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Abstract. In the Cayley-Klein model, a Lobachevskĭı plane Λ2 is realized in
the projective plane P2 in the interior of an oval curve. A hyperbolic plane Ĥ of
positive curvature is realized in the ideal domain of the Lobachevskĭı plane. We
study here trajectories of the midpoint of a segment with its endpoints running
along two orthogonal lines intersecting in Ĥ . Such trajectories are called Svetlana
Ribbons. We prove that Cassini Ovals of the Euclidean plane E2 can be images
of Svetlana Ribbons with intersecting axes.
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1. Introduction

1.1. The hyperbolic plane Ĥ of positive curvature

A projective Cayley-Klein model of a Lobachevskĭı plane Λ2 is the internal domain of an oval
curve γ (or conic, in other terminology, see [4, 5, 6]) of the projective plane P2. A hyperbolic

plane Ĥ of positive curvature can be realized in the ideal domain of a Lobachevskĭı plane. The
planes Λ2 and Ĥ are connected components of the extended hyperbolic plane H2 [25, 16]. The

oval curve γ is called the absolute of the planes H2, Ĥ , and Λ2. The group G of projective
automorphisms of the oval curve γ is the fundamental group of transformations for H2, Ĥ,
and the Lobachevskĭı plane Λ2. The lines of the planes Ĥ and H2 belong to three types. The
main objects on lines of all types are discussed in [16].
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1.2. Problem statement

One of the motions considered in kinematics is the Cardan motion which is defined as the
motion of a plane Γ1 with respect to a coinciding plane Γ such that two points A and B of Γ1

move along two orthogonal lines l, m of Γ (see, for instance, [2], [6, Section 2.3] or [12]). In
Euclidean geometry, an arbitrary point of the plane Γ1 traces in general an ellipse during a
Cardan motion (see [6, Theorem 2.3.1]). In particular, the midpoint of the moving segment
AB describes a circle. In [3] it is proved that, in general, in an elliptic plane the path of an
arbitrary point of the generating line AB during the Cardan motion is a quartic curve. In
this work the paths of the midpoint of the generating segment AB during Cardan motions
are investigated in Ĥ. Let us give a rigorous definitions of the research objects.

Let AB be an elliptic or hyperbolic segment of constant length δ (or a parabolic segment)

in the plane Ĥ . The endpoints of the segment AB move along two orthogonal lines l and
m such that A ∈ l and B ∈ m. The midpoint S (quasimidpoint S0) (see [16, § 4.2]) of the
segment AB describes a curve during such a motion. This curve is called Svetlana Ribbon

(Svetlana Quasiribbon) with axes l, m and base segment AB (or base, for short). A Svetlana
Ribbon and a Svetlana Quasiribbon with a common base are called conjugate.

We denote Svetlana Ribbons by Sr . Depending on the types of the axes and the base, we
obtain different types of Svetlana Ribbons. For their designation we use the symbols H , E,
or P depending on whether the axes of the Svetlana Ribbon belong to a hyperbolic, elliptic,
or parabolic pencil, respectively. Furthermore, we use the symbols e, h, or p when the base of
the Svetlana Ribbon is an elliptic, hyperbolic, or parabolic segment, respectively. Hence, the
types of Svetlana Ribbons in the plane Ĥ according to the types of the axes and the base are
as follows: Sr(Hp), Sr(He), Sr(Hh), Sr(Pp), Sr(Pe), Sr(Ph), Sr(Ep), Sr(Ee), and Sr(Eh).

In this article we investigate the Svetlana Ribbons with intersecting axes in the plane
Ĥ. We find canonical equations of these curves and we prove that Euclidean Cassini Ovals
can be the images of Svetlana Ribbons with intersecting axes in the Euclidean plane E2.
Using Bottema’s technique in [3], we derive the equations of the path for any point on the
generating line AB during the Cardan motion.

1.3. Objectives

1. Development of the plane Ĥ geometry.

The research of remarkable curves in the Euclidean plane is one of the classical fields of
Euclidean geometry. In the geometry of the plane Ĥ some metric properties of curves of
degree two are known (see [8, 10, 11, 13, 16, 19, 18, 22]). In this article some families of

remarkable curves of degree four in the plane Ĥ are investigated.

2. Uncovering some relations between different geometrical systems.

With the example of Svetlana Ribbons we show that the same object of the projective plane
P2 can determine different remarkable curves in the planes E2 and Ĥ . The Lemniscate of
Bernoulli in the plane E2 is projectively equivalent to the Svetlana Ribbon of type Sr(Hp) in

the plane Ĥ . The families of connected (non-connected) Cassini Ovals of the plane E2 and

of Svetlana Ribbons of type Sr(He) (Sr(Hh)) of the plane Ĥ are projectively equivalent, too.
These facts remind of the idea of F. Klein about the relativity of metric properties of figures
(see [7]) and can serve as an important argument in our discussion on the geometry in our
real physical space (see [14]).

3. Visualization of objects of the plane Ĥ.
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In order to visualize objects of hyperbolic planes, it is necessary to develop methods to
construct images of these objects in a Euclidean plane. Some matters concerning the images
of figures of the plane Ĥ are solved in [1, 15, 21, 22]. Here we construct the image of Svetlana
Ribbons in a Euclidean plane. To this end, we consider the Euclidean plane extended by
the infinitely far line as a projective plane. The removal of the line at infinity is analytically
characterized by the transition from homogeneous projective coordinates to inhomogeneous
affine coordinates (see formulae (3.1) and (4.7)). This allows us to use means of the computer
visualization of Euclidean objects for displaying objects of hyperbolic planes.

