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Abstract. In this paper the problem of introducing new normal forms of mathe-
matical objects is considered in the case of Euclidean geometry. Normal forms of
plane geometry objects such as triangles up to similarity are considered. Several
normal forms for triangles and a normal form for quadrangles of special case are
described. Normal forms of simple plane objects such as triangles can be used in
mathematics education, computations and research.
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1. Introduction

Many problems and applications of classical Euclidean geometry consider objects up to simi-
larity, explicitly or implicitly. Understanding and using similarity is an important geometry
competence feature for schoolchildren and all practitioners using geometry.

Recall that two geometric figures A and B are similar if B can be obtained from A
after a finite composition of translations, rotations, reflections, and dilations (homotheties).
Similarity is an equivalence relation and thus, for example, the set of all triangles in a plane
is partitioned into similarity equivalence classes which can be identified with similarity types
of triangles.

In many areas of mathematics objects are studied up to equivalence relations. The prob-
lem of finding distinguished (canonical or normal) representatives of equivalence classes of
objects is posed. Alternatively, it is the problem of mapping the quotient set injectively back
into the original set.

Let X be a set with an equivalence relation ~ or, equivalently, R C X x X, and denote
the equivalence class of x € X by [z]. Let 7: X — X/R be such that n(z) = [z] is the
canonical projection map. We call a map o: X/R — X normal object map if 7o o =idx/g .
For example, there are various normal forms of matrices, such as the Jordan normal form.
See the examples of normal forms in algebra SHAFAREVICH [4] and PAOLINI [3] for related
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recent work. Normal objects are designed for educational reasons, for pure research (e.g.,
for classification) and for applications. Normal objects are constructed as objects of simple,
minimalistic design, to show essential properties and parameters of original objects. Often
it is easier to solve a problem for normal objects first and extend the solution to arbitrary
objects afterwards. Normal objects, which are initially designed for education, pure research
or problem solving purposes, are also used to optimize computations.

In elementary Euclidean geometry the normal map approach does not seem to be popular
working with simple objects such as triangles. We can pose the problem of introducing and
using normal forms of triangles up to similarity. This means, to describe a set S of mutually
non-similar triangles such that any triangle would be similar to a triangle in S.

Thus, our goal in this paper is to describe uniquely defined representatives of similarity
classes of triangles instead of studying properties of members of these classes in an invariant
way, for example, using homogeneous, trilinear or other coordinates.

We assume that Cartesian coordinates are introduced in the plane; S is designed using
the Cartesian coordinates. For triangles we offer three normal forms based on side lengths.
Using these normal forms, the set of triangle similarity forms is bijectively mapped to a fixed
plane domain bounded by lines and circles. For these forms two vertices are fixed, and the
third vertex belongs to this domain. We call them the one vertex normal forms. One vertex
normal forms are also generalized to quadrangles. Another normal form for triangles is based
on angles and circumscribed circles. For this form one constant vertex is fixed on the unit
circle, and two other variable vertices also belong to the unit circle; we call this form the circle
normal form.

These normal forms may be useful in solving geometry problems involving similarity
and teaching geometry. The paper may be useful for mathematics educators interested in
developing and improving mathematics teaching.

2. Main results

2.1. Normal forms of triangles
2.1.1. Notations

Consider R? with a Cartesian system of coordinates (z,y) with the origin O. We think of
classical triangles as being encoded by their vertices. Strictly speaking, by the triangle AXY Z
we mean the multiset {{X,Y, Z}} of three points in R? each point having a multiplicity of
at most 2. A triangle is called degenerate if the points lie on a line. Given AABC', we denote
/BAC = o, LZABC = 3, ZACB = ~, |BC| = a, |AC| = b, and |AB| = b. We exclude
multisets of type {{X, X, X'}}.

We will use the following affine transformations of R?: 1) translations, 2) rotations, 3)
reflections in an axis, 4) dilations (given by the rule (z,y) — (cz,cy) for some ¢ € R\{0})
(see AUDIN [1] and VENEMA [5] for comprehensive expositions). It is known that these
transformations generate the dilation group of R?, denoted by some authors as IG(2) (see
HAZEWINKEL [2] or PAOLINI [3]). Two triangles T} and Ty are similar if there exists g € IG(2)
such that ¢g(77) = T (as multisets). If triangles T} and Ty are similar, we write 7} ~ T3 or
ANX Y17, ~ ANX3Yo 7.

