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Abstract. The aim of the present work is to investigate the relations in a triangle
in order to have two cevians equal, given the fact that they intersect in a point of
a third cevian. Obviously the Steiner Lehmus theorem deals with the specific case
of cevians being angle-bisectors. All possible combinations of external or internal
cevians, plus the possibilities of equicevian points are examined.
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1. Introduction

Prologue. Fortyone years ago, while I was a student at the National Technical University of
Athens, I was given a problem (Appendix 1) to solve by one of the most famous final year
students (famous mainly for his mathematical experience and skills). He said to me that
“only ten people in Greece can solve this problem, using Euclidean Geometry”, since analytic
geometry was an anathema for us purists. That problem took me an embarrassingly long
time to solve, or so I thought, because when I showed my 10–15 pages long “solution” to my
mathematical genius friend, he said dryly “too long” and he didn’t bother to look further,
although he never solved it as far as I know. The funny thing was, as I found out after I
swallowed and digested my pride, that he was right. I finally came to deal with this problem
fifteen years ago and that forms the basis of the present work.

Let M be a point in the plane of 4ABC and let AH, BD and CE be three cevians
through M , inside the triangle as in Figure 1 or outside as in Figure 2. Let BH = a, CH = b,

AH = V and MH = x, also let the angle ÂHB = φ̂. These four entities are the defining
parameters of the triangle and of the cevians in order to calculate the conditions and the
relations which control the equality of cevians BD and CD. Also let a < b.

As shown in Figure 2, the cevians intersect on the extension of AH in the region P1, which
is bounded by BC and the extensions of AB and AC, while the external cevian CE exists in
this part of the plane and the external cevian BD exists in the region P2 bounded by AB
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a) b) c)

Figure 1: Cevians BD, CE and point M in the triangle ABC:
a) φ̂ < 90◦, b) φ̂ > 90◦, c) φ̂ = 90◦.

and the extensions of BC and AC. Obviously, the cevian AH is internal. If the cevians are
external they can exist in three regions of the plane of 4ABC, in P1 and P2 as defined above
and in P3, which is bounded by AC and the extensions of AB and BC.

As can easily be seen, when the two cevians are external, the third one has to be internal
and this is why in this work the cevian going through A is assumed to be always internal. (For
example, in Figure 2, the cevian BD is in P1 and P2, the cevian CE is in P3 and P1; so if
BD and CE intersect this has to take place in P1, so AH is internal and its extension is in
P1). The external cevian BD can be either in P2 or in P1, the external cevian CE either in

P3 or P1 and the angle φ̂ can have two ranges of values, 0 < φ̂ < 90◦ or 180◦ > φ̂ > 90◦, or
the specific value φ̂ = 90◦. All the above can be summed up in Table 1 which also indicates
which combination allows an equality of cevians.

Table 1: Equality of cevians: + if possible, − if impossible.

Cases 0 < φ̂ < 90◦ φ̂ = 90◦ 90◦ < φ̂ < 180◦

1. BD, CE, in triangle Figure 1a + Figure 1c + Figure 1b +

2. BD in P2, CE in P1 Figure 2a + Figure 2c + Figure 2b +

3. BD in P1, CE in P1 Figure 3a − Figure 3c − Figure 3b +

4. BD in P2, CE in P3 Figures 4a, 7a + Figure 4c − Figures 4b, 8a +

5. BD in P1, CE in P3 − − −

The case φ̂ = 90◦ is fundamental for the study of equal cevians; so, it is examined in
Section 2 for internal cevians and in Section 3 for external cevians. In [2] an interesting
work is presented, related to equicevian points on the altitude of the vertex A (A-equicevian
points, as stated in [2], [3] and [4]). The same results are obtained in the present paper with
the Theorems 1 and 2, however by using a different method. In [2] it is also proved that if

A-equicevian points exist then angle Â ≤ 45◦ at 4ABC.



K. Myrianthis: On the Equality of Cevians: Beyond the Steiner-Lehmus Theorem 187

In Section 4 the Case 1 with φ̂ 6= 90◦ and with internal cevians is examined, and in
Section 5 a specific version of Case 4 (where φ̂ > 90◦) with external cevians (because of
common geometrical conditions and equations). In Section 5 the rest of the cases are examined

where φ̂ 6= 90◦ and BD, CD are external cevians. Section 6 deals with the case of angle-
bisectors as cevians (Steiner-Lehmus theorem). For all figures in this work the parameters are
listed in Table 2.

The famous Steiner-Lehmus (S-L) theorem is a topic which has gathered much interest
and on which much work has been accumulated, and this body of work is still growing. In [7] a
collection of 9 proofs of this theorem is presented. In [12] the problem of equal external angle-
bisectors (external S-L theorem) is presented and solved. In [9], by virtue of an algorithmic
method (Gröbner Cover), all possible cases of equal internal and external angle-bisectors
are discussed. In [5] one can find a very handsome “indirect” proof of the S-L theorem (the
Schizoid Scissors, based on Coxeter and Greitzer’s “Geometry Revisited” [6]), which, after
some very eloquent arguments of the authors, appears to be quite “direct”, and additionally
all cases of external S-L theorems are examined. In [8] all cases of the internal and external
S-L theorem are analysed using trigonometric functions.

In [3] one can find a thorough study on the existence and properties of the equicevian
points of a triangle and their related equations, closely related to Marden’s theorem and
Steiner’s circumellipse, together with an insightful review of the existing bibliography. This
work is complemented by [4] (where the length of each real and imaginary cevian is calculated
and the focal points of the Steiner circumellipse are related to the equicevian points).

In Section 7 an attempt is made to investigate the properties of equicevian points (based on
[3]), using the theorems and equations of this work. This approach could be further exploited
in future. Finally, in Section 8, a calculation of the angle of 4A′BC (related to 4ABC in

Figure 9c) is presented, inspired by work on [2], extending the inequality Â ≤ 45◦ in 4ABC
to the cases where the third cevian AH is not an altitude of the triangle. The approach in the
present work, based on φ̂ and on BH = a, CH = b, AH = V and MH = x, may not be the
most suitable one for studying the S-L theorem. However, when studying A-equicevian cases
(such as the ones in Table 1), it appears to provide a flexible environment which allows an
uniform approach to all the cases listed in this table.

This work is just one example of the strong attraction the quest of finding two or three
equal cevians in a triangle exerts over many mathematically-minded people. The quest
becomes even more intense as time goes by for anyone who endeavours to pursue it, because
the relevant mathematical environment is surprisingly complex and interesting. It seems that
the equality of cevians is still a very fertile ground for further research and it still can generate
mathematical enjoyment for many participants.