2. Main notions and metric formulae

2.1. Metric formulae of the Ĥ geometry

A canonical frame of the first type in the plane H2 (or Ĥ) is a projective frame R∗ =
{A1, A2, A3;E}, whose vertices form an autopolar triangle of first degree with respect to
the absolute curve γ, and the unit point E lies on tangents to the curve γ drawn from the
vertices A1 and A2. The family of canonical frames of the first type in the plane H2 depends
on three parameters [16, § 4.1.1].

In any canonical frame R∗ of the first type the absolute curve γ is given by the equation

x2

1 + x2

2 − x2

3 = 0. (2.1)

If points A and B of an elliptic or hyperbolic line have coordinates (ap) and (bp), p = 1, 2, 3,
then the distance |AB| between them in the frame R∗ can be expressed by the formulae

cos
|AB|
ρ

= ± a1b1 + a2b2 − a3b3√
a2
1
+ a2

2
− a2

3

√
b2
1
+ b2

2
− b2

3

or

cosh
|AB|
ρ

= ± a1b1 + a2b2 − a3b3√
a2
1
+ a2

2
− a2

3

√
b2
1
+ b2

2
− b2

3

,

(2.2)

respectively, where ρ ∈ R+ is the curvature radius of the plane Ĥ .
The length of an elliptic (hyperbolic) line equals πρ (iπρ) [16, §§ 4.4.1, 4.4.3]. The length

of a short (long) elliptic segment is less (more) than πρ/2. Two orthogonal points on an
elliptic line determine two right segments of length πρ/2. The orthogonality condition A ⊥ B
in the frame R∗ has the form

a1b1 + a2b2 − a3b3 = 0. (2.3)

The real coordinates (ap), p = 1, 2, 3, of proper points in Ĥ satisfy the inequality

a21 + a22 − a23 > 0. (2.4)

The coordinates (up) of a parabolic line in Ĥ satisfy

u2

1 + u2

2 − u2

3 = 0. (2.5)

2.2. Elliptic cycles in the plane Ĥ

In [22] conics of the plane Ĥ are classified. It is proved, that the basic geometric covariants

and the property of a curve to be convex determine 15 types of conics in Ĥ. The proper



212 L. Romakina: Svetlana Ribbons with Intersecting Axes in a Hyperbolic Plane

conics of four types (hypercycles, horocycles, elliptic cycles, and hyperbolic cycles) are motion

trajectories of points in the plane Ĥ (see [17, 22]). We called them cycles. Cycles of the plane

Ĥ can be used for constructing partitions of this plane (see [15, 23, 24]).

In this article a new metric property of elliptic and hyperbolic cycles of the plane Ĥ
is proved: an elliptic (hyperbolic) cycle of the plane Ĥ can be the trajectory of some point

during the Cardan motion with a right generating segment where one endpoint coincides with

the centre of the given cycle. In particular, the elliptic cycle of radius πρ/4 is the Svetlana
Ribbon of type Sr(He) with a right elliptic base segment.

In [17] and [22] elliptic cycles are defined via their position with respect to the absolute

of the plane Ĥ . An elliptic cycle is an oval curve that touches the absolute at two real points.
Each point of the absolute (elliptic cycle), except the two tangency points, lies in the exterior
of the elliptic cycle (absolute, respectively). An elliptic cycle has two connected branches and

its interior is a connected domain in Ĥ .
In [22] an elliptic cycle is defined metrically as follows. Let C be a proper point in Ĥ.

The set α
e
of points in Ĥ such that their elliptic distance to a given point C is a real number

r, where r ∈ (0; πρ/2), is called an elliptic cycle with centre C and radius r. The polar line
of the cycle’s centre with respect to the absolute is called the base of the cycle.

Each elliptic cycle in Ĥ has the metric property of being an equidistant curve to a line.
The elliptic cycle of radius r is the set of points in Ĥ which lie at distance h = πρ/2 − r to
its base.

Using the relations (2.2), we can derive the equation of the elliptic cycle α
e
with centre

A2 and radius r in the frame R∗ = {A1, A2, A3;E} as

x2

1 − x2

2 tan2 r

ρ
− x2

3 = 0. (2.6)

2.3. Cassini Ovals in the Euclidean plane

Let F1 and F2 be two fixed points in the plane E2 and let d be a constant. Then a Cassini

Oval with focal points F1 and F2 can be defined as the set (or locus) of points X such that the
product of the distances from X to F1 and F2 is d2 (see [6, Section 3.2], [9], or [26, Chapter
VI, § 10]).

In the Cartesian coordinate system Oxy with the focal points F1(c, 0) and F2(−c, 0) the
Cassini Oval has the equation [26, Chapter VI, § 10, (1)]

(
x2 + y2

)2 − 2c2
(
x2 − y2

)
+ c4 − d4 = 0. (2.7)

In the case c < d the Cassini Oval described by (2.7) is a simple closed curve. Under c = d
the Cassini Oval is a Lemniscate of Bernoulli. In the case c > d the Cassini Oval consists of
two simple closed curves.