We use normal letters to denote fixed objects and calligraphic letters to denote objects
as function values.
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2.1.2. The C-vertex normal form

A normal form can be obtained by transforming the longest side of the triangle into a unit
interval of the z-axis. We call it the C'-normal form. In this subsection we set A = (0,0) and
B =(1,0).

Definition 2.1. Let So C R? be the domain in the first quadrant bounded by the lines y = 0,

1 and the circle 27 + y? = 1 (see Figure 1).

In other terms, S¢ is the set of solutions of the system of inequalities
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Figure 2: The subdomains of S¢ corresponding
Figure 1: The domain S¢ to obtuse and acute triangles

Theorem 2.2. Every triangle AUVW in R? (including degenerate triangles) is similar to a
triangle NABC, where A = (0,0), B =(1,0) and C € Sc.

Proof. Let the AUVW have side lengths a, b and ¢, satisfying a < b < ¢. Perform the
following sequence of transformations:
1. translate and rotate the triangle so that the longest side is on the z-axis; one vertex has
coordinates (0,0) and another vertex has coordinates (c¢,0) where ¢ > 0;

2. if the third vertex has a negative y-coordinate reflect the triangle in the x-axis;

3. do the dilation with coefficient é ; note that after this the vertices on the z-axis have
coordinates (0,0) and (1, 0); the third vertex has coordinates (2}, y;), where 22 +y2 < 1
and (f, — 1)° +y2 < 1;

4. if < % then reflect the triangle in the line x = %; denote the third vertex by C =
(xc, yo); by construction we have that C € Se.

The image of the initial triangle AUV W is the triangle AABC, where C € S¢. All transfor-
mations preserve the similarity type; therefore AUVW ~ AABC. O

Theorem 2.3. If C, € S¢, Cy € S¢ and Cy # Cy then AABC, & ANABCs .
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Proof. It ZC1AB = ZC3AB and C) # C5 then ZC,BA # ZC3BA. By the equality of angles
for similar triangles it follows that AABC £ AABCs.

Let ZC1AB # ZC3AB. The angle ZC;AB is the smallest angle in AABC;. By the equality
of angles for similar triangles it again follows that AABC, %2 ANABC,. O

Definition 2.4. If AABC ~ AUVW with C € S¢g, then AABC is called C-vertex normal
form of AUVW , and C is its C'-normal point.

Remark 2.5. Denote by R¢ the intersection of the circle (z —1)*+y? = (3)? and Sc. Points of
R¢ correspond to right angle triangles. Points below and above R¢ correspond to, respectively,
obtuse and acute triangles (see Figure 2).

1

Points on the line z = % with 0 < y < 5 correspond to isosceles obtuse (nondegenerate)

triangles. Points on the line x = % with % <y < @ and the boundary of S¢ with x > %
and y > 0 correspond to isosceles acute triangles. Points in the interior of S¢ correspond to
scalene triangles. The point (%, ?) corresponds to the equilateral triangle. Points on the
intersection of the line y = 0 and S¢ correspond to degenerate triangles. C = B holds for

triangles with side lengths 0, ¢ and c.

2.1.3. The B-vertex normal form

Another normal form can be obtained by transforming the median length side (in the sense
of ordering) of the triangle into a unit interval of the z-axis. By analogy it is called the
B-normal form. In this subsection we set A = (0,0) and C' = (1,0).

Definition 2.6. Let Sg C R? be the domain in the first quadrant bounded by the line y = 0
and the circles 22 + y?> = 1 and (z — 1)? + %> = 1 (see Figure 3).
In other terms, Sp is the set of solutions of the system of inequalities

y >0,
4yt > 1,
(z—1)2+y*<1.

-0.5}
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Figure 4: The subdomains of Sg corresponding

Fi : Th i
igure 3 e domain S to obtuse and acute triangles

Theorem 2.7. Every triangle AUVW in R? (including degenerate triangles) is similar to a
triangle AABC', where A = (0,0), C = (1,0) and B € Sg.
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Proof.  Let AUVW have the side lengths a, b and ¢ satisfying a < b < ¢. Perform the
following sequence of transformations:
1. translate and rotate the triangle so that the side with length b is on the x-axis, one vertex
has the coordinates (0,0) and another vertex has the coordinates (b,0) with b > 0; the
side with length c is incident to the vertex (0, 0);

2. if the third vertex has a negative y-coordinate reflect the triangle in the x-axis;

3. do the dilation with the coefficient l; note that the vertices on the z-axis have the
coordinates (0,0) and (1,0); at this point the third vertex B has coordinates (z'5,y),
where y >0, 23+ yE>1or (5 — 1)  +yp < 1.

