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Abstract. In [1] a remarkable trigonometric equation, tied to various possible
concurrencies and collinearities associated to a hexagonal path, was unveiled. In
this sequel we relate this equation to cross-ratios of collinear points, and conse-
quently get a trigonometric form for Brianchon’s theorem. We also show how
limiting cases of our theorems in [1] yield new proofs for two classical theorems of
Ceva and Menelaus.
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1. The Sine-Cross Ratio Theorem

Let A1A2A3A4A5A6 be a hexagonal path in general position (no two lines through its ver-
tices are parallel) in some Euclidean plane. Fixing a core triangle in the hexagon, say
4A1A3A5, nine (measures of) oriented angles were associated in [1] about its vertices,

α = m(Â3A1A5), β = m(Â5A3A1), γ = m(Â1A5A3), α
− = m(Â2A1A3), α

+ = m(Â5A1A6),

β− = m(Â4A3A5), β
+ = m(Â1A3A2), γ

− = m(Â6A5A1), and γ+ = m(Â3A5A4) (cf. Figure 1,
the counterclockwise-oriented angles are positive and the clockwise, negative). Then the main
results of [1] were that the trigonometric equation

sin(α + α+) sin(β + β+) sin(γ + γ+) sinα− sin β− sin γ−

= sin(α + α−) sin(β + β−) sin(γ + γ−) sinα+ sin β+ sin γ+
(1)

is satisfied if and only if

– the three main diagonals in the hexagon,
←−→
A1A4,

←−→
A2A5, and

←−→
A3A6, are concurrent (Sine-

Concurrency Theorem), or if and only if

– the three intersecting points of the pairs of lines,
←−→
A1A2 and

←−→
A4A5,

←−→
A2A3 and

←−→
A5A6, and←−→

A3A1 and
←−→
A6A4, are collinear (Sine-Collinearity Theorem).
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We prove here one more equivalence to (1) in the form of the following

Sine-Cross Ratio Theorem. With the above notations in the hexagon A1A2A3A4A5A6, let

E1, E2, E3, and E4, be the intersection points of
←−→
A1A2,

←−→
A2A3,

←−→
A3A4, and

←−→
A4A5 with

←−→
A5A6,

respectively, and similarly let F1, F2, F3, and F4, be the intersection points of those same four

lines with
←−→
A6A1 (cf. Figure 2 ). Then the trigonometric equation (1) holds true if and only if

[E1, E2, E3, E4] = [F1, F2, F3, F4], (2)

where [E1, E2, E3, E4] and [F1, F2, F3, F4] stand for the cross ratios of those respective points.

Figure 1: A hexagonal path A1A2A3A4A5A6 and the nine relevant angles,
α, α±, β, β±, and γ, γ±.

Recall that the cross ratio [2, 3] of four (distinct) collinear points C1, C2, C3, and C4 in
some Euclidean plane, denoted [C1, C2, C3, C4], is the real number

[C1, C2, C3, C4] :=
~C1C3

~C3C2

/ ~C1C4

~C4C2

, (3)

where for two points A and B we denote by ~AB the vector with origin A and end B (different

from
−→
AB, by which we denote the ray originating at A through the point B). In general two

vectors cannot be divided, except when they are proportional, as in (3), in which case by their
ratio we mean the proportionality constant. When the Euclidean plane is identified with the
complex number system C, as we will do in the proof of the theorem, denoting by cj ∈ C the
affix of Cj, j = 1, . . . , 4 , gives

[C1, C2, C3, C4] = [c1, c2, c3, c4] =
(c3 − c1)(c2 − c4)
(c2 − c3)(c4 − c1)

. (4)

Proof of the Sine-Cross Ratio Theorem. The proof follows the basic steps used in [1] while
dealing with the theorem’s ‘older cousins’, the Sine-Concurrency and Sine-Collinearity The-
orems. We refer to [1] for full details.
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Identifying the Euclidean plane with the complex number system C there is no loss of
generality in assuming that the circumcenter of 4A1A3A5 has affix 0, and the affixes p1, p2,
and p3 of A1, A3, and A5 respectively, are such that |p1| = |p2| = |p3| = 1. Let q1, q2, and q3
be the affixes of the other three vertices of the hexagon, respectively A4, A6, and A2.

