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Abstract. The topic of this paper, a quartic curve of a remarkable shape,
emerged from solving a locus problem originating from an 18th century Latin book
of geometrical exercises using dynamic geometry software. Different mathematical
representations and various properties, e.g., of a conchoidal nature or a duality
with a sixth degree curve, are the subject of this paper.
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1. Introduction

Presented in this paper is a remarkable quartic curve, the shape of which resembles a pretzel,
as shown in Figure 5, that unexpectedly emerged in the contemporary re-solving of one
particular locus problem from an 18th century Latin book of geometrical exercises [5].

First, we will introduce the locus problem, the solving of which, with the use of dynamic
geometry software, gave the origin of this curve (hereinafter referred to as the ‘pretzel curve’ )
and we will use its assignment to derive a polar equation of the curve. Then, we will use
the acquired result to derive its algebraic equation, which reveals the pretzel curve to be an
algebraic curve of the fourth degree. For the overview of its representations to be complete,
a way of a rational parametrization of the curve will also be briefly indicated. Finally, we
will discuss whether such a curve has ever been introduced prior to this and we will focus on
some of its other properties, particularly its conchoidal feature and duality. At all stages of
the investigation of the curve we used the free dynamic geometry software GeoGebra [9].

2. Original locus problem

The pretzel curve arose when solving a particular locus problem, namely problem no. 35,
given in the Latin book Exercitationes Geometricae, authored by Ioannis Holfeld (1747–
1814) and published by the Jesuit College of St. Clement in Prague in 1773 [5]. Due to the fact
that a detailed analysis of the original assignment and the method of solving this historical
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locus problem is not within the scope of this paper we limit ourselves to mentioning only the
essential details here. For further information we refer the reader to [3, 4, 8].

Here we will work with the current interpretation of the problem assignment using directed
segments and their ratios. Specifically we will use the notion of the ratio R(KLM) of three

collinear points K,L and M defined by the equality ⇀KM = R(KLM)⇀LM , where ⇀KM,⇀LM
are oriented segments. Let us add that a line passing through the two points K and L will

be denoted by
←→
KL, an undirected segment connecting points K and L will be called KL and

its length KL. Then, stated in such contemporary language, the task assigned in problem 35
is as follows.

Given a circle with a center A and a diameter MP (see Figure 1). For an arbitrary

point B of this circle there is a point C on the ray
−→
AB so that

R(MAO) = R(ACB), (1)

where O is the foot of a perpendicular drawn from B to MP . Find the locus of the
points C.

Figure 1: The locus problem

To capture the atmosphere of 18th century geometrical books, it is worth noting that in
the original Latin assignment Ioannis Holfeld did not directly write a formula corresponding
to (1). Instead, he introduced two alternative partially verbal formulations of its meaning.
Typically for that time, the original style of notation does not emphasize the direction of
related segments, apparently as a consequence of the mechanical approach to the generation
of curves and the strict restraint of solving the problem only from the situation of the figure.
As the first formulation, he determined the relation corresponding to (1) as the property of
the segment BC to be the fourth proportional of lengths MO, AO and a, where a = AB is the
radius of the circle1. Alternativelly, he presented the segment BC as the fourth proportional
of the versed sine, cosine (both of the radial angle ∠MAC) and radius of the given circle. As
we will see, the latter notation directly leads to the polar equation of the locus curve.

In the solution provided in [5] Holfeld first assigned variables to the lengths of selected
segments as follows: AD = x, DC = y, AB = a, OM = z (see Figure 1). Then, without

1For the purpose of the further treatment we denote the radius with ‘a’, compared to Holfeld’s label ‘r’.
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mentioning the use of them, he applied the similarity of triangles accompanied by the right
triangle altitude theorem (also known as ‘geometric mean theorem’) to derive the locus equa-
tion y2 = a2 + 2ax, i.e., the parabola with the focus F = [0, 0], directrix d : x = −a and the
focal parameter p = a, the plot of which for the particular a is shown in Figure 1.