The image of the initial triangle AUV W is the triangle AABC, where B € Sp. All transfor-
mations preserve the similarity type; therefore AUVW ~ ANABC. O

Theorem 2.8. If By = (v;,y;) € Sp, Bs = (w9,y2) € Sp and By # By then NAB,C
ANAB,C.

Proof. The angle ZB;AC' is the smallest angle in the triangle AAB;C.

If /B1AC # ZByAC then, since these are the smallest angles in the triangles, it follows that
NABC & NAByC.

If /B1AC = /By AC and By # B then ZACB, # ZACB,. The angle ZAC B; is the biggest
in AAB;C; therefore ZAC B, # ZACB; implies AABC % AByC. O

Definition 2.9. If AABC ~ AUVW with B € Sg then AABC' is called B-vertex normal
form of AUVW  and B is its B-normal point.

Remark 2.10. Denote by Rp the intersection of the line z = 1 and Sg. Points of Rg correspond
to right angle triangles. Points to the right and left of Rp correspond to, respectively, obtuse
and acute triangles (see Figure 4).

Points on the boundary of S with x < 1 correspond to isosceles acute triangles. Points on
the boundary of Sp with 1 < z < 2 and y > 0 correspond to isosceles obtuse (nondegenerate)
triangles. Points in the interior of Sp correspond to scalene triangles. The point (2, \f)
corresponds to the equilateral triangle. Points on the intersection of the line y = 0 and Sp
correspond to degenerate triangles. B = C holds for triangles with side lengths 0, ¢ and c.

2.1.4. The A-vertex normal form

Finally a normal form can be obtained by transforming the shortest side of the triangle into
a unit interval of the z-axis. By analogy, it is called the A-normal form. In this case again
the two vertices on the z-axis are (0,0) and (1,0); the domain S4 of possible positions of the
third vertex is unbounded. In this subsection we set B = (0,0) and C' = (1,0).

Definition 2.11. Let S4 C R? be the unbounded domain in the first quadrant bounded by
the lines y = 0, 2 = § and the circle (z — 1)? + y? = 1 (see Figure 5).
In other terms, S, is the set of solutions of the system of inequalities

y >0,
z %

(x
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Figure 6: The subdomains of S4 corresponding
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Theorem 2.12. Every triangle AUVW in R? (including degenerate triangles, but excluding

the similarity type having side lengths 0, ¢ and c) is similar to a triangle AABC, where
B =(0,0), C =(1,0) and A € S4.

Proof. Let AUVW have side lengths a, b and ¢ satisfying a < b < ¢. Perform the following
sequence of transformations:
1. translate and rotate the triangle so that the side of length a lies on the z-axis, one vertex
has the coordinates (0,0) and another vertex has the coordinates (a,0) with a > 0; the
side of length ¢ is incident to the vertex (0,0);

2. if the third vertex has a negative y-coordinate reflect the triangle in the x-axis;

3. apply the dilation with coefficient %; note that the vertices on the z-axis have the
coordinates (0,0) and (1,0).

The image of the initial triangle AUV W is the triangle AABC, where A € S,. All trans-

formations preserve the similarity type; therefore AUVW ~ AABC. O

Theorem 2.13. Let B = (0,0) and C' = (1,0). If Ay = (z;,y;) € Sa, Ay = (x2,y2) € Sa and
Al % A2 then AAlBC 76 AAQBC

Proof. The angle ZBC'A; is the largest in the triangle AA; BC'.

If /ZBCA, # ZBC A, then, since these are the largest angles in the triangles, it follows that
NABC A NA;BC.

If /BCA, = ZBCA; and A; # Ay then /BA,C # ZBA;C. The angle /BA;C is the
smallest in AA; BC; therefore A;BC # A;BC implies AABC + AB5C. O

Definition 2.14. If AABC ~ AUVW with A € S4 then AABC is called A-vertex normal
form of AUVW  and A is its A-normal point.

Remark 2.15. Denote by R4 the intersection of the line x = 1 with S, . Points of R4 corre-
spond to right angle triangles. Points to the right and left of R4 correspond to, respectively,
obtuse and acute triangles (see Figure 6).

