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Abstract. The paper provides two examples, where the bending of a planar
area Φ0 with boundary c0 generates a developable surface patch Φ bounded by a
particular spatial curve c. There are various ways to restrict such bendings. In
the first example the surface Φ is a cylinder with given rulings, and the spatial
counterpart c of the boundary c0 is planar. In the second example the rulings are
unknown. Instead of this constraint, the closed boundary c0 is subdivided into two
subarcs which are glued together while Φ0 is bent. In both examples we obtain
solids enclosed by torses with geodesic circles c as curved edges.
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1. First example, a cylindrical box

A very common way of producing small boxes in shops or in fast-food restaurants is to push
up special planar cardbord forms with prepared creases. For the case of creases along circular
arcs c0 (see Figure 1, left), W. Wunderlich pointed out in [13] that at the spatial form the
creases are again planar (see Figure 1, right). They belong to a family F of curves which are
well-known in differential geometry since C. F. Gauß: the curves are meridians of surfaces
of revolution with constant Gaussian curvature. The family F includes circular arcs, since
spheres have a constant curvature, too. This stimulates to reflect about a generalization of
Wunderlich’s result (compare with Theorem 1).

1.1. Surfaces of revolution with constant Gaussian curvature

To begin with, we recall the classification of the curves of F : Let the meridian c in the
xy-plane with the twice-differentiable arc-length parametrization

c(s) = (x(s), y(s)) for s1 ≤ s ≤ s2
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Figure 1: Wunderlich’s original figure in [13]: development (left)
and spatial form (right), both with supplementary labels

rotate about the x-axis (Figure 2). If primes indicate the differentiation with respect to (w.r.t.
in short) the arc-length s then c′ = (x′, y′) = (cosα, sinα) is the unit tangent vector and
c′′ = (x′′, y′′) = κ1(y

′,−x′) the curvature vector.

At surfaces of revolution, the meridians and parallel circles are the principal curvature
lines. Therefore, the signed principal curvatures at the point P = c(s) are

κ1 = − y′′

cosα
, κ2 =

cosα

y

(see Figure 2, where ρi = 1/κi). The Gaussian curvature K = κ1κ2 is constant if and only if
the meridian c satisfies the differential equations

y′′ +Ky = 0, x′ =
√

1− y′ 2 (1)

with K = const., provided that cosα 6= 0.

In the case K = 0 the meridians are lines; the corresponding surfaces of revolution are

P

c

x

y

c
′

ρ1c
′′

M1

M2

ρ 1

ρ
2

α

Figure 2: M1 and M2 are the Meusnier centers of the principal curvature lines at point P ∈ c
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Table 1: Meridians of the surfaces of revolution with constant
Gaussian curvature K (see Figure 3).

curvature coefficients in (2) name

1. 0 < a < 1, b = 0 spindle type (elliptic)

2. K = 1 a = 1, b = 0 sphere (parabolic)

3. a > 1, b = 0 bulge type (hyperbolic)

4. a = 0, 0 < b < 1 cone type (elliptic)

5. K =−1 b = a = 1 tractrix (parabolic)

6. a > 0, b = 0 gorge type (hyperbolic)

right cones or cylinders. In the remaining cases K 6= 0 we obtain the general solutions

K > 0 : y = a cos s
√
K + b sin s

√
K,

K < 0 : y = a cosh s
√
−K + b sinh s

√
−K, (2)

with constant a, b ∈ R, and x =
∫

√

1− y′ 2 ds.
After specifying an appropriate initial point s = 0 for the arc-length parametrization, we

can restrict ourselves – up to similarities – to six cases, as listed in Table 1 (see Figure 3 or
[7]). This classification dates back to C. F. Gauß (1827) and F.A. Minding (1839) (note
[6, p. 277–286], [12, p. 141–148], [9, p. 158] or [2, p. 169]).

a = 0.78, b = 0 a = 1.00, b = 0 a = 1.18, b = 0
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Figure 3: Curves of the family F0 of meridians of surfaces of revolution with constant
Gaussian curvature K = 1 (top row) and K = −1 (bottom row)
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In case 2 the meridian c is a half-circle centered on the x-axis. Due to G. Scheffers

[11], the curve c of case 1 shows up at the development of an elliptic cylinder when bounded
by a circular section. This can easily be verified by comparison with the first equation in (2).
The meridian c in case 5 has the arc-length parametrization

x =
√
1− e−2s − arcosh es, y = e−s, s > 0 .