2. Equality of internal cevians when φ̂ = 90◦

Case 1, BD and CE in the triangle ABC:

In Figure 1c we have the case of 4ABC with φ̂ = 90◦ and internal cevians. From Appendix 2,
which holds for the general case 0 < φ̂ < 180◦, we get EE ′ = xV (a+ b)/(V b+ xa). Similarly
we get DD′ = xV (a + b)/(V a + xb). From Figure 1c we also get EE ′/x = EC/MC and
MC = (x2 + b2)1/2, hence EC = (EE ′/x)(x2 + b2)1/2. Thus we obtain

EC =
(
(a+ b)V (x2 + b2)1/2

)
/(V b+ xa) and (1)

BD =
(
(a+ b)V (x2 + a2)1/2

)
/(V a+ xb). (2)
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a) b) c)

Figure 2: Cevian BD in P2, cevian CE and point M in P1,
a) φ̂ < 90◦, b) φ̂ > 90◦, c) φ̂ = 90◦.

From the Eqs. (1) and (2) we obtain in the case BD = CE

(x2 + a2)1/2/(x2 + b2)1/2 = (V a+ xb)/(V b+ xa)

and therefore

b2x4 + V 2a2x2 + 2abx3V + b4x2 + 2ab3V x = a2x4 + V 2b2x2 + 2abx3V + a4x2 + 2a3bV x.

For b 6= a and x 6= 0 follows

f(x) = x3 − x
(
V 2 − (a2 + b2)

)
+ 2abV = 0. (3)

This equation controls the conditions for the equality of cevians in a non-isosceles triangle
4ABC and where these cevians intersect exactly on AH (MH = x). The condition f ′(xd) = 0
gives

xd = ±
[(
V 2 − (a2 + b2)

)
/3
]1/2

. (4)

If V < (a2 + b2)1/2, it is obvious that Eq. (3) does not have any positive solution; so there are
no equal cevians apart from the case where a = b. We can further narrow the range of values
of V , a and b which give us equal internal cevians by plugging the positive value of xd from
Eq. (4) into Eq. (3) and solving it in order to find the relations between V , a, b which give us
a double solution (double point xd, f

′(xd) = f(xd) = 0), as shown in Appendix 4. Thus we get

V = Vd = (a2/3 + b2/3)3/2, (5)

xd = (ab)1/3(a2/3 + b2/3)1/2. (6)

The two equations above show beauty and harmony to a certain extent. In Appendix 4 the
value of BDd = CEd is also calculated.
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Obviously, for the case V > (a2/3 + b2/3)3/2, we get from (3) three distinct algebraic roots
x1, x2 and x3. The product of these three roots gives x1x2x3 = −2abV < 0. Taking into

account that f ′(x) = 0 for x = xd = ± [(V 2 − (a2 + b2))/3]
1/2

, we get

x3 < −
[
(V 2 − (a2 + b2))/3

]1/2
< x2 <

[
(V 2 − (a2 + b2))/3

]1/2
< x1,

and, since x1x2x3 < 0, we have x1 > 0 and x2 > 0. Hence, for this case we always have two
solutions from Eq. (3) which produce equal cevians BD and CE. Also by setting x = V and
by using (3) we get

f(x) = V 3 − V
(
V 2 − (a2 + b2)

)
+ 2abV > 0.

So we always have 0 < x2 < x1 < V .
All the above leads to the following theorem:

Theorem 1. Let 4ABC be a triangle with the height AH and two internal cevians BD and
CE, intersecting at the point M on AH. Let BH = a, HC = b, AH = V , MH = x, and the

angle ÂHB = φ̂ = 90◦. There are three conditions related to the equality of cevians BD and
CE.

1. If V < (a2/3 + b2/3)3/2 the two cevians BD and CE can be equal only when a = b, i.e., when
the triangle is isoceles (AB = AC).

2. If V = Vd = (a2/3 + b2/3)3/2 then for MH = xd = (ab)1/3
(
a2/3 + b2/3

)1/2
the two cevians

BD and CE are equal for any value of a and b. For x 6= xd the cevians can be equal only
when a = b.

3. If V > Vd =
(
a2/3 + b2/3

)3/2
there are always two solutions x1 and x2 (0 < x2 < x1 < V )

of (3) which give us MH1 = x1 and MH2 = x2 for which BD1 = CE1 and BD2 = CE2,
respectively, for any value of a and b. For x 6= x1 and x 6= x2, the two cevians BD and CE
are equal only when a = b.

Results equivalent to Theorem 1 are obtained in [2] using a different method, in particular
without Eqs. (5) and (6) for Vd and xd, as given above.

3. Equality of external cevians when φ̂ = 90◦

Case 2, BD in P2, CE in P1.

Figure 2c shows 4ABC with ÂHB = φ̂ = 90◦ and external cevians BD in P2 and CE

in P1. (Necessary conditions for Case 2 are: ÂBM > (180◦ − B̂AC ) for BD in P2 and

ÂCM < (180◦ − B̂AC ) for CE in P1). From Appendix 3, which is valid for the general

case 0 < ÂHB = φ̂ < 180◦, we get EE ′ = xV (a + b)/(V b − xa). Similarly we get DD′ =

xV (a + b)/(V a − xb). We have also EE ′/x = EC/MC and MC = (x2 + b2)
1/2

, hence

EC = (EE ′/x) (x2 + b2)
1/2

. So we get:

EC =
(
(a+ b)V (x2 + b2

)1/2
)/(V b− xa), (7)

BD =
(
(a+ b)V (x2 + a2

)1/2
)/(V a− xb). (8)

In the case BD = CE we conclude from (7) and (8)

(x2 + a2)1/2/(x2 + b2)1/2 = (V a− xb)/(V b− xa),
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hence

b2x4 + V 2a2x2 − 2abx3V + b4x2 − 2ab3V x = a2x4 + V 2b2x2 − 2abx3V + a4x2 − 2a3bV x.

The above equation gives for b 6= a and x 6= 0

f(x) = x3 − x(V 2 − (a2 + b2))− 2abV = 0. (9)

Generally, Eq. (9) has three algebraic roots x1, x2 and x3. The product of the three roots is

x1x2x3 = 2abV > 0. Taking in account that f ′(x) = 0 for x = ± [(V 2 − (a2 + b2))/3]
1/2

(if
(V 2 − (a2 + b2)) > 0), we get

x3 < −
[
(V 2 − (a2 + b2))/3

]1/2
< x2 <

[
(V 2 − (a2 + b2))/3

]1/2
< x1.

Since x1x2x3 > 0, we have x1 > 0, x2 < 0 and x3 < 0. In the case (V 2 − (a2 + b2)) < 0 there
is only one positive real solution. Therefore we always have one positive solution of (9) which
produces equal cevians BD and CE.

In Figure 2c, if we consider MH becoming equal to AH, we have EE ′ coinciding with
DD′, DC = CE and, since DD′ ⊥ BC, we get BD < DC = CE. Also generally, when MH
increases, BD decreases and CE increases. Therefore, in a case where the external cevians BD
and CE are equal for a specific MH, we always have MH < AH or x < V . We summarize in
the following theorem:

Theorem 2. Let 4ABC be a triangle with the height AH and two external cevians, BD in
P2 and CE in P1 intersecting at point M on AH in P1 (as in Figure 2c). Let BH = a,

HC = b, AH = V , MH = x, and angle ÂHB = φ̂ = 90◦. The following condition deals with
the equality of the cevians BD and CE (apart from the isosceles case a = b):

For any value of a, b and V there is always one solution x < V of Eq. (9) for which the two
cevians BD and CE are equal.