Points on the boundary of S, with x < 1 correspond to isosceles acute triangles. Points on
the boundary of Sy with > 1 and y > 0 correspond to isosceles obtuse (nondegenerate)

triangles. Points in the interior of S4 correspond to scalene triangles. The point (%, ?)
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corresponds to the equilateral triangle. Points on the intersection of the line y = 0 and Sy4
correspond to degenerate triangles excluding the similarity type with side lengths 0, ¢ and ¢,
which corresponds to the point at infinity. In contrast to the C-vertex and B-vertex normal
forms, the triangles of the A-vertex normal form are not bounded.

2.1.5. The circle normal form

Consider R? with a Cartesian system of coordinates (z,y) with the origin O. We also consider
polar coordinates [r, ¢| introduced in the standard way: the polar angle ¢ is measured from
the positive x-axis going counterclockwise.

Note that the angles o, # and v of a nondegenerate triangle with o < 3 < y satisfy the

system of inequalities
{ 0<a< g,

a<f<ios

Similarity types of nondegenerate triangles are parametrized by one point in the domain in
the (a, B)-plane determined by the system

a >0,
f=a,
<r_
p= 2 2
(see Figure 7).
B y
_T_ @ A
F=373 5
B
B |
|
e
|
— — T | b
=« a 3 5 %‘;g
B
a
Figure ‘7: .Th'e parametrization of the Figure 8: Construction of a
similarity types by (o, 3) normal circle triangle

For the normal form described in this subsection, the vertex with the biggest angle will be
fixed at (1,0), and, in order to be consistent with the previous notations, we define C' = (1, 0).
For this normal form only nondegenerate triangles are considered.

In this case all normal form triangles are inscribed in the unit circle U = {2% + ¢y = 1}

having C as one of the vertices.

Definition 2.16. A triangle AABC inscribed in U is called a normal circle triangle if
L.L0<a<3,
2. o S 6 S g - % )
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3. C'=(1,0),

4. the point A is above the z-axis,

5. the point B is below the z-axis.

Remark 2.17. A normal circle triangle with given angles a < 3 <~ can be constructed in the
following way (see Figure 8):
1. choose a point B below the y-axis with the argument equal to 2«a, where 0 < 2a < %’r ;

2. draw the bisector of ZBOC let D denote the intersection of this bisector with the arc
BC' with the center angle 21 — 2q;

3. find the point B which is symmetric to B with respect to the z-axis;
4. choose a point A at the shorter arc BD.

Theorem 2.18. For every nondegenerate triangle NUVW there exists a normal circle trian-
gle AABC' such that AUVW ~ ANABC.

Proof. Suppose that AUV W has angles with o < § <. Let B € U be the point with polar
coordinates [1, —2a]. Let A € U be the point with polar coordinates [1,23]. Then, since
AABC is inscribed in U, we have ZBAC = o, ZABC = (§ and thus AABC ~ AUVW. 0O

Theorem 2.19. Let ANA;BCy and AA;BCs be two distinct normal circle triangles with
Al % A2 or Bl % Bg . Then AAchl 74 AAQBCQ .

Proof. If Ay # Ag, then /B1AC # /ByA;C. Since angle /B;A;C is the smallest in
NA;B;C, we have NA1B1C « ANAyBsC.

If By # By and A; = A, then ZA;CB; # ZA;CB;y. The angle ZA;CB; is the largest in
AAZBZC Therefore, ZAlCBl §£ ZAQCBQ 1mphes AAlBlC 76 AAQBQC O

Definition 2.20. The normal triangle AABC such that AUVW ~ AABC' is called circle
normal form of AUVW.

Remark 2.21. The only isosceles normal circle triangles are normal circle triangles of type
ABBC and ABDC'. Right normal circle triangles are normal circle triangles with AB pass-
ing through O. Acute/obtuse normal circle triangles are normal circle triangles with O in-
side/outside AABC'. In contrast to the one vertex normal forms, the side lengths at triangles
of the circle normal form can be arbitrarily small.

2.1.6. Conversions

Definition 2.22. According to the previous Definitions 2.4, 2.9 and 2.14, let X be the X-
normal point in the cases X = A, B or C'. Then the pair of coordinates of X in terms of the
side lengths a, b and ¢ is denoted by Nx(a,b, c). Note that Nx is a symmetric function. We
can also think of arguments of Ny as multisets and think that Nx(a,b,c¢) = Nx (L), where L
is the multiset {{a,b, c}}.
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Theorem 2.23. Let AABC have side lengths a < b < c. Then
1. Nc(a,, b’ C) = (_a2 + b? + ? \/—a4 — b4 — A+ 2(a2b2 +a2¢2 + b202)) ;

