/Az,@,:O

which implies that M (a/ — \3') = 0.
If N # 0, then ' = A\3". Hence o and 3’ are linearly dependent, and so A = 0 which
contradicts our previous assumption. Thus X = 0. From (3.23) we have
o’ = -)\G. (3.24)

On the other hand, by taking the derivative of x and using the last equation we obtain that
Kk is constant. Hence Equations (3.10) and (3.11) reduce to

i1 B+ Niafa + NisfBs = 0,
it + Aigg 4+ Aisaig = 0,
and so \;; =0 fori,j =1,2,3.

Since the parameter s is the arc length of the spherical curve 3(s), and because of (3.12)
we suppose, without loss of generality, that the parametrization of 3(s) is

B(s) = (coss, sin s, 0).

1=1,2,3,

Integrating (3.24) twice, we get
a(s) = (184 co + Acoss, 38+ ¢4 + Asins, 58 + ),

where ¢; are constants for i = 1,2,...,6 . Since k = (a/, @) is constant, it’s easy to show
that ¢; = ¢3 = 0. Hence a(s) reduces to

a(s) = (ca+ Acoss, ¢q + Asins, czs + cg).
Thus we have
S: x(s,t) = (ca+ (AN+t)coss, ca+ (A+1)sins, c5s+ cg)

which is a helicoid.
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4. Proof of Proposition 2

Let now S be a quadric surface in the Euclidean 3-space E3. Then S is either ruled, or of one
of the following two kinds

2 —ar® — by’ =, abc # 0, (4.1)
or
a o, b o
p=ST Y a>0,b>0. (4.2)

If S is ruled and satisfies (1.3), then by Proposition 1 S is a helicoid. We first show that a
quadric of the kind (4.1) satisfies (1.3) if and only if « = —1 and b = —1, which means that
S is a sphere. Next we show that a quadric of the kind (4.2) is never satisfying (1.3).

4.1. Quadrics of the first kind

This kind of quadric surfaces can be parametrized as follows
x(u,v) = (u, v, Ve+ au? + bv2> )

Let’s denote the function ¢ + au® 4+ bv? by w and the function ¢ + a(a + 1)u? + b(b + 1)v? by
T'. Then the components g;;, b;; and e;; of the first, second and third fundamental tensors in
(local) coordinates are the following

au)? abuv bv)?
911=1+(w), g2 = ——, 922:1+(w)’
I a(ec + bv?) b — abuv b — b(c + au?)
= 12 oTT 2= T
and
2
e = % [(buv)? + (bv? + ¢)? 4 b*v*w],
ey = —wa—;; [c(a + b)uv + abuv(u® + v + w)],
2
ey = % [(auv)? + (au? + ¢)* + a*u’w] .

Notice that w and T are polynomials in u and v. If for simplicity we put

C(u,v) = (buv)® + (bv* + ¢)* + b*v*w,
B(u,v) = wv[c(a+b) + ab(u?® + v* + w)],
A(u,v) = (auwv)? + (au® + ¢)* + d*v*w,

then the third fundamental tensors e;; turns into

a? ab b2

€11 = T2 C’(u,v), €12 = —m B(U,U)a €22 = —5 A(U,U)-
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Hence the Beltrami operator A of S can be expressed as follows.

m T 9 0?2 ) 32
AT = e E A— +2abB =+ a’C s

T OB\ 0 oC 9

~ (abc)? b(b__l— av)a_+a(a_+b_)%}
T :ab2 o aZb (43)

e | (WA B g, + B+ eC) g }
L[ s 0 9 P

- (abc)? _ab ((a+1DHuA+ (b+1)vB) gu T4 b((b+1)vC + (a+ 1)uB) - 50

b% tag - = au [5ab(a + 1)u? + 5ab(b + 1)v* + ¢(3ab + 5b + a)]
ag—g + bg—f = av [5ab(a + 1)u? + 5ab(b + 1)v? + ¢(3ab + 5a + )],

uA+vB = [c+ala+ 1)u? + a(b+ 1)v?] uw

uB+vC = [c+bla+ 1)u*+b(b+ 1)v?]vw
(a+1ud+ (b+1)wB = ulcla+1)+ala+ 1)u? +alb+ 1)0?| T,
(b+1)wC + (a+1)uB = vic(b+ 1)+ bla+ 1)u? + b(b+ 1)v*] T.

We denote by A;; for i, j = 1,2, 3 the entries of the matrix A. On account of (1.3) we get

AHISL’l = AHIU = )\Hu + )\12’U + )\13\/&, .
Agy = Ay = Xgju + Aagv + Aasv/w, (4.5)
AHILL’g = AHI\/_: )\31U + >\32’U + )\33\/6_0 .

Applying (4.3) on the coordinate functions x;, i = 1,2, of the position vector & and by virtue
of (4.4) and (4.5), we find respectively

T b 2ab

pty = L [3(a 1) 4304+ 10 “”—b*)} — Dyt Apv + MgV, (46)
T p

AIIIU — _1;_2 [3(CL+ 1)u2 + 3(b_'_ 1)’U2 + W} = )\21u + )\22’(] + )\23\/(,_0. (47)

Putting v = 0 in (4.6), we obtain that

3a(a + 1)2u5 (a+1)(6b+ a + 2ab) o — (3b + a + 2ab)

2 be ab

U:)\11U+)\13VC+GU2.

Since a # 0 and ¢ # 0 this implies that « = —1. Similarly, if we put « = 0 in (4.7) we obtain
that

b(b+1)? b+1)(b 2ab b 2ab
_3( + )U5_( + )( + 6a + a)vg_( + 3a + a)U:)\22U+)\23m.

c? ac ab

This implies that b = —1. Hence S must be a sphere.
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4.2. Quadrics of the second kind

For this kind of surfaces we can consider a parametrization

2

x(u,v) = <u, v, gu2+évz).

Then the components g;;, b;; and e;; of the first, second and third fundamental tensors are
the following.

g = 1+ (au)?, gi2 = abuv, goo = 1+ (bv)?,
a b
bll = ﬁa 612 = O> b22 = %?
a? a’b? b?
€11 — 9—2(1 + b2U2), €19 — —? uv, €29 = 9—2(1 + a2u2),

where g = det(g;;) = 1 + (au)? + (bv)*.
A straightforward computation shows that the Beltrami operator A! of S takes the
following form.

m_ _g(l+a’u?) 0  g(1+b%%) 0% 2 5 0 o 0
Al = a? ou? b2 Ov? 2uvg@u8v 2ug ou 2vug ov

(4.8)

On account of (1.3) we get

A]HLE‘I = AHIU = >\11U + )\121) + )\13 (g U2 + g U2) y (49)
AHISL’Q = AHIU = >\21U + )\221) + )\23 (g U2 + g U2) y (410)
AHI:L'g, :AHI\/(;: )\31’& + )\321) + )\33 (g u2 + g U2) .

Applying (4.8) on the coordinate functions x;, i = 1,2, of the position vector & and by virtue
of (4.9) and (4.10) we find respectively

AHIU = —2ug = )\11’& + )\12’U + )\13 (g U2 + g'l}2) s (411)
AIHU = —2Ug = )\glu + )\22’0 + )\23 (% U2 + g’U2) . (412)
Putting v = 0 in (4.11), we obtain that
—2a2u3 —2u = >\11u + )\13 g U2.
This implies that a must be zero. Putting u = 0 in (4.12), we obtain that
23 b o
—2b%v —21]:)\22’0—'—)\2351) .

This implies that b must be zero, which is clearly impossible, since @ > 0 and b > 0.
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