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1. Introduction

In plant industry there is a high demand for precise modelling tools to create complex plant
pipe systems. The surveying tool of choice for this task is laser scanning. After scanning and
modelling with the measured point cloud, the pipes follow precisely the reality via cylinder
fitting methods. The pipe joints (e.g., elbows, tees, reducers and crosses) are usually cata-
logued part types. They are not defined by incident pipe axis angles. Indeed, they are mostly
produced with fixed predefined pipe axis angles (e.g., a 90 or 45 degree elbow). This fact
leads to small gaps between the joints and the fitted pipes.

Usually, plant pipe models are made for specialized design packages, which are used
for piping isometrics and simulations (e.g., fluid dynamic simulations). For this kind of
software the pipe system connection points at each joint have to be collinear with the opposite
connection point of the other pipe or joint fixture. Hence, the pipe model does not only have
to be precise, but is also constrained to be water-tight without gaps. This step from taking
the measured pipe model to the constrained model is presented in the paper.

There are two main objectives: The approach should leave the fitted pipe axis mostly
unaltered and should limit the movement of the fittings to a minimum. Additionally, the
orientation of the joint connection points should always be perfectly collinear with each other
without gaps. The argumentation is that the cylinder axes are well-defined through RANSAC
and least-square methods while the other pipe parts might be insufficiently modelled (see [12]).
The proposed algorithm deals with minimal movement of the fitted pipe axis, cycles in the
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Gaps

Figure 1: Gaps in the piping system.

piping system and fixed measured tie-in points using a dual quaternion approach. Moreover,
the presented algorithm is a significant contribution for auto-routing features in plant design
applications.

2. Mathematical background

To align multiple objects to each other a lot of constraints have to be satisfied. In fact the
alignment of complicated systems with loops may in general not be solved analytically. These
kinds of problems lead to complicated configurations in the kinematic image space that have
to be investigated. The more complicated the problem, the more hopeless it will be to find an
analytic solution. Loops in the system lead to additional contraints. Therefore, an analytical
approach seems not to be suited to our problem. In this contribution, we suggest an iterative
adaptive method using dual quaternion calculus to describe displacements.

2.1. Dual quaternions

Dual quaternions are quaternions with dual number entries. Therefore, we introduce quater-
nions and dual numbers first. Quaternions H, introduced by W.R. Hamilton in 1843, con-
stitute an elegant tool for the representation of rotations in three- and four-dimensional Eu-
clidean case (see [6]). Furthermore, quaternions form a skew field, i.e., multiplication is not
commutative. Unit quaternions are a double cover of the group SO(3). A general quaternion
has the form

q = a + bi + cj + dk, a, b, c, d ∈ R, (1)

where i, j, and k are the quaternion units with

i2 = j2 = k2 = ijk = −1. (2)

Definition 1. Let q be a quaternion as in Eq. (1). Then, a is called the scalar part and
(b, c, d)T is called the vector part. A quaternion with vanishing scalar part is called a vectorial
quaternion.

Quaternions form a four-dimensional vector space over the real numbers. Addition is defined
component-wise by

q1 + q2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)j + (d1 + d2)k.
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The multiplication rules for the quaternion units (2) are summarized in the following scheme:

· i j k
i −1 k −j
j −k −1 i
k j −i −1

This scheme allows to extend the concept of quaternion multiplication to general quaternions.
The real numbers form the center of the quaternions, i.e., real numbers commute with all
other quaternions. Later, we see that the quaternions are an example of an R-algebra.

Definition 2. The anti-involution

∗ : H→ H, a + bi + cj + dk = q 7→ q∗ = a− bi− cj− dk

is called quaternion conjugation. The norm of a quaternion is defined by

‖q‖ =
√
qq∗ =

√
a2 + b2 + c2 + d2.

Every quaternion q 6= 0 has an inverse quaternion that can be calculated by

q−1 =
1

‖q‖2
q∗ =

q∗

qq∗
.

Unit quaternions are quaternions with norm equal to 1. With respect to quaternion multi-
plication unit quaternions form a group. Every unit quaternion can be represented by

q = cosϕ + d sinϕ with d = (d1i + d2j + d3k),

where d is an unit vector and ϕ ∈ R. Moreover, unit quaternions can be used to describe
rotations in three-dimensional Euclidean space E3. This can be realized with the so called
sandwich operator x 7→ qxq∗ where q is a unit quaternion and the coordinate vector x of a
point is considered as a vectorial quaternion. Therefore, we follow [4] and apply the sandwich
operator to the standard basis vectors of R3 written as vectorial quaternions. This means the
basis vectors e1 belonging to the x-component is expressed by the quaternion x = i and the
effect of the sandwich operator results in

q i q∗ = (a + bi + cj + dk)j(a− bi− cj− dk)

= (ai− b− ck + dj)j(a− bi− cj− dk)

= (a2 + b2 − c2 − d2)i + 2(bc + ad)j + 2(bd− ac)k.