2¢2 ’ 2¢2

—a? +b? + 2 —at — bt — ct 4+ 2(a?b? 4 a?c? + b2 ?)
2. NB(a'> ba C) = ( 2h2 ) \/ 2h2 ;

a2 b2+ \/—at — bt =t +2(a2b? + a2 + b2c?)
2a2 ’ 2a2 ’

3. Na(a,b,c) = (

Proof. 1. Translate, rotate and reflect AABC so that A = (0,0), B = (¢,0), and point
C' = (z,y) lies in the first quadrant. For (z,y) we have the system

24yt = 2,
(c—a)+y*=a?

and find
_ —a? 4 b+ P
a 2c ’
y — V—at = bt — et +2(a?b? + a?c? + b2 c?)
2c '

After the dilation with the coefficient é we get the given formula.

2. and 3. can be proved are in a similar way. O

Theorem 2.24. Let the triangle T have the angles a < 8 <. Then
sina  sinf 1) )

siny’ sin~y’

1. its C'-normal point is No (

2. if T has the C'-normal point (z,y) then it has the angles o = arctan% , B = arctan %

and v = m — arctan Y _ arctan : y_.
x

sina  sinvy ) .
sin3’ sinpB’ ’
4. if T has the B-normal point (x,y) then it has the angles o = arctan

Yy Yy
and v = m — arctan :
T — v x—1"
sin3 sinvy )
) 1 )

. 9 .
S o S o

3. its B-normal point is Np (

Y

Y B=—arctan L+
X X

arctan

5. its A-normal point is N4 (
Y

6. if T has the A-normal point (x,y) then it has the angles « = — arctan % +arctan ——,

Y

x—1

B = arctan Y and v = 7 — arctan
x

Proof. 1. Let AABC be the C-normal triangle with the angles « < 8 < v, i.e., |[AB| = 1. By

sin sin «v
p and a =

e By definition, C' has the coordinates

the law of sines we have b = |AC| =

(sina sin 3 >

C . P 9 1).

siny’ sin~y

2. Let C'D be a height of AABC. Formulas for angles are obtained considering AAC'D and
ABCD.

3., 4., 5., and 6. are proved similarly. O
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2.2. Normal forms of quadrangles

In this subsection we consider multisets of four points in a plane. A multiset of four points
can be interpreted as a quadrangle. We exclude the case of one point with multiplicity 4.
The multiset @ = {{X,Y,Z,T}} is also denoted as OXY ZT. We define ; ~ @y provided
that there is an element of the dilation group g such that g(Q;) = Q5.

A set of four points defines a set of 6 mutual distances. Choosing any two points, we can
translate, rotate, reflect, and dilate the given four -point configuration so that the chosen two
points get coordinates A = (0,0) and B = (1,0). Different normal forms can be obtained
choosing pairs with different relative metric properties. In this paper we only consider the
simplest case — two points having the maximal distance are mapped to the z-axis.

2.2.1. Longest distance normal form

Suppose we are given a quadrangle OXY ZT such that | XY| > |XZ|, |[XY| > |XT|, | XY| >
YZ|, | XY| > |YT|, and |XY| > |ZT|. We map X and Y by an affine transformation to
the z-axis (to A = (0,0) and B = (1,0)) and determine what are the positions of the two
remaining vertices C' and D so that OXY ZT ~ OABCD.

Definition 2.25. If p € R? is mapped under reflections in the z-axis and the line z = % into
the domain y > 0, x > % then its image is denoted by ps.

Definition 2.26. The point (x1,y,) is lexicographically smaller than the point (zs,y2) and
denoted as (x1,y1) < (we,y0) if (1 < x2) or (x1 = 29 and y; < yo).

The lexicographical order of points can be extended to a lexicographical ordering of sequences
of points: the sequence of points [py, ps] is lexicographically smaller than the sequence [q1, go],
denoted by [p1, pa] < [q1, g2, if (p1 < ¢1) or (p1 = ¢ and py < o).

Definition 2.27. Let p,p’ € R%. We say that p is quasilezicographically smaller or equal
to p’, denoted by p < p/, if ps < pl, or ps = p.. Given two pairs [p,¢] and [p',¢'], we write
p.q] <[, qTif (ps < py) or (ps =p, and ¢ < ¢').

Definition 2.28. Let Sp(zo,yo) € R? with (z9,y0) € Sc (for the definition of S¢ see Sec-
tion 2.1.2) be the set of solutions of the following system of inequalities (see Figure 9):

>4 y? <1,

(r =1 +y* <1,

(x—x0)* + (y —yo)> < 1, (1)
|z — 5| < |zo — 51,

if |z — %] = |zo — 3| then [y| < |yol.