This defines a tractrix, since the segment between P ∈ c and the meet T of the tangent at P
and the x-axis has the constant length 1. The corresponding surface of revolution is called
pseudosphere (or bugle surface or tractroid).

Remark 1. According to [4], the curves of the family F in the cases 1 and 3 serve as center
curves of a rolling unit disk which moves such that an excentric point attached to the disk
traces a straight line. We can verify this in the following way: Let the moving plane rotate with
angular velocity 1 around any point M , which simultaneously moves with unit-speed along a
curve (x(s), y(s)). Then the moving polode must be the unit circle, and the trajectory of the
point with coordinates (x1, y1) w.r.t. the moving plane is given by

(

x0
y0

)

=

(

x(s)
y(s)

)

+

(

cos s sin s
− sin s cos s

)(

x1
y1

)

.

If, according to (2), we specify y(s) = a cos s and set (x1, y1) = (0,−a) we obtain directly
y0 = 0. By the same token, a similar property of the curves in the cases 4–6 can be verified
in the complex extension by specifying the angular velocity as i (= imaginary unit).

1.2. Curved edge at the bending of a planar ruled surface

Theorem 1. Let F0 be the family of meridians of surfaces of revolution with constant Gaus-
sian curvature K 6= 0. Suppose a curve c0 ∈ F0 bounds together with the corresponding axis
a0 (= x-axis) the development Φ0 of a cylindrical patch with generators orthogonal to a0.
If at a cylindrically bent pose Φ of Φ0 the corresponding boundary curve c is located in a plane
ε then c is again a member of the family F0 and even with the same curvature K. The axis
of c is the meet of ε and the plane of the orthogonal section a, which is the bent counterpart
of the original axis a0.

Proof. There is an isometry between the flat initial pose Φ0 and the cylindrical shape Φ.
Therefore the arc-length s of c0 serves also as arc-length of c ⊂ ε. If at the bent pose Φ the
line of intersection between ε and the plane of the cross section a is used as x-axis then the
original y0-coordinate of any point P0 ∈ c0 and the y-coordinate of the corresponding point
P ∈ c satisfy

y0(s) = y(s) cosβ, (3)

where the constant β with 0 < β ≤ π

2
denotes the angle of inclination of the generators of Φ

w.r.t. the plane ε (Figure 4). We have β < π
2
since otherwise c0 would be a line.

The y-coordinate y0(s) of the given boundary curve c0 satisfies (1). Consequently, the planar
section c of Φ satisfies the same equation y′′ + Ky = 0. This means in particular that the
Gaussian curvature K of the corresponding surfaces of revolution is preserved.
If we plug (3) into the general solutions y0 = y0(s), as listed in (2), the coefficients a0, b0 are
replaced with

a =
a0

cos β
≥ a0 and b =

b0
cos β

≥ b0. (4)
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Figure 4: Φ0 with boundary c0 ∈ F0 is cylindrically bent with a planar boundary c

Hence, if c0 is of type 2 like in Figure 1 then c is of type 3. The question why the boundary
curve c must be planar will be addressed below in Theorem 3.

For c0 of type 3 the curve c is again of type 3, while the bending of c0 of type 1 results in
curves c of types 1, 21 or 3. Finally, each of the types 4, 5 and 6 is preserved.

We can perform a continuous bending from Φ0 to Φ by varying the inclination angle β.
The condition |dy/ds| = |y′| ≤ 1, by virtue of (1), implies an upper limit β0 for β, i.e.,

0 ≤ β ≤ β0.

Also Figure 4 reveals that the angle β of inclination cannot be bigger than the angles between
the generators and the boundary c0 in the initial flat pose.