3. A canonical equation of Svetlana Ribbons

Let l and m be orthogonal lines intersecting in the hyperbolic plane Ĥ of curvature radius ρ,
ρ ∈ R+. Then the lines l and m belong to different non-parabolic types. Let l be a hyperbolic
line and m be elliptic. Let A and B be proper points of the plane Ĥ such that A ∈ l and
B ∈ m. If AB is a non-parabolic line, let also be |AB| = δ. By definition (see [16, § 4.2.2]),

the whole segment AB belongs to the plane Ĥ.
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To study the Svetlana Ribbons with the base segment AB and the axes l and m, we
introduce a canonical frame R∗ = {A1, A2, A3;E} of the first type, putting the coordinate
lines A1A3 and A1A2 to the lines l and m, respectively. In the frame R∗ the points A, B, and
the line AB can be set by the coordinates: A(1 : 0 : a), B(b : 1 : 0), AB(−a : ab : 1), where
a, b ∈ R and |a| < 1 due to condition (2.4) for the point A.

Let S(x1 : x2 : x3) be the midpoint of the segment AB in the frame R∗. The points A and
B move along the lines crossing at the point A1. Therefore the trajectory of the midpoint S
(quasimidpoint S0) of the segment AB does not cross the polar line A2A3 of point A1 with
respect to the absolute. Since the line A2A3 has the equation x1 = 0, the first coordinate x1

of the point S is other than zero. Hence, the coordinates of S can be written in the form
(1 : x : y), where

x =
x2
x1

, y =
x3
x1

. (3.1)

If AB is a non-parabolic segment we denote the coordinates of its quasimidpoint S0 by
(1 : x : y).

By definition of the midpoint and quasimidpoint of a non-parabolic segment, we have
S0 ⊥ S and the cross ratio (ABSS0) = −1 (see [16, §§ 4.2.2, 4.2.3]). In the case of a parabolic
segment AB we denote the coordinates of the absolute point K on the line AB by (1 : x : y).
The point K lies on the polar line of S with respect to the absolute. Consequently, S ⊥ K.

The conditions S ⊥ S0 (or S ⊥ K) and (ABSS0) = −1 in coordinate form (see (2.3))
yield the relations

1 + xx− yy = 0, xy + yx = 0. (3.2)

Since the points S and S0 (or S and K) lie on the line AB, we have

−a + abx+ y = 0, −a + abx+ y = 0. (3.3)

From (3.2) and (3.3) we obtain

x = − x

x2 + y2
, y =

y

x2 + y2
. (3.4)

The equalities (3.3) and (3.4) yield

a =
2y

x2 + y2 + 1
, b = −x2 + y2 − 1

2x
. (3.5)

If AB is an elliptic (hyperbolic) segment of length δ we use the notation

cos
δ

ρ
= λ−1

(
cosh

δ

ρ
= λ−1

)
, (3.6)

where |λ| > 1 (0 < λ < 1, respectively). Then, via the first (second) formula from (2.2), we
obtain for the elliptic (hyperbolic) segment AB

λ2b2 = (1− a2)(b2 + 1), |λ| > 1 (0 < λ < 1). (3.7)

For a short or long elliptic segment AB (see [16, § 4.2.2]) we have λ > 1 or λ < −1, respectively.
For a right elliptic segment AB we have λ = ∞.

In the case of a parabolic segment AB the coordinates (−a : ab : 1) of the line AB, by
condition (2.5), satisfy

a2 + a2b2 − 1 = 0. (3.8)
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This equation is equivalent to (3.7) with λ = ±1. Consequently, the canonical equation of the
Svetlana Ribbon of type Sr(Hp) can be derived as a special type of the canonical equation of
the Svetlana Ribbon with intersecting axes.

After eliminating the parameters a and b from the expressions (3.5) and (3.7) (or (3.5)
and (3.8)), we obtain

λ2
(
x2 + y2 − 1

)2

4x2
=

(
1− 4y2

(x2 + y2 + 1)2

)((
x2 + y2 − 1

)2

4x2
+ 1

)
, (3.9)

which can be rewritten as
[
(1 + λ)

(
x2 + y2

)2
+ 2

(
x2 − y2

)
+ 1− λ

] [
(1− λ)

(
x2 + y2

)2
+ 2

(
x2 − y2

)
+ 1 + λ

]
= 0. (3.10)

During the transformation from (3.9) to (3.10) we applied squaring. Therefore (3.10) can
have extraneous roots. Let us analyse the obtained result.

The Equation (3.10) determines a reducible algebraic curve σ which splits into two quartic
curves σ1 and σ2 given by the following equations:

σ1 : (1 + λ) (x2 + y2)
2
+ 2 (x2 − y2) + 1− λ = 0, (3.11)

σ2 : (1− λ) (x2 + y2)
2
+ 2 (x2 − y2) + 1 + λ = 0. (3.12)

Coming back to the coordinates (x1 : x2 : x3) via the formulae (3.1), we obtain

σ1 : (1 + λ) (x2
2 + x2

3)
2
+ 2 (x2

2 − x2
3) x

2
1 + (1− λ)x4

1 = 0, (3.13)

σ2 : (1− λ) (x2
2 + x2

3)
2
+ 2 (x2

2 − x2
3) x

2
1 + (1 + λ)x4

1 = 0. (3.14)

The curves σ1 (3.13) and σ2 (3.14) meet the absolute curve γ (2.1) in the common points
E13(1 : 0 : 1) and E31(1 : 0 : −1). The curves have no other common real points. Each of the
curves σ1 and σ2 is symmetric with respect to the lines A1A2 and A1A3. Hence, point A1 is
a symmetry centre of both curves.

The Equations (3.13) and (3.14) differ only in the sign of the parameter λ. Therefore, for
the analysis of the results, it is enough to consider one of the options λ > 0 or λ < 0. We
assume λ > 0 and analyse below all possibilities.

