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1. Introduction

Triangle congruence theorems are one of the basic topics in classical geometry. It is well
known that the minimum number of pieces (sides and angles) necessary for proving that
two triangles are congruent is three. On the other hand, counterexamples of pairs of triangles
that are not congruent, but with three respectively congruent pieces, can be easily considered.
Indeed such counterexample may have even five respectively congruent pieces, like pairs of
two consecutive Kepler Triangles (see Figure 1) and more generally pairs of almost congruent
triangles (see [3] and [1]).

The extension of triangle congruence theorems to polygons is more complex and certain
remarks are required (see [4, Lesson 11] and [5, Chapter 8] for the definitions and the de-
velopment of the basic properties related to polygons). Two convex polygons are said to be
congruent if there is a one-to-one correspondence between their vertices such that consecu-
tive vertices correspond to consecutive vertices, and all pairs of correspondent sides and all
pairs of correspondent angles are congruent. Roughly speaking, a polygon is a closed figure
formed by three or more segments joined end to end, and two polygons are congruent if we
can overlap them. Formally, we can say that two polygons are congruent if, and only if, one
can be transformed into the other by an isometry. In what follows, it will be useful to remind
that, two polygons P and P ′ are congruent if every two consecutive sides of P are congruent
to two consecutive sides of P ′, and the angles that they define are congruent.

The general study of congruence between two polygons seems too hard, and different
cases such as convex, non convex or twisted polygons should be considered. Clearly the first
constructive step in this direction is to study pairs of convex polygons (see [4, Definition 9.7]).
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Figure 1: Examples of consecutive Kepler triangles. Φ is the Golden Mean.

Even if in this paper all polygons considered are convex, in the statement of the theorems we
will highlight it.

The following definition is crucial for our investigation:

Definition 1.1. We will say that two convex polygons P and P ′ are congruent-like, if there
is a bijection between the sides of P and P ′, and a bijection between the angles of P and
P ′, such that each side of P is congruent to a corresponding side of P ′ and each angle of
P is congruent to a corresponding angle of P ′ (note that the two bijections are ‘a priori’
independent).

Clearly, two congruent n-gons are congruent-like. It is easy to check that the converse
holds for pairs of triangles, but it is not always true if n > 4 (see Figure 2).

In the following we will denote by P = (A0, . . . , An−1) the polygon whose consecutive
vertices are A0, . . . , An−1 (usually numbered counterclockwise). The length of the side AiAi+1

(the index i is read mod n) will be denoted AiAi+1 or ai . The inner angle at vertex Ai as
well as its radian measure will be denoted by Âi, Ai−1ÂiAi+1 or αi . Moreover, we write

AiAi+1 → Ai+1Ai+2 → · · · → Ai+n−2Ai+n−1 → Ai+n−1Ai → AiAi+1

Figure 2: Starting from two congruent quadrilaterals (A,B,C,D) and (A′, B′, C ′, D′)
with two congruent consecutive angles of radian measure α, we may easily construct
pairs of congruent-like polygons that are not congruent.
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or

ai → ai+1 → · · · → ai+4 → ai+5 → ai

for the ordered sequence of the sides of P , starting from AiAi+1 (see Figure 3).

We will say that two congruent-like polygons P and P ′ are ordered congruent-like polygons,
if whichever ordered sequence of consecutive sides of P is equal to an ordered sequence of
sides of P ′. Figure 3 shows that two ordered congruent-like polygons need not be congruent.

Figure 3: Starting from a quadrilateral (A,B,C,D) with two congruent consecutive
angles, say α, we may easily construct pairs of ordered congruent-like n-gons that are
not congruent, for every n > 5. Here any sequence ai → ai+1 → · · · → ai+4 → ai+5 → ai
of sides of the hexagon on the left is equal to a′i → a′i+1 → · · · → a′i+4 → a′i+5 → a′i
referred to the hexagon on the right. Note that a4 = a′4 = a6 = a′6 .

Examples such as in Figures 2 and 3 show that the general investigation on the congruence
of polygons will not be easy and the proofs will require a detailed case analysis, even in the
convex cases.

For those concerning quadrilaterals congruences we highlight here that a significant num-
ber of criterions are well-known in terms of equivalence of ordered sequences of sides and
angles, such as the “SASAS ” criterion, the “ASASA” criterion and others. A complete list
of these kinds of criterions can for instance be found in [4] and [5]. Also a result of I.E.
Vance [11] showed that the minimum number of pieces necessary for the congruence of two
convex quadrilaterals is 5. On the other hand, we note that if we do not require any order to
the sequences of angles and sides of Q and Q′, then also 7 pairs of congruent pieces of Q and
Q′ need not be sufficient to get the congruence of two quadrilaterals (see Figure 4).