Corollary 2. A bent pose Φ, as described in Theorem 1, exists only if the angle β between
the generators of Φ and the plane ε is smaller of equal to the smallest angle β0 between the
generators and the boundary curve c0 in the development Φ0.

If c0 lies on a tractrix then c is congruent to another portion of the same tractrix.

Proof. The second statement is a consequence of (4) under the condition a0 = b0, since a = b
characterizes tractrices among the curves of the family F0, i.e., case 5 in Table 1. However,
this statement follows also from the invariance of the distance PT along the tangent from the
point P ∈ c0 to the intersection T with the x-axis (see Figures 3 and 4).

Concerning the planarity of the crease c in Figure 1, we focus on a generalization, which
is already mentioned in [13, p. 114], however without a proof. Let

x0 :

{

I × R → R
2,

(s, t) 7→ x0(s, t) = c0(s) + t r0(s)
(5)

be a C2-parametrization of a planar ruled surface (Figure 5). We specify c0(s) as arc-length
parametrization of a plane curve c0 and r0(s) as normalized direction vector of the generator,

1This confirms again Scheffers’ result in [11] with a circle c and an elliptic cylinder Φ.
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Figure 5: Theorem 3 deals with a bent pose of this development such that c0 becomes
a proper edge between the torses with given developments Φ10 and Φ20

i.e., ‖r0(s)‖ = ‖c′
0
‖ = 1 for all s ∈ I. Furthermore we assume that c0 is nowhere tangent to

any generator.
Let Φ0 be a sufficiently small subarea of this planar ‘ruled surface’ such that the

parametrization (5) is injective and c0 subdivides Φ0 into two patches Φ10 and Φ20 (Fig-
ure 5). We are interested in bent poses of Φ0 where the spatial counterpart c of c0 is a proper
curved edge between two torses Φ1 and Φ2 with generators corresponding to the rulings in
the respective developments Φ10 and Φ20. Then we can state:

Theorem 3. If the two adjacent patches Φ10 and Φ20 of the planar ruled surface, as defined
above, are the developments of two developable patches Φ1 and Φ2 with a proper curved edge c
between them, this crease c must be a planar curve. The two torses, which arise by extending
all generators of the patches Φ1 and Φ2 to full lines, are symmetric w.r.t. the plane of c.2

Proof. Let (f1, f2, f3) be the Frenet frame of the crease c with the arc-length parametrization
c(s) and the Frenet equations

f ′

1
= κ f2 ,

f ′

2
= −κ f1 + τ f3 ,

f ′

3
= − τ f2 .

The continuous process of bending induces, at each instant, an orientation preserving isometry

x0(s, t) 7→ c(s) + t ri

between the patch Φi0 of the planar ruled surface in (5) and the curved patch Φi , for each
i ∈ {1, 2}. Therefore, the signed curvature κ0 of c0 equals the geodesic curvature κgi of c
w.r.t. Φi . In addition, for all s ∈ I the angle α(s) between c ′

0
(s) = f10 and the generator r0(s)

remains unchanged (see Figure 5).
On the other hand, the curve c defines a right-handed Darboux frame (d1i, d2i, d3i) on each
torse Φi, i = 1, 2 , consisting of the tangent unit vector d1i = f1 = c′, the normal unit vector
d2i within the tangent plane of Φi and the normalized surface normal d3i = d1i×d2i . During

2In Origami, the transition from the extension of Φ1 to Φ2 is called reflection operation (see, e.g., [10,
p. 187]).
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the continuous bending from Φi0 to Φi, the isometries transform the 2-dimensional Frenet
frame (f10, f20) of c0 into the pair (d1i, d2i) for all s ∈ I. Hence, the orientation of the surface
normal d3i of Φi is uniquely defined.

The derivatives of the vectors of the Darboux frames satisfy, for i = 1, 2 ,

d ′

1i = κgi d2i +κni d3i ,
d ′

2i = −κgi d1i +τgi d3i ,
d ′

3i = −κni d1i −τgi d2i .

