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Abstract. We prove Chasles’s theorem for non-developable ruled surfaces, origi-
nally published in 1839, and generalize it to higher-dimensional projective exten-
sions of the real space for the first polars along non-torsal lines. We avoid the use
of differential geometry and re-prove the theorem strictly projectively, using only
incidence properties for surfaces of higher degree.
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1. Introduction

In 1839, the French mathematician Michel Floréal Chasles formulated in [2, p. 53] the
following theorem about non-developable ruled surfaces:

Theorem 1 (Chasles). Four tangent planes along a non-torsal line of a ruled surface have
the same cross-ratio as their contact points.

The theorem has become of great use in descriptive geometry (see [5, p. 648–650]). It
provides a simple construction of the tangent plane in a given point or of the tangent surface
along a given ruling on a non-developable ruled surface (Figure 1).

Apart from its projective nature, the theorem is usually studied in differential geometry.
Chasles used infinitesimal calculus for the definition of a non-developable ruled surface
(“surface gauche”) in his proof, and therefore he crossed the border to projective incidence
geometry. Interested readers can find more about the errors in Chasles’s original proof of
his theorem in [9]. A proof based on the differential approach can be also found in the recent
article [6, p. 509, 510] by Önder and Uḡurlu and with more insight in projective differential
geometry in [4, p. 48] by Hlavatý, and in [7, p. 228–229].

In this paper, we generalize the theorem to algebraic surfaces, and we re-prove it strictly
projectively. The algebraic language enables a straightforward generalization to higher dimen-
sions. We use the standard axiomatic system of the projective extension of the real space with
elements at infinity. A complete list of axioms of RP3 is given in [8, pp. 16, 18, 24] and in [3,
p. 15]. An extension to higher-dimensional spaces is described also in [8, pp. 2, 3, 29–33].
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Figure 1: Tangent planes through a ruling on a hyperboloid

2. Chasles’s theorem along non-torsal lines

We will give an algebraic proof in RPm for m ≥ 3. Consecutive steps of the proof are visualized
on the Clebsch surface in RP3, which is an algebraic surface of 3rd degree (Figure 2). We
first define necessary terms and show that all polars of a pole on a surface with respect to
this surface are tangent surfaces at this point. Then we prove the existence of a projectivity
between the pencil of first polars and the range of its poles on a non-torsal line of a surface.
At the end, we will also give a projective proof of Chasles’s theorem for non-developable ruled
surfaces.

A range of points or a pencil of lines, hyperplanes or conics etc. are one-dimensional forms.
Each element x of such a form is a linear combination of two distinct elements p and q of this
form and can be uniquely represented by a pair of real numbers (ρk1, ρk2) 6= (0, 0) for arbitrary
ρ 6= 0, and vice-versa. The pair (ρk1, ρk2) is called projective coordinates of the element x in
the one-dimensional form. Furtheron, an element x will be denoted by x(ρk1, ρk2).

A triple of elements 0(0, 1), e(1, 1) and ∞(1, 0) of a one-dimensional form is called its
projective coordinate system S. A projectivity between two one-dimensional forms with
projective coordinate systems S and S ′, respectively, is given by a linear map between the
projective coordinates x(k1, k2) and x′(k′1, k

′
2) of corresponding elements, i.e.,(

k′1
k′2

)
= ξ

(
α β
γ δ

)(
k1
k2

)
,
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where ξ 6= 0 is a function of k1, k2 and αδ − βγ 6= 0 for α, β, γ, δ ∈ R.

Let S be a surface of degree n described by the algebraic form Fn(X) of degree n induced
by the multilinear form F (X,X, . . . , X︸ ︷︷ ︸

n times

). A point P lies on S if F (P ) = 0. This point is said

to be singular if

∂Fn(P )

∂pi
= 0 for all i = 0, . . . ,m .

Otherwise, we call P a regular point of the surface S. The polar hypersurface of a regular
point P (p1, p2, . . . , pm, p0)

π1(S, P ) : F (P,X, . . . , X︸ ︷︷ ︸
(n−1) times

) =
∑

i1=0,...,m

pi1
∂Fn(X)

∂xi1
= 0

is said to be its first polar. In the formula, we use only the formal derivation of a polynomial.