In [2] results equivalent to Theorem 2 are presented, however derived with a different
method.

Case 3, BD and CE in P1.

In Figure 3c we have the case of ÂHB = φ̂ = 90◦ and external cevians BD and CE in P1.
From Appendix 5 follows BD < CE; therefore no equal cevians are possible in this case.

Case 4, BD in P2, CE in P3.

In Figure 4c we have the case ÂHB = φ̂ = 90◦ with external cevians BD and CE in P2 and
P3, respectively. From Appendix 6 follows BD < CE; therefore again no equality of cevians
can exist in this case.

Case 5, BD in P1, CE in P3.

In Appendix 7 it is shown that in the case BH < HC and 0 < ÂHB = φ̂ < 180◦ it is
impossible to have BD in P1 and CE in P3.
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a) b)

c)

Figure 3: Cevians BD, CE and point M in P1, a) φ̂ < 90◦, b) φ̂ > 90◦, c) φ̂ = 90◦.

4. Equality of internal cevians when φ̂ 6= 90◦

Case 1, BD and CE in the triangle ABC.

In Figures 1a and 1b we have the cases of 4ABC with internal cevians and φ̂ < 90◦ and
φ̂ > 90◦, respectively. From Appendix 2, which is valid for the general case of 0 < φ̂ < 180◦,
we get EE ′ = xV (a + b)/(V b + xa). Similarly we get DD′ = xV (a + b)/(V a + xb). Also

from the Figures 1a and 1b we obtain EE ′/x = EC/MC and MC =
(
x2 + b2 + 2xb cos φ̂

)1/2
,

hence EC = (EE ′/x)(x2 + b2 + 2xb cos φ̂)1/2. Thus we get

EC =
(

(a+ b)V (x2 + b2 + 2xb cos φ̂)1/2
)
/(V b+ xa), (10)

BD =
(

(a+ b)V (x2 + a2 − 2xa cos φ̂)1/2
)
/(V a+ xb). (11)

From Eqs. (10) and (11) follows for BD = CE

(
x2 + a2 − 2xa cos φ̂

)1/2
/(x2 + b2 + 2xb cos φ̂)1/2 = (V a+ xb)/(V b+ xa)
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a) b)

c)

Figure 4: Cevian BD in P2, cevian CE in P3 and point M in P1,
a) φ̂ < 90◦, b) φ̂ > 90◦, c) φ̂ = 90◦.

and further, explicitely,

b2x4 + V 2a2x2 + 2abx3V + b4x2 + 2ab3V x− 2axb2V 2 cos φ̂− 4a2bx2V cos φ̂− 2a3x3 cos φ̂

= a2x4 + V 2b2x2 + 2abx3V + a4x2 + 2a3bV x+ 2bxa2V 2 cos φ̂+ 4ab2x2V cos φ̂+ 2b3x3 cos φ̂.

The equation above yields for x 6= 0

f(x) = x3(a− b)− 2x2(a2 + b2 − ab) cos φ̂

+x
[
(a− b)(a2 + b2 − V 2)− 4abV cos φ̂

]
+ 2abV (a− b− V cos φ̂) = 0.

(12)

For φ̂ = 90◦ and a 6= b this equation gives again Eq. (3). Also this equation controls the
conditions which allow an equality of cevians for a non-isosceles 4ABC and where these
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a)

b)

Figure 5: Graph of Eq. (13), x-axis with values of x, a) with parameters relevant to Figure 1a,
b) only negative values of y because of the parameters relevant to Figure 1b.

cevians intersect exactly on AH (MH = x). There are three governing parameters a, b, and

V . We solve (12) for cos φ̂ and obtain

cos φ̂ = F1(x)/G1(x), (13)

where
F1(x) =

[
x3 − x(V 2 − (a2 + b2)) + 2abV

]
(a− b) and (14)

G1(x) = 2
[
(a2 + b2 − ab)x2 + 2abV x+ abV 2

]
. (15)

A typical example of the graph of Eq. (13) is shown in Figure 5a for the case φ̂ < 90◦ and in

Figure 5b for φ̂ > 90◦.
Equation (14) is equal to Eq. (3) multiplied by the constant a−b which is negative because of

a < b, as assumed from the beginning. The discriminant for Eq. (15) is ∆ = −4V 2ab(b−a)2 < 0
and therefore G1(x) 6= 0 for any value of x and also G′1(x) = 0 for x < 0; hence G1(x) > 0,
and G1(x) increases for increasing 0 < x.

From the above it can be deduced that Eq. (13), which is another form of Eq. (12), is a
continuous function of x for given parameters a, b, V , and it allows to calculate (by using

tools such as GraphSketch or Desmos) for which value of φ̂ we have equal cevians for any
given x, or vice versa, as can be seen in Figures 5a and 5b. The roots r1, r2 of Eq. (12) and
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also of Eq. (13) for φ̂ < 90◦ are such that 0 < x2 < r2 ≤ r1 < x1 < V , where x1, x2 are the

roots of Eq. (3) which is an obvious fact, as seen in Figure 5a. Alternatively, for φ̂ > 90◦ we
have 0 < r2 ≤ x2 < x1 ≤ r1 (see Figure 5a). Obviously, if Eq. (3) has no solution (as analysed

in Theorem 1) and φ̂ < 90◦ then neither Eq. (12) nor (13) has one, whereas, if φ̂ > 90◦ this

does not affect the Eqs. (12) and (13) (Figure 5b). In the case φ̂ > 90◦ it is possible that
r1 > V , in which case one of the solutions of (13) involves external cevians, BD in P2 and
CE in P3 (Case 4, which is mentioned also in Section 5), intersecting at M on the extension
of AH, opposite to P1 (see Figure 8a).

For a given set of values of the parameters a, b, V we can calculate the value of cos φ̂d

which gives us a double solution (rd = r2 = r1), by taking the parallel to x-axis tangent to the
curve which represents (13), as shown in Figure 5a, with two necessary conditions:

a) −1 < cos φ̂d < 1, and

b) either in the case of φ̂ < 90◦ the relevant Eq. (3) has solutions (see Figure 5a), or, in the

opposite case φ̂ > 90◦, Eq. (3) does not have any solution (see Figure 5b).
This calculation can be done by using tools like GraphSketch or Desmos. All the above

leads the following theorem:

Theorem 3. Let M be a point in the plane of 4ABC and let AH, BD and CE be three
internal cevians through M , inside the triangle. Let BH = a, HC = b, AH = V , and
MH = x. Then the following three conditions control the equality of cevians BD and CE (if
4ABC is not isosceles).