At each point of c we can transform the Frenet frame of c into the Darboux frame w.r.t. Φi

by a rotation about the tangent vector d1i = f1. Let γi(s) denote the angle of this rotation.
Then, for each s ∈ I,

d1i = f1,
d2i = cos γi f2 − sin γi f3 ,
d3i = sin γi f2 + cos γi f3 .

These rotations take the osculating plane of c to the tangent planes of the torses Φ1 and Φ2,
respectively. Now, the invariants of the Darboux frames can be expressed in terms of the
invariants of the Frenet frame and the angle γi as

κgi = κ cos γi , κni = κ sin γi , τgi = τ − γ′i . (6)

Because of κg1 = κg2 = κ0 at each point c(s), the cosines of γ1 and γ2 equal κ0/κ . Since there
must be a proper edge along the crease c between Φ1 and Φ2, the angles γ1 and γ2, when
restricted by −π < γi ≤ π, must have different signs, i.e., γ2 = −γ1 6= 0 .
Torses are the envelopes of their tangent planes. Therefore, the generator of Φi at c(s) has
the direction of

d3i × d ′

3i = τgi d1i − κni d2i = (τ − γ′i)d1i − κ sin γi d2i .

The oriented angle α between the tangent vector d1i and the generator ri shows already up
in the development (see Figure 5). Since this angle is the same for both developable patches,
we obtain

cosα : sinα = (τ − γ′
1
) : (−κ sin γ1) = (τ − γ′

2
) : (−κ sin γ2) = (τ + γ′

1
) : κ sin γ1 .

The curve c0 was supposed to be transversal to the rulings. Therefore we have sinα 6= 0
everywhere, and consequently

(τ − γ′
1
) = −(τ + γ′

1
), hence τ = 0.

The crease c must be planar. When at each point of c the tangent planes of Φ1 and Φ2 are
symmetric w.r.t. the plane of c, then Φ1 and Φ2 are patches of two symmetric torses.

At the end of this proof, two comments on excluded cases: If the crease is not a proper
edge between Φ1 and Φ2 then γ1 = ±π

2
or γ1 = 0 for all s ∈ I. In the first case the two

patches belong to the same torse, c is a geodesic on this torse, and c0 is aligned, i.e., κ0 = 0 .
In the second case the crease c is the cuspidal edge, and Φ1 and Φ2 belong to the two sheets
of the tangent surface of c . In both cases, c needs not be planar.

At the box displayed in Figure 1 the planar ruled surface given in (5) has parallel gener-
ators, i.e., r0(s) = const., and we have β =

π

4
in (4) and Figure 4. Due to Corollary 2, in the
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Figure 6: Views of the cylindrical box in the extreme case β0 = β = 45◦

development the minimum angle β0 between the generators and curve c0 cannot be smaller
than π/4. Figure 6 shows a box (with the bottom face congruent to the top face Φ) in the
limit case β0 =

π

4
. Therefore the interior angles at two vertical digons (hatched in Figure 1)

reach the possible maximum
π

2
. The common generator e between the top face Φ and the

bottom face is no longer an edge like in Figure 1, but both cylinders share a vertical tangent
plane along e .

Φ10

Φ20

c0

Φ1

Φ2

c

ε

Figure 7: This example to Theorem 3 is related to an Oloid and its extension

Another example of Theorem 3 is shown in Figure 7. This time the developable patch
Φ1 is a general torse, namely a portion of the boundary of the Oloid, which is defined as the
convex hull of two circles in orthogonal planes such that each circle contains the center of the
other circle (see, e.g., [5]). One of these circles, the circle c, separates Φ1 from the patch Φ2,
which belongs to the socalled extended Oloid (note [3]). The plane ε of c subdivides the Oloid
into two symmetric halves. The right picture in Figure 7 shows the upper half of the Oloid
with the patch Φ1 as well as with the patch Φ2 belonging to the extension of the Oloid’s lower
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half. The development of both patches with the separating curve c0 is displayed on the left
hand side.3

Remark 2. The planarity of the crease c, as stated in Theorem 3, is only guaranteed when, in
the developments, the generators of Φ10 are aligned with that of Φ20. Without any additional
constraints, the bent pose is not rigid. Apart from the continuous bendings obtained by
variation of the angle γ while each generator remains aligned, also other bendings of Φ1 and
Φ2 with varying the rulings and a non-planar crease c are possible.