If ej ∈ C, respectively fj, is the affix of Ej, respectively Fj, j = 1, . . . , 4 (see Figure 2),
then

E1 =
←−→
A1A2 ∩

←−→
A5A6 and e1 =←→p1q3 ∩←→p3q2 = −

det

[
p1 − q3 p1q3 − p1q3
p3 − q2 p3q2 − p3q2

]
det

[
p1 − q3 p1 − q3
p3 − q2 p3 − q2

]

E2 =
←−→
A2A3 ∩

←−→
A5A6 and e2 =←→p2q3 ∩←→p3q2 = −

det

[
p2 − q3 p2q3 − p2q3
p3 − q2 p3q2 − p3q2

]
det

[
p2 − q3 p2 − q3
p3 − q2 p3 − q2

]

E3 =
←−→
A3A4 ∩

←−→
A5A6 and e3 =←→p2q1 ∩←→p3q2 = −

det

[
p2 − q1 p2q1 − p2q1
p3 − q2 p3q2 − p3q2

]
det

[
p2 − q1 p2 − q1
p3 − q2 p3 − q2

]
E4 =

←−→
A4A5 ∩

←−→
A5A6 = A5 and e4 = p3,

(5)

and also

F1 =
←−→
A1A2 ∩

←−→
A6A1 = A1 and f1 = p1

F2 =
←−→
A2A3 ∩

←−→
A6A1 and f2 =←→p2q3 ∩←→p1q2 = −

det

[
p2 − q3 p2q3 − p2q3
p1 − q2 p1q2 − p1q2

]
det

[
p2 − q3 p2 − q3
p1 − q2 p1 − q2

]

F3 =
←−→
A3A4 ∩

←−→
A6A1 and f3 =←→p2q1 ∩←→p1q2 = −

det

[
p2 − q1 p2q1 − p2q1
p1 − q2 p1q2 − p1q2

]
det

[
p2 − q1 p2 − q1
p1 − q2 p1 − q2

]

F4 =
←−→
A4A5 ∩

←−→
A6A1 and f4 =←→p3q1 ∩←→p1q2 = −

det

[
p3 − q1 p3q1 − p3q1
p1 − q2 p1q2 − p1q2

]
det

[
p3 − q1 p3 − q1
p1 − q2 p1 − q2

] .

(6)

The six angle measures α±, β±, and γ± can be used now to express q1, q2, and q3 as affine
combinations of the primary vertices p1, p2 and p3. It follows that, for indexes modulo 3,

qk = skpk+1 + (1− sk)pk+2, k = 1, 2, 3 , (7)

where

s1 =
e2iγ

+(
1− e2iβ−)

1− e2i(β−+γ+)
, s2 =

e2iα
+(

1− e2iγ−
)

1− e2i(γ−+α+)
, and s3 =

e2iβ
+(

1− e2iα−)
1− e2i(α−+β+)

. (8)
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Figure 2: A hexagonal path with cross-ratio points E1, E2, E3, E4, and F1, F2, F3, F4.

Since by hypothesis pk = 1/pk, k = 1, 2, 3 , expressions similar to (7) exist also for qk,
namely

qk = tk
1

pk+1
+ (1− tk)

1

pk+2
, k = 1, 2, 3 , (9)

where
t1 = s1 =

s1
e2iγ+

, t2 = s2 =
s2
e2iα+ , and t3 = s3 =

s3
e2iβ+ . (10)

Calculating now the cross ratios [e1, e2, e3, e4] and [f1, f2, f3, f4] via (4), (5), (6), through
(10), appears to be a formidable task, however it is doable. It turns out then if in the
expressions of ej, fj, j = 1, . . . , 4 given by (5) and (6) we make the substitutions

pk −→
1

pk
, qk −→ rk, k = 1, 2, 3 ,

and set further

qk := skpk+1 + (1− sk)pk+2 and rk := tk
1

pk+1

+ (1− tk)
1

pk+2

, k = 1, 2, 3 ,

then
[e1, e2, e3, e4]− [f1, f2, f3, f4] = C(η − ξ), (11)

where

ξ = (t1p1 − s1p2)(t2p2 − s2p3)(t3p3 − s3p1),
η =

(
(1− s2)p1 − (1− t2)p2

)(
(1− s3)p2 − (1− t3)p3

)(
(1− s1)p3 − (1− t1)p1

)
,

(12)

and C is a factor which does not vanish due to the general position of the hexagon
A1A2A3A4A5A6. We conclude that [e1, e2, e3, e4] = [f1, f2, f3, f4] if and only if ξ = η. It was
proved in [1] that this latter equality is equivalent (via (8) and (10), and when the vertices
A1, A3, and A5 are on the unit circle) to (1), which concludes the proof of the theorem.
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2. Further applications to the Sine-Theorems

We conclude this sequel to [1] with few further applications. The first one is devoted to
a trigonometric form of Brianchon’s theorem, a direct application of our Sine-Cross Ratio
Theorem. The last two deal with explorations of hexagon-related concurrency and collinearity
via trigonometry, when the hexagon is not in general position, an idea already alluded to in
[1].

Brianchon’s Theorem–Trigonometric Form. A hexagonal path A1A2A3A4A5A6 is cir-

cumscribed about a conic, i.e., the sides
←−→
A1A2,

←−→
A2A3,

←−→
A3A4,

←−→
A4A5,

←−→
A5A6, and

←−→
A6A1 (when

viewed as full lines) are all tangent to a conic if and only if equation (1) associated to
4A1A3A5 and its nine angles holds true (cf. Figure 3 ).