1. For ÂHB = φ̂ < 90◦, if V ≤ (a2/3 + b2/3)3/2 then the two cevians BD and CE can never be
equal.

2. For ÂHB = φ̂ < 90◦, if V > (a2/3 + b2/3)3/2 then for any φ̂ ≤ φ̂d or φ̂ < 90◦ ( φ̂d has been
defined in the previous paragraph) there are always two solutions r1 and r2 of (12) (if x1 and
x2 are two solutions of (3), we have 0 < x2 < r2 ≤ r1 < x1 < V ), which give us MH1 = r1
and MH2 = r2 for which BD1 = CE1 and BD2 = CE2, respectively, for any value of a and b.

3. For ÂHB = φ̂ > 90◦, for any φ̂ > φ̂d or φ̂ > 90◦ there are always two solutions r1 and
r2 of (12), which give MH1 = r1 and MH2 = r2 for which BD1 = CE1 and BD2 = CE2,
respectively, for any value of a and b. It is possible that one of the solutions r1 (belonging
to Case 4 and mentioned in Theorem 6) gives external cevians BD1 in P2 and CE1 in P3,
intersecting at M on the extension of AH, but not in P1.

5. Equality of external cevians when φ̂ 6= 90◦

Case 2, BD in P2, CE in P1.

In the Figures 2a and 2b we have the case of 4ABC with external cevians BD in P2 and
CE in P1, φ̂ < 90◦ and φ̂ > 90◦, respectively (the same necessary conditions as in Case 2 and

φ̂ = 90◦). From Appendix 3, which is valid for the general case 0 < ÂHB = φ̂ < 180◦, we
get EE ′ = xV (a + b)/(V b − xa). Similarly we get DD′ = xV (a + b)/(V a − xb). Also from

Figures 2a and 2b we have EE ′/x = EC/MC and MC =
(
x2 + b2 − 2xb cos φ̂

)1/2
, hence

EC =
(
EE ′/x)(x2 + b2 − 2xb cos φ̂

)1/2
. We substitute EE ′ and get

EC =
(

(a+ b)V (x2 + b2 − 2xb cos φ̂)1/2
)
/(V b− xa), (16)



K. Myrianthis: On the Equality of Cevians: Beyond the Steiner-Lehmus Theorem 195

Figure 6: Graph of Eq. (19): y-axis with the values of cos φ̂, x-axis with values of x;
the parameters are relevant for the Figures 8b and 8c.

BD =
(

(a+ b)V (x2 + a2 + 2xa cos φ̂)1/2
)
/(V a− xb). (17)

From these two equations follows for BD = CE

f(x) = x3(a− b) + 2x2(a2 + b2 − ab) cos φ̂+ x[(a− b)(a2 + b2 − V 2)− 4abV cos φ̂ ]

− 2abV (a− b− V cos φ̂) = 0.
(18)

In the case φ̂ = 90◦ and a 6= b the above equation becomes Eq. (9). As in Eq. (12), this
equation controls the conditions which allow equal cevians for a non-isosceles 4ABC, where
these cevians intersect exactly on AH (MH = x). We solve this equation for cos(φ̂) and
obtain

cos φ̂ = F2(x)/G2(x), (19)

where
F2(x) =

[
x3 − x(V 2 − (a2 + b2))− 2abV

]
(a− b) (20)

and
G2(x) = 2

[
−(a2 + b2 − ab)x2 + 2abV x− abV 2

]
. (21)

A typical example of the graph of Eq. (19) is given in Figure 6. Equation (20) equals Eq. (9)
multiplied with the constant a − b (which is negative because a < b, as assumed from the
beginning). The discriminant for Eq. (15) is ∆ = −4V 2ab(b− a)2 < 0. Therefore G2(x) 6= 0
for all values of x.

From the above the Eq. (19) can be deduced, which is another form of Eq. (18). It shows a

continuous function of x and allows to calculate for which value of φ̂ we have equal cevians for
any given x, or vice versa, as it can be seen in Figure 6. The root r1 of (19) is such that either,

in the case φ̂ < 90◦, holds 0 < x1 ≤ r1 or, in the case φ̂ > 90◦, holds 0 < r1 ≤ x1, where x1 is
the positive root of Eq. (9), which is an obvious fact, as seen in Figure 6. Obviously, since Eq.
(9) always has a positive root (as analysed in Theorem 2), the same holds for Eq. (19) in case
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of φ̂ < 90◦. Moreover, as analysed in Case 4 of the present section and seen in Figure 6, there
is a possibility to have another one (double) or two different roots in the same case φ̂. In the

case φ̂ > 90◦ it is possible to have two positive roots r2 < r1 of (19) (as in Figure 6). Then
the smaller root induces external cevians BD and CE in P1 (Case 3, as analysed below in the
same section), such as in Figure 3b. This is also obvious from Figures 2a and 2b, where by

keeping 4ABC and φ̂ constant and moving M in P1 along the extension of AH, as long as

BD is in P2 and CE is in P1 (necessary conditions: ÂBM > (180◦ − ÂBM ) for BD in P2

and ÂCM < (180◦ − B̂AC ) for CE in P1). If MH increases BD decreases (within the range
[∞, 0]) and CE increases (within the range [0,∞]). So, always only one solution of Case 2

exists for any value of a, b, V , and φ̂.

Theorem 4. Let 4ABC be a triangle with an internal cevian AH and two external cevians,
BD in P2 and CE in P1, intersecting at point M on AH in P1. Let BH = a, HC = b,

AH = V , MH = x, and angle 0 < ÂHB = φ̂ < 180◦. Then the following condition controls
the equality of cevians BD and CE for a non-isosceles triangle 4ABC:

For any value of a, b and V , there is always one solution x = r1 of (19) for which the two

cevians BD and CE are equal, where either 0 < x1 < r1 in the case φ̂ < 90◦ or 0 < r1 < x1
in the case φ̂ > 90◦. Here x1 is the positive root of Eq. (9).

Case 3, BD and CE in P1.

In Figures 3a and 3b we have the case of 4ABC with external cevians BD and CE in P1,

φ̂ < 90◦ and φ̂ > 90◦, respectively (necessary conditions for Case 3 are ÂBM < (180◦ − B̂AC )

for BD in P1 and ÂCM < (180◦ − B̂AC ) for CE in P1). From Appendix 3, which holds for

the general case 0 < ÂHB = φ̂ < 180◦, and from the Figures 3a and 3b (from which we get

that MC = (x2 + b2− 2xb cos φ̂)1/2 and BM = (x2 + a2 + 2xa cos φ̂)1/2) we notice that exactly
the same equations are valid as those in the previous Case 2. So, Eqs. (18), (19), (20), and

(21) hold in this case as well. From Appendix 5 we get BD < CE for the case φ̂ < 90◦; so
there is no solution for Eqs. (18) and (19).