2. Second example, a box with a zip

c0 A0

C0

c

Φ

Figure 8: Development and spatial form (photos: G. Glaeser)

At the second example the development Φ0 is bounded by a C1-curve c0, which is composed
from two straight line segments and two semicircles of equal lengths (Figure 8, left). We select
two opposite points of transition between semicircles and straight line segments, A0 and C0,
for bisecting the boundary. Now the spatial form Φ is obtained by gluing together, from A0

on, the semicircle of one part with the straight segment of the other, and vice versa (Figure 8,
right). The question is, how to model this interesting resulting body ?

In contrast to the previous example, the crucial point is here that the rulings are unknown,
and local conditions are not sufficient for modelling the bent shape. The constraint is of global
nature: the boundary c0 must finally give a two-fold covered closed curve c.

In [8] a general and effective algorithm is provided for computing a quad mesh as a discrete
model of a developable surface patch which is determined by its development together with
a length-preserving mapping between bounding points which have to coincide after bending
at the spatial form. Our approach is more geometric but very specific and adjusted to the
particular example.

The inspection of a physical model shows:

• The corresponding spatial body with the boundary Φ is convex and uniquely defined.

• The helix-like curve c is a proper edge of Φ with the resulting solid as its convex hull.

• The spatial body has an axis a of symmetry which connects the spatial counterpart M
of the center M0 with the remaining transition point B = D on c (Figure 9).

• The semicircular disks are bent to cones with respective apices A and C. Hence, the
boundary Φ is a C1-composition of two cones and a torse between.
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Figure 9: Development for Example 2

We traverse c from A to C and subdivide it at the transition point B = D into the two
parts c1 and c2. Then we can state:

Lemma 4. Supposing that the observations of the physical model, as listed above, are correct,
the boundary Φ of the convex solid has the following properties:

1. The rotation about the axis a of symmetry through 180◦ maps Φ onto itself and inter-
changes c1 and c2. Hence, a is orthogonal to the tangent tB of c at the transition point
B. The apices A and C are symmetric w.r.t. a. The generator gM of Φ through the
central point M is cylindric4 and has a tangent plane orthogonal to a.

2. Because of the straight segments of c0 at the development, the developable surface on the
left hand side of c1 belongs to the rectifying torse of c1. With respect to the right hand
side, c1 is a geodesic circle of Φ.

3. Since at A0 the semicircle is tangent to the adjacent straight segment, the surface Φ has
cone singularities with the intrinsic curvature π at the points A and C. Therefore, the
initial tangent tA to c1 is a generator of a right cone with apex A and apex angle 60◦.
The osculating plane of c1 at A coincides with the cone’s tangent plane along tA, and
the rectifying plane at A passes through the cone’s axis.

The boundary Φ with given development Φ0 belongs to the connecting torse of c1 and c2.
If g is a generator of Φ whose counterpart in the development meets both straight segments
of c0 then g meets c1 and c2 at points with parallel and equally oriented tangent vectors. This
is since the tangent plane along g must be constant. Hence, we can state

Lemma 5. Under the assumptions of Lemma 4, the boundary Φ of the convex solid with the
curved edge c = c1 ∪ c2 has the following further properties:

1. At the point E2 ∈ c2 of transition between the cone with apex A and the adjacent torse
(see Figure 9) the tangent to c2 must be parallel to the initial tangent tA to c1 at A. The
symmetric point E1 ∈ c1 has a tangent parallel to the final tangent tC of c2.

2. The tangent indicatrices of c1 and c2 are symmetric w.r.t. a plane orthogonal to the axis
a. The tangent indicatrices of the subarcs AE1 ⊂ c1 and E2C ⊂ c2 must coincide (note
Figure 11).