In the same way we see the action of this operator on the vectorial quaternions j and k

q j q∗ = 2(bc− ad)i + (a2 − b2 + c2 − d2)j + 2(cd + ab)k,

q k q∗ = 2(bd + ac)i + 2(cd− ab)j + (a2 − b2 − c2 + d2)k.

The sandwich operator is linear and the image of a vectorial quaternion is a vectorial quater-
nion again. Furthermore, the scalar product of two vectors x, y ∈ R3 is invariant under the
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action of the sandwich operator and it is orientation preserving. When collecting the images
of the basis vectors e1, e2, e3 in a matrix A, we get

A =

 a1,1 2(bc− ad) 2(bd + ac)
2(bc + ad) a2,2 2(cd− ab)
2(bd− ac) 2(cd + ab) a3,3

 ,

with

a1,1 = a2 + b2 − c2 − d2, a2,2 = a2 − b2 + c2 − d2, a3,3 = a2 − b2 − c2 + d2.

This matrix is the well-known form of a rotation matrix. The components of a unit quaternion
are the Euler parameters of a rotation.

Dual numbers
Like complex numbers dual numbers are an extension of the real numbers. A dual number
has the form zε = a + εb, where a and b are real numbers and ε is the dual unit that squares
to zero, ε2 = 0. Addition is defined component-wise. For two dual numbers the product is
defined by

(a1 + εb1)(a2 + εb2) = a1a2 + ε(a1b2 + a2b1).

The set of dual numbers
D :=

{
a + εb | a, b ∈ R, ε2 = 0

}
together with addition and multiplication forms a commutative ring with identity. Moreover,
the dual numbers form a two-dimensional commutative unital associative algebra over the
real numbers. Dual numbers with vanishing real part are zero divisors

(εa)(εb) = ε2(ab) = 0.

Definition 3. For a dual number zε = a + εb the dual number z̃ε = a − εb is called the
conjugate dual number. The norm of a dual number that is no zero divisor then is

‖zε‖ :=
√

zεz̃ε =
√

(a + εb)(a− εb) = |a|.

Any dual number without vanishing real part has an inverse dual number

z−1ε = (a + εb)−1 :=
1

a2
z̃ε .

Analytic functions can be extended to dual functions with help of their formal Taylor expan-
sion. Note that any power of ε that is bigger than one vanishes. Therefore, we get the Taylor
expansion

f(a + εb) = f(a) + εbf ′(a),

which is the dual extension of the analytic function.

Remark 1. It is possible to calculate the inverse of a dual number by the Taylor expansion of
z−1ε to make the definition of the inverse dual number clear

z−1ε = (a + εb)−1 =
1

a
− ε

b

a2
=

1

a2
(a− εb) =

1

a2
z̃ε .
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Dual vectors
Later we will use dual vectors. Therefore, we introduce the n-dimensional module

Dn := {vε | vε = v + εv̄, ε2 = 0, v, v̄ ∈ Rn}.

A dual vector is the sum of its real- and dual part

vε = v + εv̄, with v, v̄ ∈ Rn.

We define a standard scalar product on this module by

vεw
T
ε = 〈vε, wε〉ε = 〈v, w〉+ ε(〈v, w̄〉+ 〈v̄, w〉),

where 〈·, ·〉 denotes the standard scalar product of Rn. Especially for the dimension n = 3 we
are able to define a cross product by

vε ×ε wε = v × w + ε(v̄ × w + v × w̄).

Dual quaternions
Dual quaternions were introduced by E. Study [10]. Nowadays, dual quaternions form a
frequently used tool for the description of Euclidean kinematics in three dimensions (see
[1, 4, 5] or [7]). In this section we give a brief introduction to dual quaternions. Our intention
is to put this concept in a more general context by using Clifford algebras. Quaternions with
dual number components are called dual quaternions and are denoted by

Hd := {a0 + a1i + a2j + a3k + ε(c0 + c1i + c2j + c3k) | a0, . . . , a3, c0, . . . , c3 ∈ R} .