3. The pretzel curve revelation

For the contemporary solver it is usual to start solving such a locus problem by creating a
model in the dynamic geometry software. Besides providing initial information about the
shape of the investigated locus, the dynamic features of such software can inspire the solver
to a broader application of the problem assignment, which may end, as in the case of our
locus problem, with the revelation of a remarkable result.

Various ways exist to construct points C so that they meet the problem assignment. One
of the most straightforward of them is based on two parallel projections, as shown in Figure 2,

where
←→
OB ‖

←−→
MK ‖

←→
AL and

←→
AK ‖

←→
LC. Moving B on the given circle, triangles 4AKB and

4CLB remain similar, therefore R(MAO) = R(KLB) = R(ACB).

Figure 2: Geometric model in GeoGebra

Applying the Locus tool of the Graphics view of GeoGebra or entering the command
Locus[C,B], a parabola is drawn that corresponds to the above mentioned Holfeld’s solution
(see the parabola q passing through C in Figure 2). As follows from (1), this solution is directly
linked with the orientation of the respective segments. What if we do not take this orientation
into account and consider only the lengths of segments mentioned in the assignment? Let
us note that this situation of uncertainty of segments’ directions inevitably occurs when the
problem is solved algebraically, as discussed in [3]. Then we can extend our attention to
another possible position of point C, labeled C ′ in Figure 2, which is actually the reflection
of point C along point B. Invoking the command Locus[C’,B], or appropriately applying the
Locus tool within the Graphics view, we arrive at the diagram of the pretzel curve (see the
curve p passing through C ′ in Figure 2).
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Let us now examine in more detail, again using directed segments, the relationship of the
point symmetry between C, point of the parabola q, and C ′, point of the pretzel curve p. As
can be seen from Figure 2, the following relations apply to the respective directed segments
⇀AC = ⇀AB +⇀BC,⇀AC ′ = ⇀AB +⇀BC ′, where ⇀BC ′ = −⇀BC. Consequently ⇀AC +⇀AC ′ = 2⇀AB.
Considering the parabola q′, which is an image of the parabola q when reflected in the point
A, the latter finding can be interpreted as the property of constant distance 2a, where a = AB
is the radius of the initial circle, between two points C ′ and C ′′ of the intersection of a line
passing through A with either of the curves, the pretzel p and parabola q′. Being a decisive
feature in the definition of a conchoid2, it indicates the following property of the curve.

Property 1. The pretzel curve is the conchoid of the parabola q′ having the focal parameter
a with respect to its focus A and with the fixed distance of magnitude 2a.

More precisely, it is one branch of the conchoid. The second, outer, branch is the quartic
curve3 the shape of which is close to the original parabola. Thus, the pretzel curve belongs to
the focal conchoids of the conic sections; the class of conchoids briefly noted in [6]. Then the
construction in Figure 2 relating point C ′ to point C can be called the ‘conchoid construction’.
More about this property and its consequences will be dealt with in Section 5.

4. The pretzel curve representations

As already mentioned, Holfeld referred to notions of the versed sine and cosine in the
alternative assignment of the problem. In particular, he stated that the length of the segment
BC is the fourth proportional of the versed sine, cosine, both of the radial angle ∠MAC, and
radius of the given circle. Now we will make use of this formulation to directly derive from it
the polar equations of the respective locus curves, the parabola and the pretzel curve.

To do so, we assume the usual setting of the polar coordinate system with respect to
the Cartesian coordinates (see Figures 1 and 2): the pole Q is identical to A lying in the
Cartesian origin, the polar axis p coincides with the positive half-axis of x and the polar
angle ϕ is the same as the oriented angle ∠MAC. Using the equalities AO = a cosϕ and
MO = a versinϕ, we rewrite the formula (1) into versinϕ/cosϕ = a/BC, that, applying the
identity versinϕ = 1− cosϕ, directly leads to BC = a cosϕ/(1− cosϕ). To get equations of
either curve, the parabola q and the pretzel curve p, we consider BC as the oriented segment.
This then allows us to differentiate between two possible positions of point C with respect to
B. In the case where C draws the parabola we write BC = r − a, whereas for the pretzel
curve we use BC = a−r. Substituting these expressions one by one into the previous formula
we arrive at the polar equations of the parabola and the pretzel curve, respectively, as follows.