3Note that in this example we have κ = const. in (6).
4The symmetry w.r.t. a must fix the cuspidal point of gM . Hence, this point either lies at infinity or it

coincides with M . The latter can be excluded since the velocity vectors of c1 and c2 at their intersections
with gM have the same direction.
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Proof of item 2. The reflection in a maps c1 onto c2, but reverses the orientation, i.e., reflects
on the unit sphere the tangent indicatrix in the center. Therefore the tangent indicatrix of c1
can be transformed into that of c2 by the reflection in a diameter parallel to a followed by the
reflection in the center. The product of these reflections is a reflection in the diameter plane
orthogonal to a.

2.1. A first approximation

We can approximate the requested developable surface Φ with its self-intersection c by speci-
fying c1 as one half of a geodesic circle on a right cone with apex A and apex angle 60◦. In
this case Φ is composed of two patches of right cones and a patch of a proper torse between.
Though this reflects more or less the shape of a physical model, we will recognize that this
cannot be an exact mathematical model.

To begin with, we focus on one half of a geodesic circle c1 on a right cone, whose axis is
vertical and whose generators are inclined under 60◦. This geodesic circle c1 with radius r is
supposed to pass through the cone’s apex A. We choose a coordinate frame with the cone’s
axis as z-axis and tA lying in the xz-plane (Figure 10). We parametrize the circle c1 by the
angle ϕ (with 2ϕ being the center angle in the development) and specify A as the point ϕ = 0.
Then

x(ϕ) = r
(

(sin2 ϕ− cos2 ϕ) sinϕ, 2 sin2 ϕ cosϕ, (1− sinϕ)
√
3
)

, 0 ≤ ϕ ≤ π

2
.

x(π
2
) = (r, 0, 0) is the lowest point B of c1, while x(0) = (0, 0, r

√
3) coincides with A.

The resulting curve c1 is even part of an algebraic curve: In the xy-plane, the top view c′
1

of c1 is a quarter of a rose curve traced by a point attached to a circle with radius
r

6
, which

is rolling outside on a circle of double size:

(

x
y

)

=
r

2

(

sinϕ
cosϕ

)

− r

2

(

sin 3ϕ
cos 3ϕ

)

.

(The dotted curve in Figure 10 shows the continuation of c′
1
.) The orthogonal projection of

c1 in the xz-plane, i.e., the side view c′′′
1
, belongs to a cubic parabola satisfying

3x
√
3 = 3(z −

√
3)− 2(z −

√
3)3.

This cubic parabola has its inflection point at A′′′

1
.

We differentiate c1 w.r.t. its arc-length s = 2rϕ and get the tangent unit vector

t =
1

2

(

5 cosϕ− 6 cos3 ϕ, 4 sinϕ− 6 sin3 ϕ, −
√
3 cosϕ

)

.

The second derivative x′′ = t′ = κn defines the principal normal vector n and the curvature
κ of g as

κ =
1

2r

√

4 + 3 sin2 ϕ and

n =
1

4rκ

(

(18 cos2 ϕ− 5) sinϕ, (4− 18 sin2 ϕ) cosϕ,
√
3 sinϕ

)

.

The second part c2 of the curved edge c is the image of c1 under the half-rotation about an
axis a which passes through B and lies in the xz-plane. However, the axis a should satisfy
simultanously two mutually contradicting conditions:
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Figure 10: Approximation 1: c1 is specified as a geodesic circle on a right cone

On the one hand, due to Lemma 4, 1., the half-rotation about the axis a should map
the tangent plane at B = x(π

2
) to the upper cone onto the rectifying plane of c1, which is

orthogonal to the principal normal n(π
2
). Therefore the slope of the axis a in the xz-plane

should be (
√
7−

√
3)/(5 +

√
21), and hence the slope angle is approximately 5.447◦.