In the previous Case 2 we have noticed that Eq. (19) can have up to two solutions

(0 < r2 < r1) for φ̂ > 90◦ (as in Figure 6). As shown in Theorem 4 of Case 2, there is always
one solution of Case 2 for which the two cevians BD and CE are equal, for any value of a,
b, V , and φ̂. So, the other solution, if it exists, has to be for Case 3 (Case 4 cannot exist,

as shown in Appendix 6). The smaller solution r2 is related to Case 3 and φ̂ > 90◦, such as
in Figure 3b. This is because of the necessary conditions for Case 2 and those for Case 3,
according to which MH of Case 3 is always smaller than MH of Case 2, for any value of a, b,
V , and φ̂.

Theorem 5. Let 4ABC be a triangle with an internal cevian AH and two external cevians,
BD and CE in P1 intersecting at point M on AH in P1. Let BH = a, HC = b, AH = V ,

MH = x, and the angle 0 < ÂHB = φ̂ < 180◦. There are two conditions related to the equality
of cevians BD and CE, provided that the 4ABC is non-isosceles:

1. In the case φ̂ < 90◦ there is always BD < CE.

2. In the case φ̂ > 90◦ there is a possibility for only one solution x = r2 of (19) belonging
to Case 3, for which the two cevians BD and CE are equal for any value of a, b and V ,
where 0 < r2 < x1 with x1 being the positive root of Eq. (9). The other solution r1 of (19)
(0 < r2 < r1 < x1) belongs to Case 2 and follows Theorem 4.
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a)

b)

c)

Figure 7: Cevian BD in P2 and point M in P1, φ̂ < 90◦,
a) Cevian CE in P3, Case 4, solution r2 of Eq. (19), when r3 < r2 < r1;

b) Cevian CE in P1, Case 2, solution r3 of (19), c) Cevian CE in P3, Case 4, solution r1 of (19).

Case 4, BD in P2 and CE in P3.

Figures 4a, 4b, 7a, and 8a show the case of 4ABC with external cevians BD in P2 and CE
in P3, φ̂ < 90◦ and φ̂ > 90◦. In Figs. 4a, 4b and 7a the cevians intersect at M in P1 on the

extension of AH (necessary conditions for this type of Case 4 are ÂBM > (180◦ − B̂AC ) for

BD in P1 and ÂCM > (180◦ − B̂AC ) for CE in P3). In Figure 8a the point M lies on the
extension of AH opposite to P1 (which is the necessary condition for this type of Case 4). For

the general case 0 < φ̂ < 180◦, from Appendix 3 (which is valid for Figures 4a, 4b and 7a),
from Appendix 2 (which is valid for Figure 8a) and from the Figures 4a, 4b, 7a and 8a (from

these figures we get MC = (x2 + b2 − 2xb cos φ̂)1/2 and BM = (x2 + a2 + 2xa cos φ̂)1/2) we
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a)

b)

c)

Figure 8: a) Cevians BD in P2, CE in P3 and point M opposite P1, φ̂ > 90◦,
Case 4, solution r1 of (13) (Sections 4 and 5, r1 > V ); b) Cevians BD, CE

and point M in P1, φ̂ < 90◦, Case 3, solution r2 of (19) where r2 < r1;

c) Cevians BD in P2, CE and point M in P1, φ̂ < 90◦, Case 2, solution r1 of (19).

notice that exactly the same equations are valid as those in the previous Cases 2 and 3. So, in
this case Eqs. (18), (19), (20), and (21) are valid as well.

If φ̂ > 90◦, such as in Figure 4b (where the cevians intersect at M on the extension of AH
in P1), there is no solution of (19) for Case 4, because BD < CE as shown in Appendix 6.
There is always a solution of Eq. (19) (Figure 6) belonging to Case 2 (Theorem 4) and possibly
a solution belonging to Case 3, as mentioned above and shown in Figures 8c and 8b. Also, as
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described in Section 4 and Case 1, where φ̂ > 90◦, it is possible that one of the solutions of
(13) induces external cevians BD in P2 and CE in P3 (belonging to Case 4), intersecting at
M on the extension of AH opposite to P1, such as in Figure 8a . The Figures 8a, 8b and 8c
use the same triangle 4ABC (Table 2).

If φ̂ < 90◦, as mentioned in Case 3 above and shown in Theorem 4 of Case 2, there is
always one solution of (19) belonging to Case 2 for which the two cevians BD and CE are

equal for any value of a, b, V , and φ̂. So, the other solution, if it exists, can only belong to
Case 4. By studying Eq. (19), we notice that if we set the first derivative to zero, this is a
quartic equation with respect to x (specifically F ′2(x)G2(x)− F2(x)G′2(x) = 0), which either
has no real solution or 2 or 4 real solutions. Also, (19) goes to −∞ for x→ −∞, and it goes

to ∞ for x → ∞. So, for 0 < φ̂ < 90◦ in the case of equal cevians the following facts are
valid: for each value of cos φ̂ the Eq. (19) gives us one solution belonging to Case 2 for r3 and

possibly two solutions of Case 4 (no solution of (19) for Case 3 and φ̂ < 90◦) for r2 and r1,
where r3 < r2 ≤ r1 as shown in Figures 6, 7b, 7a, and 7c . The Figures 7a, 7b and 7c use the
same 4ABC (Table 2). Like in previous cases, we can have a double solution when r2 = r1
(which can be found by using tools such as GraphSketch or Desmos).

Theorem 6. Let 4ABC be a triangle with an internal cevian AH and two external cevians
BD in P2 and CE in P3, intersecting at point M on an extension of AH, either in P1
or in the opposite direction. Let BH = a, HC = b, AH = V , MH = x, and the angle

0 < ÂHB = φ̂ < 180◦. The following conditions control the equality of cevians BD and CE
(if 4ABC is non-isosceles):

1. In the case φ̂ > 90◦, for M on the extension of AH in P1 there is always BD < CE. If
point M is in the opposite direction of P1 then there is a possibility of one solution based on
Eq. (13) (also mentioned in Theorem 3).

2. In the case φ̂ < 90◦ there is always one solution r3 of Eq. (19) (r3 > 0) belonging to Case 2
and following Theorem 4, plus the possibility of two solutions r3 < r2 ≤ r1 of (19) belonging to
Case 4, for any value of a, b and V .

Case 5, BD in P1 and CE in P3.

In Appendix 7 it is shown that in the case BH < HC and 0 < φ̂ < 180◦ it is impossible to
have BD in P1 and CE in P3.

6. Equality of angle-bisectors as cevians

Direct Proof of the Steiner-Lehmus (S-L) theorem.