Multiplication is defined with the relations for quaternion. Furthermore, the dual unit ε
commutes with the quaternion units εi = iε, εj = jε, εk = kε. Dual quaternions form an
eight-dimensional vector space over the real numbers. The basis elements are 1, i, j, k, ε, εi,
εj, εk.

Displacements
Euclidean displacements can be described by dual unit quaternions. A dual quaternion qε =
a0 + a1i + a2j + a3k + ε(c0 + c1i + c2j + c3k) is normed or a dual unit quaternion, if the norm
is equal to one

N(qε) := qεq
∗
ε = a20 + a21 + a22 + a23 + 2ε(a0c0 + a1c1 + a2c2 + a3c3) = 1,

where the conjugation is the quaternion conjugation

q∗ε = (q1 + εq2)
∗ = q∗1 + εq∗2.

Therefore, a dual unit quaternion satisfies two relations in the components a0, . . . , c3

a20 + a21 + a22 + a23 = 1, a0c0 + a1c1 + a2c2 + a3c3 = 0.

Dual unit quaternions are denoted by Ud and form a group with respect to multiplication.
Moreover, dual unit quaternions form a double cover of the group of Euclidean displacements
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SE(3), details can be found in [4]. Usually, a displacement is described by the sandwich
operator. We start with a dual unit quaternion

q = a0 + a1i + a2j + a3k + ε(c0 + c1i + c2j + c3k)

and a dual quaternion of the form p = 1 + ε(xi + yj + zk), representing the point P =
(x, y, z)T ∈ R3. We apply the sandwich operator as

qpq∗ =1 + (xa20 + 2za0a2 − 2ya0a3 + 2c1a0 + xa21 + 2ya1a2
+ 2za1a3 − 2c0a1 − xa22 + 2c3a2 − xa23 − 2c2a3) εi

+ (ya20 − 2za0a1 + 2xa0a3 + 2c2a0 − ya21 + 2xa1a2
− 2c3a1 + ya22 + 2za2a3 − 2c0a2 − ya23 + 2c1a3) εj

+ (za20 + 2ya0a1 − 2xa0a2 + 2c3a0 − za21 + 2xa1a3
+ 2c2a1 − za22 + 2ya2a3 − 2c1a2 + za23 − 2c0a3) εk.

If we rewrite the result as s product of a matrix with a vector vector in homogeneous coordi-
nates we arrive at

1
x′

y′

z′

 =


1 0 0 0
l a20+a21−a22−a23 2a1a2−2a0a3 2a0a2+2a1a3
m 2a0a3+2a1a2 a20−a21+a22−a23 2a2a3−2a0a1
n 2a1a3−2a0a2 2a0a1+2a2a3 a20−a21−a22+a23

 ·


1
x
y
z

 ,

where

l = 2c1a0 − 2c0a1 + 2c3a2 − 2c2a3,

m = 2c2a0 − 2c3a1 − 2c0a2 + 2c1a3,

n = 2c3a0 + 2c2a1 − 2c1a2 − 2c0a3.

This matrix vector product represents an Euclidean displacement (see [4]). A parametrisation
of the special Euclidean group with the help of dual unit quaternions is given by

Q = a0 + a1i + a2j + a3k + c0ε + c1εi + c2εj + c3εk

= cos
ϕ

2
− sin

ϕ

2
l0 i− sin

ϕ

2
l1 j− sin

ϕ

2
l2 k− v

2
sin

ϕ

2
ε−

(
sin

ϕ

2
l3 +

v

2
cos

ϕ

2
l0

)
εi

−
(

sin
ϕ

2
l4 +

v

2
cos

ϕ

2
l1

)
εj−

(
sin

ϕ

2
l5 +

v

2
cos

ϕ

2
l2

)
εk,

where ϕ is the rotation angle and v is the magnitude of a translation in the direction defined
by the Plücker coordinate vector L = (l0 : l1 : l2 : l3 : l4 : l5) (see [2]).

2.2. Study’s sphere

A point model for the group of Euclidean displacements is Study’s sphere (see [5] or [8,
section 2.3]). Each displacement may be represented as unit dual quaternion. Note that
there are two unit dual quaternions q and −q describing the same Euclidean displacement.