On the other hand, by virtue of Lemma 5, 1., the torse which connects the upper and the
lower cone begins at the point E2 ∈ c2, whose tangent tE2

is parallel to the initial tangent tA
(Figure 9). Hence, tE2

must be parallel to the xz-plane. In the same way, at the symmetric
point E1 ∈ c1 the tangent tE1

is parallel to the final tangent tC of c2 and to the xz-plane
as well. Thus, for the point E1 = x(ϕE) the second coordinate of the tangent vector t(ϕE)
vanishes, hence sinϕE =

√

2/3 and cosϕE = 1/
√
3. Since the half-rotation about a exchanges

the direction of tE1
with that of tA, the axis a must have the slope (

√
3 − 1)/(

√
3 + 1). The

corresponding slope angle of 15◦ differs significantly from the value given before.
Anyway, Figure 10 shows in the side view the approximation of the required solid. The

projections of the tangent indicatrices of c1 and c2 in the xz-plane (Figure 11) reveal that
they have portions which are close together. However, by virtue of Lemma 5, 2., the tangent
indicatrices of the subarcs AE1 ⊂ c1 and E2C ⊂ c2 should coincide.

We summarize:

The assumption that the cone connecting A with c1 is a cone of revolution with the half apex
angle 30◦ leads to an approximation which violates at least two of the conditions listed in
Lemmas 4 and 5:

• At point B the tangent plane to the lower cone with apex C cannot be the rectifying
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tE2
= tA

tB

tC= tE1

‖ a

tE2
= tA

tB

tC = tE1

‖ a

Figure 11: Tangent indicatrices of the curve c in the approximations 1 (left, indicatrix of c1
with arrows) and 2 (right) in a suitable projection into a plane through a

plane of c1, while the tangent tC to c2 at the endpoint C is parallel to the tangent tE1
to

c1 at E1.

• The condition of coinciding tangent indicatrices, by virtue of Lemma 5, 2., is not pre-
cisely satisfied (note Figure 11, left).

This first approximation has the property that tA and tC are located in the plane spanned
by the axis a and the two apices A and C which cannot be confirmed at the physical model.
Furthermore, the angle <) ABC is about 150◦ while the physical model shows ∼ 131◦. This
approximation has the volume 1.830 r3 when r is the radius of the semicircles in the given
development (Figure 9).

2.2. Another approximation

By virtue of Lemma 5, 2., the tangent indicatrices of c1 and c2 should have identical subcurves.
Our second approximation arises when we specify these portions such that they appear as a
straight segment in the side view (note Figure 11, right). This means, the tangent indicatrix
of these portions is a circular arc, the corresponding space curves are of constant slope. The
rectifying torse is a cylinder.

Conversely, if the middle torse of Φ is supposed as a cylinder the arcs AE1 and E2C,
being geodesics, are curves of constant slope w.r.t. generators g of this cylinder. Then, in the
development in Figure 9 all generators g0 meeting the two straight segments of c0 are parallel
and of equal lengths. There is a translation along g which maps the arc AE1 ⊂ c1 onto the arc
E2C ⊂ c2. The half-rotation about the axis a of symmetry maps E2C back to E1A. Hence,
there must be a half-rotation about an axis a1 parallel to a which exchanges A with E1 while
the arc AE1 is mapped onto itself.

This means, this slope curve has an axis a1 of symmetry which meets c1 at a point F1. The
axis a1 must be orthogonal to the tangent plane of the cylinder at F1 in order to guarantee
that the complete arc AE1 is a smooth slope curve. Since E1 and C are the images of A
under reflections in parallel axes a1 and a, respectively, the points A, C, E1, and E2 lie in a
plane orthogonal to a (note the side view in Figure 12). On the other hand, the lines AE1,
E2C and the connection of F1 with its translate F2 are generators of the middle cylinder.

For a numerical approximation we use the same coordinate frame as in the first approxi-
mation. We specify an arbitrary slope angle ψ which can be seen in the development as the
slope angle of the generator gM (Figure 9). This defines the direction of the generators of
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Figure 12: Example 2: Principal views with shaded cylindrical patch (left)
and axonometry (right) of the second approximation

the cylinder, since the generator through A lies in the diameter plane of the approximating
right cone and makes with tA the angle ψ. Hence, (90◦−ψ) is the constant slope angle of the
initial portion of c1. The angle ψ defines the length of the translation A 7→ E2 as well as the
length of the arc AE1, which equals A0E

′

10
in Figure 9.

The arc-length along c1 between A and F1 is half of the length AE1. We obtain the axis
a1 orthogonal to the tangent plane to the cylinder at F1. On the generator of the cylinder
through F1 we find the central point M with the axis a passing through it. The axis a is
parallel to a1 and contains the point B in the distance A0B0 to A.