r =
a

1− cosϕ
, r = a

1− 2 cosϕ

1− cosϕ
. (2)

Various ways exist of obtaining the algebraic equation of the pretzel curve, from asking the
computer to do it for us, through the application of the method that was used by Holfeld,
to the utilization of standard methods of analytical geometry and algebra. Principles of
the automatic derivation of the equation from the geometric construction implemented in

2A conchoid of a curve c with respect to a point A is the locus of points P1 and P2 on a line l passing
through the fixed point A (pole) so that P1Q = QP2 = d, where Q is the point of intersection of l with c and
d is the fixed distance [6].

3Its algebraic equation is x4 + x2y2 − 2ay3 − 2ax2y − (a + 2)2x2 − a(a + 4)y2 = 0.
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GeoGebra, as well as the use of the analytic representation of the task and the consequent
solving of the corresponding system of polynomial equations are presented in [3]. Here, we keep
the content of this paper and derive the algebraic equation from (2). Let us follow Figure 1.
Assuming the hitherto used location of the task in both coordinate systems, Cartesian and
polar, we denote the rectangular coordinates of point C of the curve as C = [x, y] whereas
its polar coordinates as C = (r, ϕ). Then, substituting from the equalities r =

√
x2 + y2 and

cosϕ = x/
√

x2 + y2 into r = a (1− 2 cosϕ)/(1− cosϕ), after a few steps we get the desired
algebraic equation of the pretzel curve in the position shown in Figure 1

y4 + x2y2 + 2ax3 + 2axy2 + 3a2x2 − a2y2 = 0. (3)

To complete the overview of the basic methods of representation of the curve, we will
briefly present its parametric equations here. As in previous cases, there are various ways
to derive these equations. For example, a really effective approach is to apply the standard
rational formulas sinϕ = 2t/(1+t2) and cosϕ = (1−t2)/(1+t2) along with the polar equation
(2). Another possible method to receive a rational parametrization of such a curve of genus
0 is a geometric way. Namely, intersecting the curve with a pencil of curves having already
n − 1 points in common with the curve so that the last nth intersection point depends on
the parameter of the pencil. In the case of the pretzel curve one could use a pencil {c(t)} of
conics c(t). According to Bezout’s theorem a conic c(t) has 8 points in common with such a
quartic curve. If we choose three basic points of the pencil {c(t)} in the knots of the pretzel
curve and the fourth in the ‘vertex’ on the symmetry axis, due to the multiplicity of knots, we
have already used 7 intersecting points, so that the 8th depends rationally on the parameter
t of the pencil of conics. All this we can create in GeoGebra CAS and finally we get the
parametric equations of the pretzel curve as follows

x = a
−t4 + 4t2 − 3

2t2 + 2
, y = a

t3 − 3t

t2 + 1
; t ∈ R. (4)

5. Other pretzel or knot curves

Looking at (3), we can see that the polynomial y4+x2y2 formed by the highest order terms is
divisible by x2+y2. It allows us to classify the pretzel curve as the real algebraic circular curve
[2]. In Section 3 the pretzel curve was identified as belonging to the class of focal conchoids
of conics, of which each form depends on the kind of the conic and on the relation of the fixed
distance d to the conic’s latus rectum [6]. For illustration, in Figures 3 and 4 such conchoids
of an ellipse and a parabola are shown respectively, produced by the conchoid construction,
both with the semi-latus rectum a and the fixed distance d = 2a. Apparently, the pretzel
curve can be considered as an affine special case of a knot curve, belonging to the larger set of
knot curves which also comprises the roulettes, such as the trifolium. The question arises, as
to whether this particular curve has been described elsewhere. A very similar quartic curve
with three knots and touching the line at infinity can be found in [7] as the ‘knot curve’ (see
Figure 6). As it is represented in another coordinate frame, we transform the pretzel curve
equation (3) by x′ = y, y′ = −1− x (resp., y′ = −a− x) and, omitting the primes, receive

(x2 − a2)2 + x2y2 = ay2(2y + 3a), (5)

where a is a positive real number (see Figure 5), while the one in [7] has the equation

(x2 − a2)2 = ay2(2y + 3a). (6)
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Figure 3: Focal conchoid of an ellipse Figure 4: Focal conchoid of a parabola

Thus the pretzel curve is a linear combination of this Salmon’s knot curve and the singular
quartic curve. Let us note that the ‘knot curve’ 6 is alternatively called the ‘pretzel curve’
in [1], where it is treated among others together with Cassini curves and Limaçons using
complex number representations.