1. λ > 1, the segment AB is short elliptic.
We choose one of the possible locations of the elliptic segment AB, placing the points A and B
on the line A1A2. Then A = A1(1 : 0 : 0), and point B has the coordinates

(
1 :

√
λ2 − 1 : 0

)
.

The point Q1

(√
λ+ 1 :

√
λ− 1 : 0

) (
Q2

(
−
√
λ− 1 :

√
λ+ 1 : 0

))
is one of the two real points

of intersection of the line A1A2 and the curve σ1 (3.13) (σ2 (3.14)). The points Q1 and Q2 are
orthogonal on the line AB (see (2.3)). Since A ⊥ A2, point A2 does not belong to the short
segment AB. Using the coordinates of the points A, B, Q1, and A2, we obtain the cross ratio

(ABQ1A2) =

∣∣∣∣
1 0√
λ+ 1

√
λ− 1

∣∣∣∣
∣∣∣∣
1

√
λ2 − 1

0 1

∣∣∣∣
∣∣∣∣
1 0
0 1

∣∣∣∣
∣∣∣∣

1
√
λ2 − 1√

λ+ 1
√
λ− 1

∣∣∣∣
= −1

λ
< 0.

Hence, point Q1 belongs to the segment AB. Since

(ABQ1Q2) =

∣∣∣∣
1 0√
λ+ 1

√
λ− 1

∣∣∣∣
∣∣∣∣

1
√
λ2 − 1

−
√
λ− 1

√
λ+ 1

∣∣∣∣
∣∣∣∣

1 0

−
√
λ− 1

√
λ+ 1

∣∣∣∣
∣∣∣∣

1
√
λ2 − 1√

λ+ 1
√
λ− 1

∣∣∣∣
= −1,
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the point Q1 (Q2) is the midpoint (quasimidpoint) of the short segment AB.

Thus, under the condition λ > 1, the curve σ1 (3.13) (σ2 (3.14)) is the Svetlana Ribbon
(Svetlana Quasiribbon) of a short elliptic segment.

2. 0 < λ < 1, the segment AB is hyperbolic.
We choose one of the possible locations of this segment, placing points A and B on the
line A1A3. Then B = A1(1 : 0 : 0), and the point A has the coordinates

(
1 : 0 :

√
1− λ2

)
.

The point N1

(√
1 + λ : 0 :

√
1− λ

) (
N2

(√
1− λ : 0 :

√
1 + λ

))
is one of the four points of

intersection of the lineA1A3 and the curve σ1 (3.13) (σ2 (3.14)). Under the condition 0 < λ < 1
the points N1 and N2 are real and orthogonal. Since the point A3 lies in the Lobachevskĭı
plane, it does not belong to the segment AB of the plane Ĥ . Using the coordinates of the
points A, B, N1, and A3, we obtain:

(ABN1A3) =

∣∣∣∣
1

√
1− λ2√

1 + λ
√
1− λ

∣∣∣∣
∣∣∣∣
1 0
0 1

∣∣∣∣
∣∣∣∣
1

√
1− λ2

0 1

∣∣∣∣
∣∣∣∣

1 0√
λ+ 1

√
λ− 1

∣∣∣∣
= −λ < 0.

Hence, point N1 belongs to the segment AB. Since

(ABN1N2) =

∣∣∣∣
1

√
1− λ2√

1 + λ
√
1− λ

∣∣∣∣
∣∣∣∣

1 0√
1− λ

√
1 + λ

∣∣∣∣
∣∣∣∣

1
√
1− λ2√

1− λ
√
1 + λ

∣∣∣∣
∣∣∣∣

1 0√
λ+ 1

√
λ− 1

∣∣∣∣
= −1,

the point N1 (N2) is the midpoint (quasimidpoint) of the segment AB.

Thus, under the condition 0 < λ < 1, the curve σ1 (3.13) (σ2 (3.14)) is a Svetlana Ribbon
(Svetlana Quasiribbon) of a hyperbolic segment.

3. λ = 1, the segment AB is parabolic.
In this case the curve σ2 (3.14) coincides with the absolute curve γ (2.1). A direct verification
shows that the curve σ1 (3.13) is the Svetlana Ribbon of each parabolic segment with its
endpoints on the lines l and m.

So, Eq. (3.13) (or (3.14)) describes the Svetlana Ribbons (Svetlana Quasiribbons, respec-
tively) with intersecting axes. We call it the canonical equation of these curves.

4. Images of Svetlana Ribbons in the Euclidean plane

In order to obtain images of the curves σ1 (3.13) and σ2 (3.14) in an Euclidean plane E2,
we consider the coordinate line A2A3 of the frame R∗ in the plane P2 as the infinitely far
line t∞ of this plane. We introduce a Cartesian coordinate system Oxy in E2 by specifying
the origin O at A1 and the axes Ox and Oy at the lines A1A2 and A1A3, respectively. The
orientations of the coordinate axes are fixed by the location of the unit point E of the frame
R∗. We choose those rays on the lines A1A2, A1A3 as being positive which are edges of the
triangle A1A2A3 containing the point E. In the frame R∗ the system Oxy is determined by
the coordinates O = A1(1 : 0 : 0), t∞ = A2A3(1 : 0 : 0), Ox = m = A1A2(0 : 0 : 1), and
Oy = l = A1A3(0 : 1 : 0).
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The transformation from the projective coordinates (x1 : x2 : x3) in the frame R∗ of P2 to
the Cartesian coordinates (x; y) in the system Oxy of E2 is carried out by the formulae (3.1).
The absolute curve γ (2.1) in the system Oxy has the equation

x2 − y2 + 1 = 0. (4.1)

The Eqs. (3.11) and (3.12) of the curves σ1 and σ2 determine in the coordinate system
Oxy the Cassini Ovals (see (2.7)). Let us figure out the Euclidean relation between the curves
σ1 (3.13) and σ2 (3.14).