During the numerical approximation of the arc AF1 we have to note that for each point
X the distance to A can be extracted from the development. Therefore, the length of the arc
AX along the curve c1 of constant slope as well as the length of the chord AX = A0X0 is
known. An orthogonal section cn

1
of the rectifying cylinder (or the projection of c1 in direction

of the cylinder’s generators) has the arc-length

σ = AnXn = 2rϕ sinψ, (7)

when r denotes the radius of the semi-circles in the development and 2ϕ is the center angle
— as in the first approximation. Then the length of the chord in the orthogonal section must
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Figure 13: The development of the mathematical model (thick light red line)
in comparison with the given development (thin black)

be
AnXn =

√

(2r sinϕ)2 − (2rϕ cosψ)2. (8)

The remaining portion E1B of c1 ⊂ Φ is the intersection of two cones. Its points X have
distances to A and C which are available in the development, i.e., AX = A0X0 for X0 taken
on the circular arc E10B0, and CX = C0X

′

0
for X ′

0
on the segment E ′

10
B′

0
in Figure 9. Finally

we vary the initial slope angle ψ such that the computed curve c1 ends exactly at the point
B, which was already determined before.

This yields the following results: The optimal slope angle is approx. 54.53◦, the ‘width’
MB of the solid, in terms of the radius r, is 1.18 r, the ‘height’ AC = 3.635 r, the angle
<) ABC = 130.67◦, and the volume approx. 1.978 r3. Figure 13 reveals that there is almost
no difference between the development of this approximating mathematical model and the
given development in Figure 9.

There is still a tiny contradiction inherent in this model: Since a1 is the perpendicular
bisector of A and E1, the distance AE1 is twice the distance between A and the axis a1. The
condition AE1 = A0E10 implies that the right-angular triangle A0N0F10 with N0 as midpoint
of A0E10 is congruent to the spatial counterpart ANF1 with N ∈ a1 (see Figure 14). On
the other hand, the axis a1 = F1N should be orthogonal to the tangent tF at F . At the
model depicted in Figure 12 the angle between a1 = F1N and the tangent tF is ∼ 88.84◦

Consequently, the tangent tE1
is not precisely parallel to tC , but there is a discrepancy of

∼ 1.2◦.

We summarize:

A0

B0

M0 E10

E′

10

F10

F ′

10

E′

20

N
ψ

A

N

E1

F1

c1

a1

Figure 14: The triangle ANF1 is congruent to its counterpart in the development
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The assumption that the central torsal patch of Φ is cylindric results in a good approximation
(note Figure 12) of the physical model. However, it still differs from the theoretically correct
version since the reflection of the initial arc AF1 in a1 gives an arc E1F1 which does not
satisfy eq. (8) exactly.

Remark 3. We can fold the sheet shown in Figure 9 in two ways, since we can choose the
depicted side either in the interior of the solid or in the exterior. At the first choice the curve
c has negative torsion (like in the photo shown in Figure 8). Otherwise the helix-like curve is
right-handed twisted, i.e., has a positive torsion (see Figure 12).
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Figure 15: A discrete approximation of the solid: development (left) and spatial form
in front, top and side view (middle) and in an axonometry (right)

Remark 4. When both semicircles in the development are replaced with halves of regular
hexagons and the lengths of the straight segments B0C0 and A0D0 are chosen accordingly
(Figure 15), we obtain a discrete model. It is a convex polyhedron with 7 vertices, 15 edges
and 10 triangular faces. The existence of this polyhedron is also guaranteed by A.D. Alexan-

drov’s famous Uniqueness Theorem (1941), since with the development a convex intrinsic
metric is defined [1]. The two vertices A and C have degree 5, the remaining five degree 4 . In
terms of the side lengths r of the polygon approximating the helix-like curve c, the ‘width’MB
of this polyhedron is about 1.5095 r, the ‘height’ AC = 3.557 r, the angle <) ABC = 125.56◦,
and the volume 1.5485 r3.
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