In Figure 9a we have the case of 4ABC with external angle-bisectors BD1 in P2 and CE1 in
P1 and internal angle-bisectors BD0 and CE0 and AH. Since AH is an internal angle-bisector,
we have: AB/AC = a/b, hence AB2/AC2 = a2/b2 and(

a2 + V 2 − 2aV cos φ̂
)
/(b2 + V 2 + 2bV cos φ̂) = a2/b2,

consequently (
1 + (V/a)2 − 2(V/a) cos φ̂

)
/
(

1 + (V/b)2 + 2(V/b) cos φ̂
)

= 1
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a) b)

c)

Figure 9: a, b) Internal and external angle-bisectors of a triangle,
M0 and M1 (in P1) intersection points of internal and external angle-bisectors,

c) Cevians BD′, CE ′, point M ′ in 4A′BC, φ̂ < 90◦ and B̂A′C ≤ 45◦.

and therefore (V/a)− (V/b)− 2 cos φ̂ = 0. Thus we obtain

cos φ̂ =
V (b− a)

2ab
. (22)

We notice that, according to (22), if φ̂ = 90◦ then a = b . Also, if we substitute the value

of cos φ̂ from (22) in Eq. (12) (internal equal cevians, Case 1, φ̂ ≤ 90◦) we get the following
equation:

f(x) = x3(a− b)2ab− x22(a2 + b2 − ab)V (b− a) + x [(a− b)(a2 + b2 − V 2)2ab

− 4abV 2(b− a)] + 2abV ((a− b)2ab− V 2(b− a)) = 0,
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and further

f(x) = (a− b)
(
x3ab+ x2(a2 + b2 − ab)V + xab(a2 + b2 + V 2) + abV (2ab+ V 2)

)
= 0.

For a, b, V , and 0 < x < V we get

x3ab+ x2(a2 + b2 − ab)V + xab(a2 + b2 + V 2) + abV (2ab+ V 2) > 0,

which is part of the equation above. So, this equation holds (i.e., both Eqs. (22) and (12) are
valid) if a = b. As a result, equal internal angle-bisectors exist only in the case of an isosceles
triangle (a = b), which is the Steiner-Lehmus theorem, proven with what can be considered as
a direct proof.

Addition to the S-L theorem.

Since both Eqs. (12) and (22) are valid only when a = b and 0 < x < V , it is obvious that
BE 6= CE for 0 < x < V and a 6= b, if M is on AH itself (not on its extensions). Similar
results based on different approaches appear in [8], [9] and [10].

Proof of S-L theorem for external angle-bisectors.

Equation (22) implies that there is always only one value of φ̂ for each combination of a,

b, V (as long as −1 < cos φ̂ < 1). Also for any given triangle, its internal and external
angle-bisectors are always uniquely defined. We also know from Theorems 2 and 4, related
to Case 2, that there is always one solution of (19) for which the two cevians BD in P2 and

CE in P1 are equal for any value of a, b, V , and 0 < φ̂ < 180◦. For some values of these
parameters we can have equal external angle-bisectors BD1 and CE1 belonging to Case 2,
such as displayed in Figure 9a .
For φ̂ < 90◦ there is no solution in Case 3, as Theorem 5 states, and this includes external angle-
bisectors. In Case 4 and external angle-bisectors, such as in Figure 9b, we have the following:
̂D1H ′M1 < 90◦, and from 4M1D1E1

̂D1M1H ′ < ̂H ′M1E1 and M̂1D1E1 > ̂D1E1M1 ,
therefore D1H

′ < H ′E1 (this holds also because (P,H;C,B) = −1, (P,H ′;E1, D1) = −1).
The triangle 4M1D1E1 of Figure 9b is equivalent to the triangle 4ABC of Figure 1a (in the
same way as 4AED with 4ABC in Appendix 5). Therefore, according to Appendix 2, where
EB < DC in Figure 1a, we have BD1 < CE1 in Figure 9b. This proves that there are no
equal external angle-bisectors in Case 4.

Addition to the S-L theorem for external angle-bisectors.

Given that AH is an angle-bisector of 4ABC, for the relevant cevians BD and CE in P1
(intersecting at M on the extension of AH) holds always BD < CE for Case 3, as Theorem 5
states. For Case 4 and M on the extension of AH in P1, as in the previous paragraph, the
triangle 4MDE is equivalent to the triangle 4ABC of Figure 1a . Therefore, according to
Appendix 2, where EB < DC in Figure 1a, we have BD < CE. So, there is no equality of
cevians for any point M on the extension of the angle-bisector AH in P1. Similarly we treat
Case 4, when M is on the extension of the cevian-bisector AH but not in P1 (similar results
in [10] and [1]).

7. Equicevian points in internal and external cevians cases

Case 1, BD and CE in triangle ABC.

In Figures 1a, 1c and 1b we have the cases of 4ABC with internal cevians AH, BD and CE.
Let us suppose a+ b = 1 in order to ease the calculations.
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We start with the case of Figure 1c (φ̂ = 90◦) and let M (x = MH) be an equicevian
point, which means BD = CE = AH = V . Then we get from Eqs. (1) and (2)

x2 + a2 = (V a+ xb)2, hence x2 + a2 = V 2a2 + x2b2 + 2V abx and

x2 + b2 = (V b+ xa)2, hence x2 + b2 = V 2b2 + x2a2 + 2V abx.

Consequently, b2−a2 = V 2(b2−a2)+x2(a2−b2) and therefore x = (V 2−1)1/2. So, considering
(3), we get

S = f
(
x = (V 2 − 1)1/2

)
= (V 2 − 1)3/2 − (V 2 − 1)1/2(V 2 − (a2 + b2)) + 2abV = 0,

hence
S = (V 2 − 1)1/2(V 2 − 1− V 2 + a2 + b2) + 2abV = 0,

S = (V 2 − 1)1/2(a2 + b2 − 1) + 2abV = 0

and (V 2 − 1)1/2 < V for V > 1, thus

S = (V 2 − 1)1/2(a2 + b2 − 1) + 2abV > (V 2 − 1)1/2(a2 + b2 − 1 + 2ab) = 0,

because we have assumed that a+ b = 1, thus S > 0 when V > 1.
If V ≤ 1 = a+b < (a2/3+b2/3)3/2 there is no solution of (3), a fact stated also in Theorem 1.

So, no equicevian point with internal cevians is possible when φ̂ = 90◦. As M moves along
AH and Mh is the orthocenter of 4ABC, we have the following:

Remark 1. If 0 < x ≤MhH then BD(x) decreases when x increases, and BD < BC.

Remark 2. If MhH < x < V then BD(x) increases when x increases.

Having already obtained that there is no solution of (3) which gives us BD = CE = V ,
we get from Remarks 1 and 2

Remark 3. For all x-values (or M points) satisfying (3) the inequality BD < V is valid.

Let us assume that φ̂ < 90◦, as in Figure 1a. Then we obtain from Eqs. (2) and (8)

Remark 4. BD(φ̂ < 90◦) < BD(φ̂ = 90◦) if a, b, V , and x are the same for the two cases of φ̂.

Also from Theorem 3 we get

Remark 5. 0 < x2 ≤ r2 < r1 ≤ x1 < V , where r1 and r2 are solutions of Eq. (12), and x1 and
x2 are solutions of Eq. (3).