Proof. A projective characterization of a hexagonal path being circumscribed about a conic
is precisely given by the equality of cross ratios (2) (Steiner’s projectively dual generation
of conics, [3]). Then the claim follows from our Sine-Cross Ratio Theorem. Via the Sine-
Concurrency Theorem [1] this is then equivalent to the standard Brianchon theorem, i.e., the

main diagonal lines
←−→
A1A4,

←−→
A2A5, and

←−→
A3A6 are concurrent (Figure 3).

Next we use our sine-theorems and continuity arguments to give trigonometric proofs to
the classical theorems of Ceva and Menelaus [2]. They are theorems associated to hexagons
which are not in general position.

Figure 3: Brianchon’s theorem in a non-convex hexagon.

Theorems of Ceva and Menelaus. In the hexagonal path A1A2A3A4A5A6 assume that

A2 ∈
←−→
A1A3 \ {A1, A3}, A4 ∈

←−→
A3A5 \ {A3, A5}, and A6 ∈

←−→
A5A1 \ {A5, A1}.

a) Ceva — If the three lines
←−→
A1A4,

←−→
A2A5, and

←−→
A3A6 are concurrent then

~A1A2

~A2A3

~A3A4

~A4A5

~A5A6

~A6A1

= 1. (13)
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b) Menelaus — If the points A2, A4, and A6 are collinear then

~A1A2

~A2A3

~A3A4

~A4A5

~A5A6

~A6A1

= −1. (14)

Proof. We forgo the easy analysis showing that in case a) only an even number (0 or 2) of
vector ratios can be negative, while in case b) only an odd number (1 or 3) are so. Therefore,
in both cases it suffices to show that

A1A2

A2A3

A3A4

A4A5

A5A6

A6A1

= 1. (15)

We only want to emphasize the novel idea of using (1) in the proofs, and so work out just
two possible hexagon configurations, one in each case.

For case a) refer to Figure 4. A1A2A3A4A5A6 is the original hexagon and B1B2B3B4B5B6

is an approximation of it in general position. Notice that B1 = A1, B3 = A3, and B5 = A5,

while B2 6= A2, B2 ∈
−−−→
A5A2, B4 6= A4, B4 ∈

−−−→
A1A4, and B6 6= A6, B6 ∈

−−−→
A3A6 and so the main

diagonals of both hexagons intersect at the same point I. The Sine-Concurrency Theorem [1]
applies therefore to the hexagonal path B1B2B3B4B5B6 and so the following equivalent form
of (1) holds true:

sin(α + α+)

sin(α + α−)

sin(β + β+)

sin(β + β−)

sin(γ + γ+)

sin(γ + γ−)

sinα+

sin γ−
sin β+

sinα−
sin γ+

sin β− = 1. (16)

A repeated application of the Law of Sines in appropriate triangles gives now

sinα+

sin γ−
=
B5B6

B6B1

,
sin β+

sinα− =
B1B2

B2B3

, and
sin γ+

sin β− =
B3B4

B4B5

. (17)

Consequently, (16) becomes

sin(α + α+)

sin(α + α−)

sin(β + β+)

sin(β + β−)

sin(γ + γ+)

sin(γ + γ−)

B1B2

B2B3

B3B4

B4B5

B5B6

B6B1

= 1. (18)

Letting now B2 → A2, B4 → A4, and B6 → A6 has the effect α± → 0, β± → 0, and γ± → 0,
while α, β and γ remain unchanged. By a continuity argument, in the limit (18) becomes
(15), which proves Ceva’s Theorem.

b) For Menelaus’ Theorem we bypass a limiting argument and instead show how the
sine-theorems may sometimes suggest direct trigonometric proofs for hexagons not in general
position. To this end refer to Figure 5, where the core triangle is now 4A2A4A6, instead of
the usual 4A1A3A5. Equivalently, renaming the hexagon B1B2B3B4B5B6, where modulo 6,
Bi = Ai+1, i = 1, 2, . . . , 6, allows us to work in the standard notational set-up. Despite the
fact that 4B1B3B5 is degenerate we can still define the familiar nine angles.

Notice that
α = γ = 0, β = π,

α+ = −α−, β− = −β+, γ+ = π − γ−. (19)

The Law of Sines applied in 4A2A3A4, 4A4A5A6, and 4A6A1A2 give respectively

sinα−

sin β+
=
A3A4

A2A3

,
sin β−

sin γ+
=
A5A6

A4A5

, and
sin γ−

sinα+
=
A1A2

A6A1

. (20)

Menelaus’ Theorem follows now from (19) and (20).
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Figure 4: Ceva’s theorem in hexagon A1A2A3A4A5A6 — trigonometric proof.

Figure 5: Menelaus’ theorem — trigonometric proof.
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