We consider a dual vector vε = v + εv̄ ∈ D4. The canonical scalar product of this dual
vector with itself results in

〈vε, vε〉ε = 〈v, v〉+ 2ε 〈v, v̄〉 . (3)
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Figure 2: Study’s Sphere

If the dual vector is built from a dual unit quaternion corresponding to an Euclidean dis-
placement, the real part contains the Euler parameters corresponding to the rotational part
of the displacement and the translational part of the displacement may be derived from the
dual part. The dual part of Eq. (3) vanishes, and thus, the value of the scalar product is a
real number. In this case the scalar product (3) is equal to one and we call a dual vector vε
with 〈vε, vε〉ε = 1, a normalized dual vector or dual unit vector. Therefore, we can identify
the group of Euclidean displacement SE(3) with points of the dual unit sphere

S3
D :=

{
xε ∈ D4 | 〈xε, xε〉ε = 1

}
.

A schematic visualisation is illustrated in Figure 2. Points on Study’s sphere correspond
to displacements and the grey point corresponds to the mean point on Study’s sphere. More-
over, these points may also be interpreted as coordinate systems that result by the application

Start Intermediate Result

Figure 3: Mean displacement.
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of the corresponding transformation to a special coordinate system, i.e., the home or base
coordinate system. Great circles on S3

D correspond to helicoidal motions transforming the
coordinate system defined by the application of displacement corresponding to the first point
to the coordinate system defined by the second one (see [3]). Ruled surface interpolation with
the help of Study’s sphere S2

D as point model for oriented lines was performed in [9]. This
model allows an elegant way to find a mean displacement. Via slerping it is possible to define
great circles on Study’s sphere connecting two points and to determine the point correspond-
ing to the midpoint on this curve. The corresponding displacement can be interpreted as
mean displacement. Using dual vector calculus this can be done by adding dual vectors and
normalizing the result afterwards. Through repeated application of this procedure the mean
displacement of multiple displacements can be computed. Figure 3 visualizes the concept of
a mean displacement. Firstly, the tee component is transformed to satisfy the constraints of
each neighbouring pipe (middle, green). In a second step the three resulting displacements are
represented as dual unit quaternions to compute the mean displacement that is also visualized
in Figure 3 (right, orange).

Remark 2. For the application in our alignment algorithm the mean transformation is a
weighted sum. This means every point on Study’s sphere is weighted by the length of the
corresponding pipe or cluster where the length of a cluster is defined by the sum of the lengths
of all contained objects. Afterwards the weighted dual vectors are summed up. Normalizing
the resulting dual vector yields a dual unit quaternion corresponding to the weighted mean
displacement. This procedure ensures that a short pipe or a small cluster does not influence
the resulting displacement too much.

3. The algorithm

To describe the proposed algorithm we define some terms:

• ConnectionPoint is an oriented line-element. Thus it cotains a position, i.e., a point
and normalized direction vector. ConnectionPoints are attached to every pipe and
pipe joint. If two components are connected to each other their ConnectionPoints are
compatible. This means the position is the same and the normalized direction vector
has opposite direction.

• Pipe describes a straight pipe with a ConnectionPoint at each end. The Connection-
Points are collinear with opposite orientation. The length of the pipe can be altered.

• Fix is a rigid set of ConnectionPoints that reflect the topology of the catalogued com-
ponent. In contrast to Pipes they cannot change their shape. Fixes are components to
establish connections between pipes, i.e., elbow, tee, reducer or cross.

• FixCluster describes a set of connected Fixes. It is used to realize complex systems of
Fixes.

• FixGroup is a subset contained by FixCluster. It consists of multiple connected Fixes.
They should not overlap and are used to optimize the FixClusters.

• PipeRow is a set of components (pipes and fixes) that posses opposite oriented Connec-
tionPoints, i.e., opposite oriented line segments ConnectionPoints. This means that fixes
contained by a PipeRow also have parallel or collinear ConnectionPoints, for example
reducers, ex-centric reducers, valves. In certain steps of the algorithm the components
of a PipeRow are processed as one component.
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ConnectionPoint

Pipe

Fix

PipeRow

FixCluster

FixGroup

Figure 4: Terms illustrated by an example.

These terms are visualized with the help of an example in Figure 4. In the first step of the
algorithm the FixClusters will be optimized in themselves towards the axes of the incident
pipes. The pipe axes are left unaltered in this step of the calculation. After this preprocessing
step, the main approach is to:

1. Align the pipes and pipe rows towards the FixClusters

2. Only to adjust and optimize the FixClusters afterwards again towards the incident pipe
axes.

Iteratively repeat this process until error is below an epsilon threshold.