Figure 2: Clebsch surface and its non-torsal line
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Applying the same process on π1 will give us the 2nd polar of P with respect to S

π2(S, P ) : F (P, P,X, . . . , X︸ ︷︷ ︸
(n−2) times

) =
∑
i2

pi2

∑
i1
pi1

∂Fn(X)
∂xi1

∂xi2
= 0 for all i1, i2 = 0, . . . ,m.

The r-th polar of P with respect to S can be, after some arithmetic modifications, written as

πr(S, P ) : F (P, . . . , P︸ ︷︷ ︸
r times

X, . . . , X︸ ︷︷ ︸
(n−r) times

) =
∑ r!

r1!r2! . . . rm!r0!
pr11 . . . p

rm
m pr00

∂rFn(X)

∂xr11 . . . ∂x
rm
m ∂xr00

= 0,

where we sum over all (m+ 1)-tuples (r1, . . . , rm, r0) such that rj ≥ 0 and
m∑
j=0

rj = r. For our

purposes the last polar (r = n− 1) will be of major interest. As we are operating on symmetric
multilinear forms, we can dually formulate1 the last polar hereby as

πn−1(S, P ) : F (P, . . . , P︸ ︷︷ ︸
(n−1) times

, X) =
∑

i=0,...,m

xi
∂Fn(P )

∂pi
= 0.

The last polar is a linear form; so it is a polar hyperplane.

Example 1. For visualizations (cf. Figures 2–4) the following equations of the Clebsch surface
SCL are used:

in E3 : (x3 + y3 + z3 + 1)− (x+ y + z + 1)3 = 0,

in RP3 : (x31 + x32 + x33 + x30)− (x1 + x2 + x3 + x0)
3 = 0.

The points P = (1,−1, 0, 1), Q = (4,−4, 0, 1), W = (3,−3, 0, 1), and R = (7,−7, 0, 1) on the
line p have the first polars

π1(SCL, P ) : F (P,X,X) =−6x0x1 − 6x0x2 − 6x1x2 − 6x22 − 6x0x3 − 6x1x3 − 6x2x3 − 3x23 = 0,

π1(SCL, Q) : F (Q,X,X) =−6x0x1 + 9x21 − 6x0x2 − 6x1x2 − 15x22 − 6x0x3 − 6x1x3 − 6x2x3 − 3x23 = 0,

π1(SCL,W ) : F (W,X,X) =−6x0x1 + 6x21 − 6x0x2 − 6x1x2 − 12x22 − 6x0x3 − 6x1x3 − 6x2x3 − 3x23 = 0,

π1(SCL, R) : F (R,X,X) =−6x0x1 + 18x21 − 6x0x2 − 6x1x2 − 24x22 − 6x0x3 − 6x1x3 − 6x2x3 − 3x23 = 0.

Let t be a line through the points P and Q. Each point on t has homogenous coordinates
k1Q + k2P for (k1, k2) 6= (0, 0). The intersection points of t and S are the roots of the
polynomial after the Taylor expansion

Fn(k1Q+ k2P ) = kn2Fn(P ) +
kn−12 k1

1!
F (P, . . . , P︸ ︷︷ ︸

(n−1) times

, Q) + · · ·

+
k2k

n−1
1

(n− 1)!
F (P, Q, . . . , Q︸ ︷︷ ︸

(n−1) times

) +
kn1
n!

Fn(Q) = 0.

(1)

If the projective coordinates (k′1, k
′
2) of a point T on t are a double root of the polynomial

(1) we call T a double point of intersection of t and S. A line, for which a regular point of a
surface is at least a double point of intersection, is called a tangent line, and the point is its
tangent point. If each line of a plane through the same point is a tangent line of a surface, the
plane is said to be a tangent plane at this point.

1A combinatorial proof can be found in [1, Section 31, p. 70–74].
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Lemma 2. The last polar of a regular point with respect to a surface is the tangent plane of
the surface at this point.