Assume that an oval curve α is given in the frame R∗ (in the system Oxy) by the equation

x2

1 − x2

2 − x2

3 = 0
(
x2 + y2 = 1

)
. (4.2)

In the plane Ĥ the curve α is an elliptic cycle with centre A2 and radius πρ/4 (see Eq. (2.6)).
The line A1A3 is the base of this elliptic cycle α. In the plane E2 the curve α is a unit circle
with centre O. In the system Oxy the inversion (x, y) 7→ (x′, y′) of the plane E2 with respect
to α satisfies

x′ =
x

x2 + y2
, y′ =

y

x2 + y2
. (4.3)

By applying these formulas to Eq. (3.11), we prove that in E2 the curves σ1 (3.11) and σ2

(3.12) correspond each other in the inversion with respect to the curve α.

The centre of the cycle α in Ĥ is the point A2. Therefore the inversion
1 of Ĥ with respect

to the curve α and the inversion of E2 with respect to this curve are different transformations.
In Sections 4.1 – 4.3 we consider all types of Svetlana Ribbons with intersecting axes in

accordance with admissible values λ.

4.1. Svetlana Ribbons of type Sr(Hp)

Assume that the base segment AB of the Svetlana Ribbon ω lies on a parabolic line. Then
this Svetlana Ribbon can be described by Eq. (3.11) with λ = 1. Thus, the canonical equation
of a Svetlana Ribbon of type Sr(Hp) has the form

(
x2 + y2

)2
+ x2 − y2 = 0. (4.4)

In the plane E2 Eq. (4.4) determines a Lemniscate of Bernoulli with the focal points
F1

(
0, 1/

√
2
)
and F2

(
0,−1/

√
2
)
(see Eq. (2.7)). This fact leads to the following theorem

about Svetlana Ribbons of type Sr(Hp).

Theorem 1. Svetlana Ribbons of type Sr(Hp) are rational algebraic curves of degree four.

These curves contain two absolute points and consist of two branches which are crossed in the

plane Ĥ. The Lemniscate of Bernoulli is an example of an image of a Svetlana Ribbon of

type Sr(Hp) in an Euclidean plane E2.

Of course, the Euclidean metric properties of the curve (4.4) are no longer valid in Ĥ .

In Figure 1a an Euclidean image of the Svetlana Ribbon (4.4) of the plane Ĥ is shown.
The change of scale at the transition from Figure 1a to Figure 1b allows us to represent the
Svetlana Ribbon of type Sr(Hp) in the plane Ĥ. In Figure 1a the absolute line t∞ of the

Euclidean plane E2 is infinitely far, but the absolute curve γ of the plane Ĥ is finite. In
Figure 1b the line t∞ as well as the curve γ are infinitely far.

1 Such transformation in Ĥ can be defined similar to an inversion with respect to a hypercycle (see [20]).
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Figure 1: a) The Svetlana Ribbon ω of type Sr(Hp), the absolute curve γ, the midpoint
S of the segment AB on the parabolic line with the absolute pointK, the common points
E13 and E31 of the curves γ and ω, and the elliptic cycle α of the plane Ĥ.
b) A fragment of the Svetlana Ribbon ω of type Sr(Hp).

The Equation (3.12) of the curve σ2 under the condition λ = 1 determines the absolute

γ (4.1) of the plane Ĥ . The curve γ is described by the absolute point of the parabolic line
AB. This absolute point can be formally considered as the quasimidpoint of the segment AB.
Therefore the absolute curve can be formally considered as the Svetlana Quasiribbon with a
parabolic base and intersecting axes.

4.2. Svetlana Ribbons of type Sr(He)

Now we assume that the base segment AB of the Svetlana Ribbon lies on an elliptic line. In
this case the parameter λ in (3.6) satisfies the inequality |λ| > 1. Let the segments between
the points A and B be unequal. Then we denote the short and the long segment between
these points by ν1 and ν2, respectively. Since these lengths are connected by the condition
|ν1|+ |ν2| = πρ, the values λ1, λ2 from (3.6) for these segments satisfy the equality λ2 = −λ1,
where λ1 > 1. Obviously, the midpoint of the segment ν1 (ν2) is the quasimidpoint of the
segment ν2 (ν1). Therefore, according to the reasonings from Section 3, Eq. (3.13) ((3.14))
with |λ| > 1 describes the Svetlana Ribbons of type Sr(He) with a short (long) elliptic base.

In the Euclidean plane E2 the Equation (3.11) ((3.12)) determines a connected Cassini

Oval with the focal axis Oy (Ox). In Ĥ the points E13 and E31 of the curve σ1 (3.11) (σ2

(3.12)) belong to the absolute. Consequently, in the plane Ĥ the Svetlana Ribbon of type
Sr(He) consists of two connected branches which tend in two directions to infinity.

Below we investigate special cases of the location of the points A and B on an elliptic
line.

I. The points A and B are orthogonal. Then |ν1| = |ν2| = πρ/2 and λ = ∞. Since

lim
λ→∞

2

1 + λ
= lim

λ→∞

2

1− λ
= 0, lim

λ→∞

1− λ

1 + λ
= lim

λ→∞

1 + λ

1− λ
= −1,
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at the limit λ → ∞ the Equations (3.11) and (3.12) take the form

(
x2 + y2

)2 − 1 = 0. (4.5)

The curve (4.5) consists of the elliptic cycle α (4.2) and a zero curve β with the equation
x2 + y2 + 1 = 0 in the system Oxy. The curve β has not real points. Consequently, the
Svetlana Ribbon of type Sr(He) with the right elliptic base AB is the elliptic cycle with base
l and radius πρ/4.