Remark 2.29. The conditions for p € Sp(zg, yo) consist of two parts:
1. the distance from p to A, B and (xg, yo) is less than or equal to 1;

2. ps < (%o, Yo)-
Theorem 2.30. Every OUVW Z in R? as described in the beginning of Subsection 2.2.1

(including multisets with multiplicities at most 3) is similar to ODABCD, where A = (0,0),
B = (1,0), C e Se, and D € SD(C)

Proof. Let UVW Z be a multiset of points in R? with at least two distinct elements. Perform
the following sequence of transformations:



P. Daugulis, V. Vagale: Normal Forms of Triangles and Quadrangles 183

(X -X0)2+ (Y -yo)?=1

Figure 9: Example of the domain Sp

1. Translate and rotate the plane such that two points with the longest distance between
are mapped to the z-axis, one vertex obtaining the coordinates (0,0) and the other
obtaining the coordinates (d,0) where d > 0.

2. Apply the dilation with coefficient é Note that the vertices on the z-axis get the
coordinates (0,0) and (1,0); suppose that the two remaining vertices have coordinates
(zc, yc) and (zp, yp).

3. If |zc — 3| # |zp — %] then put the point with the maximal |z — 3| value into Sc by

1

reflections in the z-axis and the line x = 3

4. If |zc—3| = |xp—1| then put the point with the maximal |y|-value into S¢ by reflections
1

in the z-axis and the line z = 3

5. 1If [zc — 5| = |zp — 3| and |yc| = |yp| then map any of the points into S¢ .
Let C' = (z¢,yc) denote the point which has been mapped to S¢ by this sequence of trans-
formations and let the fourth point be D = (zp,yp). For any C' = (x4, yo) € Sc we have that
Sp(xo,y0) # 0.
We check that D € Sp(xzc,yc). From the conditions |[AD| < 1, |[BD| < 1 and |CD| <1
it follows that D satisfies the first three inequalities of the system 1. If |yp| > |yc| then
lzp — 3| < |ze — 3| due to the quasilexicographic order condition. D

Definition 2.31. The longest distance normal form of OUVW Z is DABCD with A = (0,0),
B = (1,0), C = (z¢,yc) € Se, and D € Sp(ze, ye), constructed according to the algorithm
given in the proof of Theorem 2.30.

Theorem 2.32. Let DABC Dy and OABC5Dy be two quadrangles constructed according to
the longest distance normal form algorithm.
[f Cl §£ C2 or D1 §£ D2 then DABchl 74 DABCQDQ.

PTOOf. D; <« C“ therefore, if Cl §£ 02 then DABchl 74 DABCQDQ.

In the remaining case C; = (3 we use an indirect proof. Suppose there is a similarity with
OABC,D; — OABC,D,. If a similarity mapping fixes three noncollinear points A, B and C;
then it must fix any other point of the plane. If A, B and C; are on the z-axis then D; must
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also be on the z-axis and must be fixed. Therefore Dy # Dy implies OABC, D o OABCy D4
in this case. o

3. Possible uses of normal forms in education

One vertex normal forms of triangles can be used to represent all similarity types of triangles in
a single picture with all triangles having a fixed side, especially C-vertex and B-vertex normal
forms. It may be useful to have an example for students showing that the similarity type of
any triangle can be parametrized by coordinates of a single point. Similarity types of triangles
having specific properties (e.g., isosceles triangles) may correspond to subsets of normal points;
this may stimulate interest and advances in the coordinatization of mathematical concepts.
One vertex normal forms can also be used in considering quadrangles.

The circle normal form of triangles may be useful for teaching properties of circumscribed
circles, e.g., inscribing triangles with given angles in a circle in a canonical way.

Normal forms of triangles can also be used to teach the idea of normal (canonical) objects
using a case of simple and popular geometric constructions.

4. Conclusion and further development

It is relatively easy to define normal forms of triangles up to similarity. Only simple ap-
proaches, which may be used in teaching and applications, are considered in this paper. One
approach is to map one side to the z-axis and to use dilations and reflections in order to
position the third vertex in a unique way. In this approach normal triangles are parametrized
by one vertex. This approach can be generalized for quadrangles. Another approach consid-
ered in this paper is to design normal triangles as triangles inscribed in a unit circle. Further
developments in this direction may be related to using other figures related to a given triangle,
for example, the inscribed circle, medians, altitudes, or bisectors.
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