From Remarks 3, 4 and 5 we get the following theorem:

Theorem 7. Let M be a point in the plane of 4ABC and let AH, BD and CE be three
internal cevians through M , inside the triangle. Let BH = a, HC = b, AH = V , MH = x,

and the angle 0 < ÂHB = φ̂ ≤ 90◦. Then for the point M two equal cevians are possible
(BD = CE, as in Theorem 3), but M can never be an equicevian point.

In Figure 1b with φ̂ > 90◦ we get from (10) and (11) and for BD = CE = V

x2 + a2 − 2ax cos φ̂ = V 2a2 + x2b2 + 2V abx and

x2 + b2 + 2bx cos φ̂ = V 2b2 + x2a2 + 2V ab.

Together with a+ b = 1 we obtain

x2(b− a) + 2x cos φ̂+ (b− a)(1− V 2) = 0.
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This equation together with (12) determines the equicevian points in this case. This case has
been thoroughly analysed in [3].

Case 2, BD in P2, CE in P1, and Case 4, BD in P2 and CE in P3.

As can easily be seen in Figures 2a, 2b, 2c, 4a, 4b, 4c, and 7a, by taking a parallel to AH
passing through B and intersecting AC in D′′, we always have BD > BD′′ > AH. So it is
impossible in these cases to have an equicevian point. In Figure 8a the parallel to AH will have
to pass through point D and will intersect BC in D′, where we always have BD > DD′ > AH.
So it is impossible in this case to have an equicevian point as well.

Case 3, BD and CE in P1.

In this case, as shown and analysed thoroughly in [3], we can have equicevian points according

to Theorem 5 when φ̂ > 90◦.

8. Calculation of the limit of the angle B̂A′C

In [2] is stated and proved that B̂AC ≤ 45◦ under the conditions of Case 1 and φ̂ = 90◦

(Section 2). In the present work we prove below that B̂A′C ≤ 45◦ under the conditions of

Section 4, Case 1, and φ̂ < 90◦ (shown in Figure 9c as 4A′BC).
From 4ABC and 4A′BC at Figure 9c, we have

tan Â1 = tan(B̂AH ) = BH/AH = a/V,

tan Â2 = tan(ĤAC ) = CH/AH = b/V,

tan Â′1 = tan(B̂A′H ) = BL/A′L = a sin φ̂/(V − a cos φ̂),

tan Â′2 = tan(ĤA′C ) = CT/A′T = b sin φ̂/(V + b cos φ̂),

where A′H = AH = V , B̂HA′ = φ̂ < 90◦, B̂HA = 90◦, BL ⊥ A′H, and CT ⊥ A′H. From the
above we get

tan(Â′1 + Â′2) = (tan Â′1 + tan Â′2)/(1− tan Â′1 tan Â′2).

So, after the necessary calculations,

tan(Â′1 + Â′2) = sin φ̂ V (a+ b)/
(

(V − a cos φ̂)(V + b cos φ̂)− ab(sin φ̂)2
)
.

Similarly, we get

tan(Â1 + Â2) = V (a+ b)/(V 2 − ab).

We also have the following remarks:

Remark 6. sin φ̂ V (a+ b) < V (a+ b).

Remark 7. (V − a cos φ̂)(V + b cos φ̂)− ab(sin φ̂)2 > V 2 − ab, since

V 2 + bV cos φ̂− aV cos φ̂− ab(cos φ̂)2 − ab(sin φ̂)2 > V 2 − ab,
and therefore V (b− a) cos φ̂ > 0, which holds true.

Remark 8. B̂AC = Â1 + A2 ≤ 45◦, as proven in [11].

From the two equations for tan(Â1 + Â2) and tan(Â′1 + Â′2) and the three remarks we get

B̂A′C = Â′1 + A′2 ≤ 45◦.
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Appendix 1

Given a triangle 4ABC, its height AH and two internal cevians BD and CE intersecting at a point
M on AH, prove by Euclidean Geometry that when BD = CE then AB = AC, i.e., the triangle is
isosceles.

The answer to this problem is analysed in Section 2 and summarized in Theorem 1, where it
becomes obvious that the statement to be proven as requested above is conditional. The correct
formulation of the problem should be as follows:

Given a triangle 4ABC, its height AH and two internal cevians BD and CE intersecting at point M
on AH, determine all the necessary conditions in order to have BD = CE and provide the relevant
proofs.

It is interesting to note that until recently I haven’t found in a book or paper anything even
remotely related to the description of the problem, which actually increased my drive to research and
develop the present work. As I finally realized, the reason why this problem does not exist as such, is
that it does not have a straightforward answer, as shown in the definition of Theorem 1. However,
there is nothing new under the sun, since — as I found out quite recently — in [2] a very good
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analysis of the problem is given, which leads to the same results as the Theorems 1 and Theorem 2
of the present work.

Appendix 2

In Figures 1a, 1b, 1c (with internal cevians), and 8a (with external cevians) we have the case where BD
and CE exist either internally or externally, in which case they intersect at M on the extension of AH
opposite to P1 (Figure 8a). Since EE′ ‖ AH, AH = V and MH = x, we have EE′/x = (a+b−BE′)/b
and EE′/V = BE′/a, hence BE′ = aEE′/V . So, we get EE′b = xa+ xb− xaEE′/V and further
EE′ = xV (a+ b)/(V b+ xa). Similarly, we obtain DD′ = xV (a+ b)/(V a+ xb).

In the figures mentioned above, the points P , B, H, C form a harmonic set (see [3]), so
(P,H;C,B) = −1 and in the same way (P,H ′;D,E) = −1. Also from these figures we get
EE′/AH = EB/AB and DD′/AH = DC/AC. From these relations and from the formulae for EE′

and DD′ we get

(V a+ xb)/(V b+ xa) = (EB/DC)(AC/AB).

Since AC > AB (because a < b and φ̂ ≤ 90◦ for Figures 1a and 1c) and (V a + xb) < (V b + xa)
(because x < V ), we deduce EB < DC when 0 < φ̂ ≤ 90◦, as in the Figures 1a and 1c.

Appendix 3

In Figures 2a, 2b, 2c, 3a, 3b, and 3c we have a triangle 4ABC with 0 < φ̂ ≤ 180◦ and external
cevians where BD exists either in P2 or P1 and CE exists in P1. Since EE′ ‖ AH, AH = V and
MH = x, we have EE′/x = (a+ b+ BE′)/b and EE′/V = BE′/a, hence BE′ = aEE′/V . So we
conclude

EE′b = xa+ xb+ xaEE′/V, hence EE′ = xV (a+ b)/(V b− xa).

Similarly, DD′ = xV (a+ b)/(V a− xb).
In Figures 4a, 4b and 4c we have 0 < φ̂ ≤ 180◦ and external cevians BD in P2 and CE in

P3. Since EE′ ‖ AH, AH = V and MH = x, we have EE′/x = CE′/b, hence CE′ = bEE′/x and
EE′/V = (a+ b+ CE′)/a. Thus we get

EE′a = V (a+ b) + bV EE′/x, hence EE′ = xV (a+ b)/(ax− V b).