Notice that under the condition A ⊥ B the endpoint B of the segment AB is the fixed
point A2. Hence, the Cardan motion degenerates into a rotation about the point A2. The
endpoint A of the segment AB can be any point of the line l in Ĥ .

Under the condition λ → ∞ the Svetlana Ribbons σ1 (3.11) and σ2 (3.12) advances the
cycle α (4.2) internally and externally, respectively.

II. The segment ν1 with endpoints A and B is equal to one-third of an elliptic line2; then
|ν1| = πρ/3 and λ = 2. The midpoint (quasimidpoint) of the segment ν1 describes the
Svetlana Ribbon given by the equation

3
(
x2 + y2

)2
+ 2

(
x2 − y2

)
− 1 = 0

( (
x2 + y2

)2 − 2
(
x2 − y2

)
− 3 = 0

)
. (4.6)

The curves with the Equations (4.6) are boundaries for families of Svetlana Ribbons of type
Sr(He) with a common geometric property. To prove this supposition, we use well-known
properties of Cassini Ovals in the plane E2 (see [26]). Let us consider all possibilities depending
on values λ, where |λ| > 1.

1. If 1 < λ < 2, then for the base length δ of each Svetlana Ribbon σ1 (3.11), by the
condition (3.6), we have δ < πρ/3. In this case each Svetlana Ribbon σ1 of type Sr(He)
lies between the first curve from (4.6) and the Svetlana Ribbon ω of type Sr(Hp).
Moreover, for each Svetlana Ribbon σ1 there is a line which is orthogonal to the axis
Ox and has four common real points with σ1. Each line, orthogonal to the line Oy,
crosses the Svetlana Ribbon σ1 in at most two real points.

2. If λ > 2, then πρ/3 < δ < πρ/2. In this case each Svetlana Ribbon σ1 (3.11) of type
Sr(He) lies between the curve α (4.2) and the first curve from (4.6). Therewith each
line has not more than two common real points with each Svetlana Ribbon σ1.

3. If −2 < λ < −1, then δ > 2πρ/3. In this case each Svetlana Ribbon σ1 (3.11) of type
Sr(He) lies in the interior of the second curve with the Equation (4.6). Moreover, for
each Svetlana Ribbon σ1 (3.11) there is a line which is orthogonal to the axis Oy and
has four common real points with σ1. Each line orthogonal to Ox crosses the Svetlana
Ribbon σ1 in at most two real points.

4. If λ < −2, then πρ/2 < δ < 2πρ/3. In this case each Svetlana Ribbon σ1 (3.11) of
type Sr(He) lies between the second curve (4.6) and α (4.2). Therewith each line has
at most two common real points with the curve σ1.

Thus, the following theorem about Svetlana Ribbons of type Sr(He) is proved.

2 Such segment has a special meaning in the geometry of the plane Ĥ . For example, the elliptic segment
of length πρ/3 subtends a horocycle chord of length ρ [17, § 2.4.3], [18]. Moreover, such a segment determines

a special case of fan triangulations of the plane Ĥ [15]. A way of constructing one third of an elliptic line is
shown in [15, Theorems 8, 10].
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Theorem 2. The Svetlana Ribbons of type Sr(He) are algebraic curves of degree four. These

curves contain two absolute points and consist of two non-intersecting branches. Depending

on the base length δ, the Svetlana Ribbons of type Sr(He) with the hyperbolic (elliptic) axis l
(m) have the following properties.

• In the case δ < πρ/2 (δ > πρ/2) connected Cassini Ovals with the focal axis l (m) show up

as Euclidean images of such Svetlana Ribbons.

• In the case δ = πρ/2 the Svetlana Ribbon is reducible; it consists of two curves of degree

two. One of them has no real points, the other curve is an elliptic cycle with the base l and
radius πρ/4.

• In the case δ < πρ/3 there are lines orthogonal to the line m and crossing the Svetlana

Ribbon in four real points. Each line orthogonal to l crosses the Svetlana Ribbon in at most

two real points.

• In the case πρ/3 ≤ δ ≤ 2πρ/3 no line crosses the Svetlana Ribbon in more than two real

points.

• In the case δ > 2πρ/3 there are lines orthogonal to l and crossing the Svetlana Ribbon in

four real points. Each line orthogonal to m crosses the Svetlana Ribbon in at most two real

points.

In order to display the studied objects, we represent them in the plane E2. In Figure 2, the
Svetlana Ribbon σ1 (3.11) and the Svetlana Quasiribbon σ2 (3.12) of type Sr(He) with λ = 7
are presented. The line at infinity for Figure 2a coincides with the line A2A3, for Figure 2b
with the line A1A2. In the first case the Equations (3.11) and (3.12) are transformed by (3.1),
in the second case by the formulae

x =
x2
x3

, y =
x1
x3

. (4.7)

After this transformation the origin O of the system Oxy coincides with the point A3, and
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Figure 2: The Svetlana Ribbon σ1 (3.11) (or (4.8)) and the Svetlana Quasiribbon σ2