Figure 5: Pretzel curve Figure 6: Knot curve

Investigating the equation (5) we reveal the following properties of the corresponding
pretzel curve. Points of intersection with the coordinate axes are

[
0, a

2

]
and [0, −a] for y-

axis, and [−a, 0] and [a, 0] for x-axis. As shown in Figure 5, the latter three points [0, −a],
[−a, 0] and [a, 0] are double points. The pretzel curve has precisely these three singular points,
each of them being a crunode with one of the following pairs of distinct tangents:

y = ±
√

2x± a
√

2 at [−a, 0], y = ±
√

2x∓ a
√

2 at [a, 0], and y = ±
√

3

3
x− a at [0, −a].

Property 2. The pretzel curve is unique, it is symmetric, has three real knots, is circular
and touches the line at infinity.

Let us now focus on further selected tangents of (5). The pairs of its horizontal and vertical
tangents affect its extent. The horizontal tangents are represented on the one hand by the line
y = a

2
, meeting the curve at

[
0, a

2

]
and on the other hand by the bitangent y = (2

√
2− 4)a,

touching the curve at two points
[
∓
√√

2 8− 11a, (2
√

2− 4)a
]
, symmetric with respect to

the y-axis. The vertical tangents are the lines x = ∓
√

2
√

3− 3
√

3a, symmetric with respect

to the y-axis, that meet the curve at points
[
∓
√

2
√

3− 3
√

3a, (2
√

3− 4)a
]
, respectively.

There are two more bitangents to the pretzel curve, having the equations y = ±2
√

2x − 4a
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and intersecting each other at point [0, −4a]. This recognition of bitangents can lead us to
reflection on a dual curve of the curve of interest. Going back to the equation (3) of the
pretzel curve and applying the reciprocation in the defining circle on it we get the following.

Property 3. The dual curve of the pretzel curve (3) has degree 6 and is defined by the
equation

27y6 + 9y4(x2 − 10ax− 2a2)− y2(15x4 + 124ax3 − 84a2x2 − 48a3x + a4)

= −x(3x + 2a)(x2 − 6ax + a2)2.
(7)

It has four singular points
[
(3− 2

√
2)a, 0

]
,
[
(3 + 2

√
2)a, 0

]
,
[
1
3
a, 2

√
2

3
a
]
,
[
1
3
a, −2

√
2

3
a
]
, the

first being an isolated point and the last two belonging to the defining circle of the pretzel curve
(see Figure 7), where the singular points are labeled by S1, S2, S3, and S4, respectively.

Figure 7: The pretzel curve and its dual curve; a = 1

6. Conclusion

The paper dealt with an algebraic circular curve of fourth degree that was named ‘pretzel
curve’ because of its remarkable shape. Although such a curve had, to the best of the author’s
knowledge, not been mentioned before, it was revealed to have an apparent relation to well
known classes of curves. It appeared to be a representative of the class of focal conchoids of
conic sections, namely to be the focal conchoid of the parabola, being a special affine case of
so-called knot curves. From the viewpoint of projective geometry, the dual curve of degree
6 of the pretzel curve was identified in the paper. As usual, new questions emerged when
formulating the found properties. Some are related to the conchoidal property of the curve.
It appeared to be a linear combination of specific curves. Can all of them be the result of a
conchoid construction? What are the common properties of the curves of this pencil? Also
of interest might be the sextactic ellipse at the proper vertex on the symmetry axis as well as
the sextactic parabola at the vertex at infinity and other properties of the dual to the pretzel
curve.
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