Proof. Let T be a regular point on the surface S : Fn(T ) = 0 and Q be a point not on S, but
on πn−1(S, T ), i.e.,

F (T, . . . , T︸ ︷︷ ︸
(n−1) times

, Q) = 0.

Then the substitution of the line TQ into (1) implies k2 = 0 as a root with a multiplicity of at
least 2. Hence, point T is at least a double point of this intersection.

Lemma 3. Each polar of a regular point P on a surface with respect to this surface contains
P , and P is the tangent point of the common tangent plane of all polars.

Proof. The equation of a surface S can be rearranged with respect to the last coordinate

Fn(X) = xn0u0 + xn−10 u1 + · · ·+ x0un−1 + un = 0,

where the ui are forms of degree i in x1, . . . , xm. Assume O0 = (0, . . . , 0, 1) to be a regular
point of S.2 Substituting O0 into X will vanish all forms u1, . . . , un. It holds that

Fn(O0) = u0 = 0.

Therefore the equation of S (through O0) simplifies to

Fn(X) = xn−10 u1 + · · ·+ xr+1
0 un−r−1 + xr0un−r + · · ·+ x0un−1 + un = 0

and
πr(S, O0) : (n− 1) . . . (n− r)xn−1−r0 u1 + (n− 2) . . . (n− r − 1)xn−r−20 u2

+ · · ·+ (r + 1) . . . 2x0un−r−1 + r(r − 1) . . . 1un−r = 0.

The point O0 certainly satisfies the equation of this polar. The last polar of O0 on S is the
polar hyperplane

πn−1(S, O0) : (n− 1)!u1 = 0,

and it is obviously the last polar for each of the previous polars.

If the tangent planes to a surface are the same for all points on a line of the surface then
this line is said to be a torsal line. A line that is not torsal is called non-torsal.

Theorem 4. The pencil of first polars through a non-torsal line of an algebraic surface in
RPm for m ≥ 3 is in projectivity with the range of their contact points.

Proof. Let S be an algebraic surface of degree n ≥ 2 and p be a non-torsal line of this surface.
Let P and Q be distinct regular points on p with different tangent planes. The tangent plane
to S at P contains all tangent lines through P , therefore it also contains the line p and the
point Q. Applying Lemmas 2 and 3, each polar of the points P and Q induced by S must
also contain p (Figure 3). Furthermore, the line p is the axis of the pencil of r-th polars of the
points in the range k1Q+ k2P .

2There is always a projective transformation, which maps the considered point to O0.



248 M. Zamboj: Proof of Chasles’s Theorem

Figure 3: First and last polar at the point P

The last step is to show that there is a projectivity between the range of points on p and their
first polars. Let W be a point in the range k1Q+ k2P with the projective coordinates (k1, k2).
The first polar of W with respect to S is

π1(S,W ) : F (W,X, . . . , X︸ ︷︷ ︸
(n−1) times

) = F (k1Q+ k2P,X, . . . , X︸ ︷︷ ︸
(n−1) times

)

= k1F (Q,X, . . . , X︸ ︷︷ ︸
(n−1) times

) + k2F (P,X, . . . , X︸ ︷︷ ︸
(n−1) times

) = 0.
(2)

It is a surface of degree (n− 1) in the one-dimensional form (pencil of surfaces) with the same
projective coordinates (k1, k2) as the point W in its range. Therefore there is a projectivity
between the range of points on a non-torsal line and the pencil of first polars of these points
with respect to S (Figure 4).

Example 1, ctd. Let us verify the validity of the previous theorem on Example 1:
The point W = (3,−3, 0, 1) in the range k1P + k2Q for P = (1,−1, 0, 1) and Q = (4,−4, 0, 1)
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Figure 4: First polars of four distinct points on a non-torsal line

has the projective coordinates (k1, k2) =
(
1

3
,

2

3

)
. The same holds for the first polars:

k1F (P,X,X) + k2F (Q,X,X) =
= 1

3

(
−6x0x1 − 6x0x2 − 6x1x2 − 6x22 − 6x0x3 − 6x1x3 − 6x2x3 − 3x23

)
+ 2

3

(
−6x0x1 + 9x21 − 6x0x2 − 6x1x2 − 15x22 − 6x0x3 − 6x1x3 − 6x2x3 − 3x23

)
= − 6x0x1 + 6x21 − 6x0x2 − 6x1x2 − 12x22 − 6x0x3 − 6x1x3 − 6x2x3 − 3x23 = F (W,X,X).