(3.12) (or (4.9)) of type Sr(He) with λ = 7, the Svetlana Ribbon ω (4.4) of type Sr(Hp),
the absolute oval curve γ (2.1), and the elliptic cycle α (4.2) in the plane E2 with the
infinitely far line in a) as A2A3, in b) as A1A2.
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Figure 3: The Svetlana Ribbon σ1 (3.11) and the Svetlana Quasiribbon σ2 (3.12) of
type Sr(He), in a) with λ = 2, in b) with λ = 5/4, the Svetlana Ribbon ω (4.4) of
type Sr(Hp), the absolute oval curve γ (2.1), and the elliptic cycle α (4.2) in the plane
E2 with the infinitely far line A2A3.

the coordinate axis Ox (Oy) is placed on the line A2A3 (A1A3). By virtue of (4.7), the curves
σ1 (3.13) and σ2 (3.14) satisfy in (x, y)-coordinates the equations

σ1 : (1 + λ)
(
x2 + 1

)2
+ 2

(
x2 − 1

)
y2 + (1− λ)y4 = 0, (4.8)

σ2 : (1− λ)
(
x2 + 1

)2
+ 2

(
x2 − 1

)
y2 + (1 + λ)y4 = 0. (4.9)

The Svetlana Ribbon σ1 (3.11) and the Svetlana Quasiribbon σ2 (3.12) of type Sr(He) are
shown in Figures 3a and 3b with λ = 2 and λ = 5/4, respectively. The line A2A3 is assumed
as line at infinity.

4.3. Svetlana Ribbons of type Sr(Hh)

Assume that the base segment AB of any Svetlana Ribbon lies on a hyperbolic line. Then
0 < λ < 1. Since the segment AB belongs to the plane Ĥ, its midpoint S (quasimidpoint

S0) lies in the plane Ĥ (Lobachevskĭı plane Λ2). Therefore also the entire Svetlana Ribbon

(Svetlana Quasiribbon) with the base AB belongs to Ĥ (Λ2).
After the transformation by (3.1), Eq. (3.11) determines in the system Oxy a curve which

does not have common real points with the axis Ox. This curve is symmetric with respect
to both coordinate axes and crosses the axis Oy in four real points. Therefore, the image of
the Svetlana Ribbon σ1 (3.13) of type Sr(Hh) in the plane E2 is a curve consisting of two
connected Cassini Ovals. Thus, the following theorem on Svetlana Ribbons of type Sr(Hh)
is proved.

Theorem 3. The Svetlana Ribbons of type Sr(Hh) are algebraic curves of degree four.

These curves contain two absolute points and consist of two non-intersecting branches. Non-

connected Cassini Ovals with the focal axis l can be Euclidean images of Svetlana Ribbons of

type Sr(Hh) with the hyperbolic axis l.

In Figure 4 the Svetlana Ribbons σ1, σ1 and the Svetlana Quasiribbons σ2, σ2 of type
Sr(Hh) are displayed. In Figure 4a the line A2A3 has been chosen as line at infinity, in
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Figure 4: The Svetlana Ribbons σ1 with λ = 1/2, σ1 with λ = 7/9 and the Svetlana
Quasiribbons σ2 with λ = 1/2, σ2 with λ = 7/9 of type Sr(Hh), the Svetlana Ribbon
ω (4.4) of type Sr(Hp), the absolute oval curve γ (2.1), the elliptic cycle α (4.2) in the
plane E2 with the infinitely far line in a) as A2A3, in b) as A1A2.

Figure 4b the line A1A3. The curves σ1 (σ1) and σ2 (σ2) shown in Figure 4a are given by
(3.11) and (3.12), respectively, with λ = 1/2 (λ = 7/9). The curves of Figure 4b are given by
(4.8) and (4.9), respectively, again with λ = 1/2 (λ = 7/9).

5. Paths of an arbitrary point on the moving line during the

Cardan motion

The approach of O. Bottema in [3] allows us to obtain also in the planes Ĥ and Λ2 the
equations of the paths of an arbitrary point on the generating line during a Cardan motion.
We present here briefly the main phases of the derivation of such equations for the Cardan
motion with a non-parabolic generating line and orthogonal axes intersecting in the plane Ĥ .
We still assume that in Ĥ the elliptic line m and the hyperbolic line l are orthogonal. The
elliptic or hyperbolic segment AB of constant length δ moves in the plane Ĥ such that A ∈ l
and B ∈ m.

If the points A and B are orthogonal on the hyperbolic line then point A lies in the
Lobachevskĭı plane. This does not correspond to the conditions of our task. Therefore we
consider the case of orthogonality of A and B only for an elliptic line AB. In this case the
point B is fixed at the pole of the line l with respect to the absolute. The Cardan motion
degenerates into the rotation about the point B. The path of an arbitrary point X of the
plane Ĥ under the rotation about B can be as follows (see [24]): an elliptic or hyperbolic
cycle with centre B when the line BX is elliptic or hyperbolic, respectively, or a parabolic
line BX .

From now on we assume that the points A and B are not orthogonal. In the frame R∗, as
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defined in Section 3, we set the points A and B by the coordinates (1 : 0 : a) and (1 : b : 0),
respectively. Via the second (first) formula of (2.2) we obtain the following relations between
the parameters a and b for the hyperbolic (elliptic) line AB:

(
1− a2

) (
1 + b2

)
cosh2 δ

ρ
= 1

( (
1− a2

) (
1 + b2

)
cos2

δ

ρ
= 1

)
.

As a consequence, we introduce an auxiliary parameter p such that

p =
(
1− a2

)
cosh

δ

ρ
, p−1 =

(
1 + b2

)
cosh

δ

ρ

(
p =

(
1− a2

)
cos

δ

ρ
, p−1 =

(
1 + b2

)
cos

δ

ρ

)
.