Similarly DD′ = xV (a+ b)/(bx− V a).

Since in all cases (as seen in Sections 2 to 5), in order to tackle the issue of square roots, we
raise the equations, which use the above calculations of EE′ and DD′, to the power 2 and we always
consider the absolute values of (V b− ax) and (V a− bx) in all sections of this work.

Appendix 4

From

f(xd) = [(V 2 − (a2 + b2))/3]3/2 − [(V 2 − (a2 + b2))/3]1/2[V 2 − (a2 + b2)] + 2abV = 0

follows

f(xd) = f(V ) = (V 2 − (a2 + b2))3/2((1/3)3/2 − (1/3)1/2) + 2abV = 0.

Since (1/3)3/2 − (1/3)1/2 = (1/3)1/2(1/3− 1) = −2(1/3)3/2,

f(V ) = (V 2 − (a2 + b2))3/2(−2(1/3)3/2) + 2abV = 0

and finally

V 2 − 3V 2/3(ab)2/3 − (a2 + b2) = 0.
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If we assume V = Y 3/2 then we have Y 3 − 3Y (ab)2/3 − (a2 + b2) = 0. This cubic equation is solvable
and according to [14, p. 32] we get a1 = 0, a2 = −3(ab)2/3, a3 = −(a2 + b2), Q = a2/3 = −(ab)2/3,
R = −a3/2 = (a2 + b2)/2, and D = Q3 +R2 = (a2 − b2)2/4 > 0. Since D > 0, there is only one real
solution which is Y = S + T − a1/3, where

S = (R+ (Q3 +R2)1/2)1/3 = ((a2 + b2)/2 + (a2 − b2)/2)1/3 = a2/3,

T = (R− (Q3 +R2)1/2)1/3 = ((a2 + b2)/2− (a2 − b2)/2)1/3 = b2/3,

and Y = a2/3 + b2/3. Since we have V = Y 3/2, we get

f(xd) = f(V ) = 0 for V = Vd = (a2/3 + b2/3)3/2.

We get also
xd = [(V 2 − (a2 + b2))/3]1/2 = [((a2/3 + b2/3)3 − (a2 + b2))/3]1/2,

hence xd = (ab)1/3(a2/3 + b2/3)1/2.
From the above and from Eqs. (1) and (2) we easily obtain

BDd = CEd = (a+ b)(a2/3 + b2/3)/(a4/3 + b4/3 + (ab)2/3)1/2.

Appendix 5

In Figures 3a, 3b, and 3c we have the case of 4ABC with 0 < φ̂ < 180◦ and external cevians BD
and CE in P1. We prove below for the case 0 < φ̂ ≤ 90◦ (Figures 3a and 3c) that always BD < CE:

The triangle 4AED of the Figures 3a and 3c is equivalent to the 4ABC of the Figures 1a and
1c in terms of having the following two harmonic sets: (P,H;C,B) = −1 and P,H ′;D,E) = −1 in
the same way as shown in Appendix 2. More specifically, the following elements are respectively

equivalent: the sides AE, AD and ED, angle ÂH ′E and the points B, C, P of 4AED with the sides

AB, AC and BC, angle φ̂ and points E, D, P of 4ABC. Bearing in mind that ÂH ′E < ÂHB = φ̂,
we can conclude that BE < CD for the Figures 3a and 3c based on the above mentioned equivalence,
as proven in Appendix 2 for the Figures 1a and 1c.

From the cosine law for 4BCE follows

CE =
[
(BE)2 + (BC)2 − 2(BE)(BC) cos ÊBC

]1/2
.

Similarly at 4BCD we have

BD =
[
(CD)2 + (BC)2 − 2(CD)(BC) cos B̂CD

]1/2
.

Furthermore hold 90◦ < B̂CD < ÊBC and BE < CD. Thus follows that we always get BD < CE,
when 0 < φ < 90◦, and the cevians BD and CE are external.

Appendix 6

In the Figures 4a, 4b, and 4c we have the case of 4ABC with 0 < φ̂ < 180◦ and external cevians
BD in P2 and CE in P3, and their point M of intersection exists in P1. We prove below that for
the case 180◦ > φ̂ ≥ 90◦ (Figures 4b and 4c) we always have BD < CE.

The triangle 4MDE of these figures is equivalent to 4ABC of Figures 1a, 1b and 1c in terms
of having the following two harmonic sets: (P,H ′;D,E) = −1 and P,H;C,B) = −1 in the same way
as shown in Appendix 2. More specifically, the following elements are respectively equivalent: the

sides MD, ME and DC, angle D̂H ′M and points B, C, P of 4MDE with the sides AB, AC and

BC, angle φ̂ and points E, D, P of 4ABC. We note that D̂H ′M < B̂HM ≤ 90◦ for the Figures
4b and 4c. In Appendix 2 we showed that EB < DC. Therefore, due to the equivalence with the
present case, it follows BD < CE, when φ̂ ≥ 90◦ (Figures 4b and 4c).
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Table 2: Data of figures

Figure a b V φ̂− degr. CASE

1a 2.24 7.76 19.92 80 1

1b 2.24 7.76 10.66 100.2 1

1c 2.24 7.76 11.2 90 1

2a 2.24 7.76 7.57 61.25 2

2b 2.24 7.76 7.57 100.5 2

2c 2.24 7.76 7.57 90 2

3a 2.24 7.76 7.57 61.25 *3

3b 2.24 7.76 7.57 124.6 3

3c 2.24 7.76 7.57 90 *3

4a 2.24 7.76 3.6 76.2 *4

4b 2.24 7.76 3.09 109 *4

4c 2.24 7.76 3.93 90 *4

7a 3.35 4.65 1.97 48.51 4

7b 3.35 4.65 1.97 48.51 2

7c 3.35 4.65 1.97 48.51 4

8a 3.52 4.48 2.92 120 4

8b 3.52 4.48 2.92 120 3

8c 3.52 4.48 2.92 120 2

9a 3.13 6.87 7.19 51.2 bisectors 2

9b 3.78 6.22 3 81.1 bisectors *4

9c 1.2 6.8 10.28 70.3 1

∗ where BD 6= CE

Appendix 7

In Figure 3a we observe that when HM/AH < BH/HC then BD and the extension of AC intersect in

P1, and when HM/AH = BH/HC then BD ‖ AC. Since BH < HC we have BH/HC < HC/BH.

So, given that HM/AH < BH/HC, we get HM/AH < HC/BH, which guarantees that CE and

the extension of AB intersect in P1 (when HM/AH = HC/BH then CE ‖ AB). The above proves

that Case 5 with BD in P1 and CE in P3 is impossible when BH < HC and 0 < φ̂ < 180◦.

Note that the data of all figures are summarized in Table 2.
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