The point R = l1P + l2Q and its first polar have projective coordinates (l1, l2) = (−1, 2) in
their one-dimensional forms.

A ruled surface is defined algebraically in [1, p. 510] as a surface with the property that
through each of its points passes a line of the surface. A ruled surface is developable if each
line is torsal. Otherwise, the surface is non-developable. Through each regular point of a
non-developable ruled surface of degree n > 2 passes exactly one ruling3.

Example 2. For visualizations (cf. Figure 5) the following equations of the Plücker conoid SPL

are used:
in E3 : z(x2 + y2)− 4(x2 − y2) = 0,

in RP3 : x21x3 − 4x21x0 + x22x3 + 4x22x0 = 0.

3The statement can be found in general literature on geometry of ruled surfaces and we will not prove it in
this paper (see [1, 7]).
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Figure 5: A pencil of tangent planes at a range of points on a ruling

The first and the 2nd (= last) satisfy, respectively,

π1(SPL, P ) : x21p3 − 4x21p0 + 2x1x3p1 − 8x1x0p1 + x22p3 + 4x22p0 + 2x2x3p2 + 8x2x0p2 = 0,

π2(SPL, P ) : 2x1p1p3 − 8x1p1p0 + 2x2p2p3 + 8x2p2p0 + x3p
2
1 + x3p

2
2 − 4x0p

2
1 + 4x0p

2
2 = 0.

Theorem 5 (Chasles’s theorem). The pencil of tangent planes at the points of a non-torsal
line of a ruled surface in RPm for m ≥ 3 is in projectivity with the range of their contact
points.

Proof. For surfaces of second degree the theorem is a straightforward consequence of Theorem 4.
Let S be a surface of degree n > 2 and P and Q be regular points which lie on a ruling p. At
each regular point on p there is only one tangent plane of S — its last polar. Dually, each
tangent plane through p touches S in one contact point. Let τP and τQ be the tangent planes
of S at P and Q, respectively. Furthermore let τW be a plane in the pencil k1τP + k2τQ with
the projective coordinates (k1, k2) and axis p. We will prove, that W = k1P + k2Q.
Let p′ be another ruling of S, such that p′ intersects the pencil of planes τW = k1τP + k2τQ in
regular points W ′ = k1P

′ + k2Q
′. The planes τP , τQ and τW cut S in p and in plane curves

cP , cQ and cW of degree n− 1, respectively. P ′, Q′,W ′ are intersections of cP , cQ and cW with
p′. Since n > 2, no other ruling passes through the points P ′, Q′ or W ′. This holds for any

choice of p′ 6= p. Each algebraic curve of degreee n is determined by
n(n+ 3)

2
points. If we

construct
n(n+ 3)

2
rulings, we obtain for each point on cW that cW = k1cP + k2cQ. The points

P , Q and W are intersections of cP , cQ and cW with p, therefore also W = k1P + k2Q.

3. Conclusion

Chasles’s theorem is, by its nature, a great result in projective geometry. However, proofs of
the theorem have always slipped into the use of more powerful methods of infinite closeness in
the 19th century, or projective differential geometry and differential geometry nowadays. In
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this paper the theorem was proven purely projectively and generalized to non-torsal lines of
algebraic surfaces in the projective extension of the real space. The use of the language of
algebraic projective geometry has brought Chasles’s theorem back to its place in projective
geometry.

There is plenty of future work to do in the purification of classical projective geometry. This
also leads to a question: “Is there a general method to avoid the use of non-projective methods
for theorems of projective geometry originally proven with the use of infinite closeness ?” The
importance of purification is given not only in algebraic but especially in synthetic geometry,
as the computer 3D graphics has opened for us a gate to visualizing and manipulating objects,
which are almost impossible to be drawn by hand. Projective geometry is therefore a convenient
tool for computers, since one obtains precise results, not based on numerical methods.
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