This alternating alignment converges towards an improved global result. It is taken advantage
of the fact, that there is always exactly one Pipe or PipeRow in between two FixClusters.

The number one stopping condition is the maximum deviation error at the Connection-
Points in terms of delta movement and delta angle, which means collinear opposite direction
vectors of the ConnectionPoints.

For example in Autodesk AutoCAD Plant 3D 2015 you will need a default precision of an
epsilon 10−10 in AutoCAD drawing units. Else, you will be shown those imperfections in the
model with small images of water drops at the connection point locations. In newer versions
of Autodesk AutoCAD Plant 3D the user is able to adjust this epsilon threshold to his needs.
So the epsilon threshold depends on the drawing size, the used drawing unit and the users
needs.

Actually there is also an explosion indicator checked after each iteration, which stops and
restarts the calculation with a changed net topology. If it should happen, the connection with
the highest error impact is cut.

Additionally, there is an iteration counter, which stops the algorithm when a certain
iteration count threshold is reached. At the moment its default value is 4000 iterations. It
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ensures, that the calculation does not take forever, but quits at some point and shows the
result with all errors. So the user is able to identify error sources.

The following concepts are also applied:

1. The order independence during the calculation of the piping components has to be
ensured. This means the calculation of the mean dual quaternion transformations from
all separate transformations of the ConnectionPoints of a component.

2. A minimal length of the pipes has to be enforced. This neglects pipe flips of the
ConnectionPoints. The minimum pipe length should just be bigger than zero. We use
a tenth of the pipe radius.

3. An additional up vector is introduced for fixes with collinear ConnectionPoints and has
to be re-established after each step of the algorithm. Thus unwanted rotations of valves
around their own axes are cancelled out.

4. After the calculation of the rotation and translation in each iterative step, it is checked
weather the resulting movement of the components ConnectionPoints exceed a certain
threshold. If the threshold is reached, the complete transformation is limited towards
the set threshold. This way, the calculated transformation direction is preserved and
the adjacent piping components gain a chance to adjust themselves towards the change.
Doing so prevents explosions and the convergence is ensured.

5. Pipe movements are stronger limited in their movement than the fixes using the tech-
nique of point 4 above. This is because the pipe axes have really been measured in
the point cloud and should be better preserved. At the start of our approach we as-
sume the pipes have been fitted to the point cloud precisely. Therefore, the pipe initial
axis represent the measured position and orientation in the point cloud data. During
the computation of the algorithm the access to the raw point cloud point data is not
suitable, because the underlying CAD system takes too long for this.

6. Longer pipes will be more limited in their movement than short pipes.

7. To ensure a high accuracy, we perform the calculation with a much more precise data
type than the data that is used to save the result. In the applied system we use the
quadruple data type for the calculation and double to store the result in the CAD system.
To increase the accuracy and speed during the calculation of the transformations further,
we use dual quaternions. Especially the usage of trigonometric functions like sinus,
cosines, tangents and their arcus counterparts are minimized this way. As we already
said, the dual quaternions enable an efficient way to calculate mean transformations
and replace the commonly used 4× 4 matrices.

Another application is to allow the user to fix the position of some pipes and fixes, to adjust the
piping system afterwards to the fixed components. This is especially important for working
with components, which have been located using tie-in-points. They are exactly placed in the
coordinate system and should be unaltered in terms of position and rotation after applying
the described algorithm.

If there are inconsistencies in the system because of too much fixed components and the
conflicts can not be resolved using the present degrees of freedom in the piping system, an
automatic splitting of the piping topology and marking of the split is applied. This is done at
all connections, which have the highest error impact in the piping system, until a consistent
model is achieved. Thus, the sources of errors are isolated and displayed.
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Start Result

Figure 5: Complex piping system alignment.

4. Conclusion

We proposed an alignment algorithm for constrained pipe systems based on dual quaternion
calculus. In practise the procedure has proven to be effective to solve this kind of problems
(see Figure 5). Closed cycles and fixed components can be taken into account as well as all
kinds of imaginable components, i.e., tees, reducers, elbows and so on. Since we are dealing
with minimal displacements the resulting pipe system corresponds to the original point cloud.
Moreover, this algorithm may be applied to other alignment problems for example to align
wooden or steal beams, cable trays or ducts to each other. One additional idea is to combine
the different domains in the same building. There are approaches to align and cluster walls
in floor plans [11]. So the piping and duct system might follow the orientation of the built
walls or vice versa.
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