These expressions yield

a2 =
cosh δ

ρ
− p

cosh δ
ρ

, b2 =
1− p cosh δ

ρ

p cosh δ
ρ

(
a2 =

cos δ
ρ
− p

cos δ
ρ

, b2 =
1− p cos δ

ρ

p cos δ
ρ

)
. (5.1)

The coordinates (1 + t : bt : a) with t ∈ R define points M(t) on the line AB with A = M(0)
and B = M(∞). Let us choose a new parametrization of the line AB such that

t = t(µ) = p
tanh δ

2ρ
+ µ

tanh δ
2ρ

− µ

(
t = t(µ) = p

tan δ
2ρ

+ µ

tan δ
2ρ

− µ

)
. (5.2)

In this parametrization the coordinates (x1, x2, x3) of the current point M on the hyperbolic
(elliptic) line AB satisfy the following equalities:

x2
1 =

[
µ− tanh

δ

2ρ
− p
(
µ+ tanh

δ

2ρ

)]
2

cosh
δ

ρ(
x2
1 =

[
µ− tan

δ

2ρ
− p
(
µ+ tan

δ

2ρ

)]
2
cos

δ

ρ

)
,

x2
2 = p

(
1− p cosh

δ

ρ

)(
µ+ tanh

δ

2ρ

)
2

(
x2
2 = p

(
1− p cos

δ

ρ

)(
µ+ tan

δ

2ρ

)
2
)
,

x2
3 =

(
cosh

δ

ρ
− p
)(

µ− tanh
δ

2ρ

)
2

(
x2
3 =

(
cos

δ

ρ
− p
)(

µ− tan
δ

2ρ

)
2
)
.

(5.3)

After calculating the expression x1
1 + x2

2 − x2
3 from (5.3), we obtain

p =
x2
1 + x2

2 − x2
3

4 (1− µ2) sinh2 δ
2ρ

(
p =

x2
1 + x2

2 − x2
3

4 (1 + µ2) sin2 δ
2ρ

)
. (5.4)

According to (5.3) we have

Θ ≡ x2
2

(
µ− tanh

δ

2ρ

)
2 − x2

3

(
µ+ tanh

δ

2ρ

)
2
=
[
2p− (p2 + 1) cosh

δ

ρ

](
µ2 − tanh2 δ

2ρ

)
2

(
Θ ≡ x2

2

(
µ− tan

δ

2ρ

)
2 − x2

3

(
µ+ tan

δ

2ρ

)
2

=
[
2p− (p2 + 1) cos

δ

ρ

](
µ2 − tan2 δ

2ρ

)
2
)
,

Ω ≡ x2
2x

2
3 = p

[
(1 + p2) cosh

δ

ρ
− p

(
1 + cosh2 δ

ρ

)](
µ2 − tanh2 δ

2ρ

)
2

(
Ω ≡ x2

2x
2
3 = p

[
(1 + p2) cos

δ

ρ
− p

(
1 + cos2

δ

ρ

)](
µ2 − tan2 δ

2ρ

)
2
)
.

(5.5)
Consequently,

pΘ+ Ω = −p2
(
µ2 − tanh2 δ

2ρ

)
2

sinh2 δ

ρ

(
pΘ+ Ω = p2

(
µ2 − tan2 δ

2ρ

)
2

sin2 δ

ρ

)
. (5.6)
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Using the expressions from (5.5), we can eliminate the parameter p from (5.4) and (5.6). As
a result we obtain below the equation of the path for an arbitrary point on the hyperbolic
and elliptic generating line during a Cardan motion:

(x2
1 + x2

2 − x2
3)

2

(
µ2 − tanh2 δ

2ρ

)
2

cosh2 δ

2ρ
+ (x2

1 + x2
2 − x2

3)(1− µ2)

×
[
x2
2

(
µ− tanh

δ

2ρ

)
2 − x2

3

(
µ+ tanh

δ

2ρ

)
2
]
+ 4x2

2x
2
3(1− µ2)2 sinh2 δ

2ρ
= 0,

(5.7)

(x2
1 + x2

2 − x2
3)

2

(
µ2 − tan2 δ

2ρ

)
2

cos2
δ

2ρ
− (x2

1 + x2
2 − x2

3)(1 + µ2)

×
[
x2
2

(
µ− tan

δ

2ρ

)
2 − x2

3

(
µ+ tan

δ

2ρ

)
2
]
− 4x2

2x
2
3(1 + µ2)2 sin2 δ

2ρ
= 0.

(5.8)

In the case µ = 0 the Equations (5.7) and (5.8) are equivalent to Eq. (3.13) with the
notations from (3.6) and they describe the Svetlana Ribbons. Hence, a vanishing parameter
µ corresponds to the midpoint S of the segment AB. Via (5.2) we find the geometrical
meaning of the parameter µ for the current point M on the curve (5.7) ((5.8)):

µ =
1− (ABSM)

1 + (ABSM)
tanh

δ

2ρ
= tanh

|SM |
ρ

(
µ =

1− (ABSM)

1 + (ABSM)
tan

δ

2ρ
= tan

|SM |
ρ

)
.

The quartic curves (5.7) and (5.8) have three centers A1, A2, and A3. They meet the absolute
at the points E13 and E31 and have no other real points on the absolute.

Thus, the trajectory of an arbitrary point of a non-parabolic generating line during the
Cardan motion with intersecting axes in the plane Ĥ is a quartic curve with three centers
and two times tangent to the absolute at the points on the hyperbolic axis of the motion.
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