By virtue of these considerations and the above counterexamples for general n-gons (n >
4), the following natural question arises: Are there two congruent-like quadrilaterals that are
not congruent?

In this article, we will show that if Q and Q′ are ordered congruent-like quadrilater-
als, then they are congruent (Theorem 3.5). Among other results, congruence criterions for
quadrilaterals (not necessarily ordered) are given (see Theorems 2.4 and 2.6). Some open
questions are listed in the last section.

The paper is suitable for a large audience of readers who are referred to [8], [10], [6], and
the references therein for a deeper investigation on quadrilaterals and related topics.
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Figure 4: The trapezoids Q = (A,B,C,D) and Q′ = (A,B,C,E) are not congruent
though they have 7 mutually congruent pieces: four angles and three sides.

2. Criterions for congruent-like quadrilaterals

In this paper a quadrilateral Q will be denoted by Q = (A,B,C,D). The radian measures of
the inner angles Â, B̂, Ĉ, and D̂ of Q will be denoted by α, β, γ, δ, respectively; the lengths
of the sides AB, BC, CD, and DA of Q will be denoted by a, b, c, d , respectively.

Clearly two congruent-like quadrilaterals will have 8 pairwise congruent pieces. In order to
show that two ordered congruent-like quadrilaterals are congruent, we recall some elementary
results, that allow to reduce the investigation of the possible cases.

The first one is also known as Hinge’ property (see [7, p. 121]).

Lemma 2.1. Let T = (A,B,C) and T ′ = (A′, B′, C ′) two triangles, such that CA = C ′A′

and CB = C ′B′. Then Ĉ ≤ Ĉ ′ ⇐⇒ AB ≤ A′B′.

Lemma 2.2. Let T = (A,B,C) and T ′ = (A′, B′, C ′) be two triangles, such that CA = C ′A′

and Ĉ = Ĉ ′. If B̂ ≤ π/2 and CB ≤ C ′B′, then AB ≤ A′B′.

Proof. Clearly we may suppose that CB < C ′B′. Then there exists B′′ ∈ B′C ′ such that
C ′B′′ = CB. It follows that (A,B,C) and (A′, B′′, C ′) are congruent triangles, and in partic-
ular A′B′′ = AB (see Figure 5). By hypothesis the angle A′B̂′′B′ is obtuse, thus the opposite
side A′B′ is longer than A′B′′ = AB.

Note that the above result can be read as an extension of the first criterion for triangles.

Lemma 2.3. Let Q = (A,B,C,D) be a quadrilateral having three consecutive non-acute
angles, say Â, B̂ and Ĉ. If Q is not a rectangle, then a < c and b < d.

Figure 5: Inequalities in a pair of triangles with one congruent angle and adjacent side.
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Figure 6: Non-acute angles Â, B̂ and Ĉ imply a < c and b < d.

Proof. Looking at Figure 6, it is easy to check that BC ≤ AG ≤ AD.
On the other hand, if Q is not a rectangle, then the angles Â, B̂ and Ĉ are not simultaneously
right, so that at least one of the above inequalities must be strict, and b < d. Similarly it can
be proved that a < c.

We are now in the position to show our first theorem.

Theorem 2.4. (Side-Angle-Side criterion) Let Q and Q′ be congruent-like convex quadrilat-
erals. Then they are congruent if and only if they have two consecutive sides and the angle
between them respectively congruent.

Proof. In order to show thatQ = (A,B,C,D) andQ′ = (A′, B′, C ′, D′) are congruent, we may
suppose that they have AB = A′B′, DA = D′A′ and Â = Â′ (oriented counterclockwise). In
particular it follows by criterions on triangles that the diagonals DA and D′A′ are congruent,
and Q and Q′ can be decomposed in a pair of congruent triangles (see Figures 7 and 8).

If Q and Q′ are ordered congruent-like quadrilaterals, then even BC = B′C ′ and CD = C ′D′,
and it easily follows that they are congruent (Figure 7).

Figure 7: Here Q and Q′ are congruent.

By contradiction suppose that Q and Q′ are congruent-like quadrilaterals but not ordered.
Then the sequence DA→ AB → BC → CD must be different from D′A′ → A′B′ → B′C ′ →
C ′D′ so that BC 6= B′C ′, and by hypothesis we have BC = C ′D′, and hence CD = B′C ′ (see
Figure 8).
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Figure 8: Here Q and Q′ are not congruent-like quadrilaterals.

By hypothesis, the set of the inner angles of Q coincides with the set of the inner angles
of Q′. Therefore, referring to Figure 8, we have: η + ϕ = η + θ or η + ϕ = ϕ+ ε, then ϕ = θ
or η = ε. If ϕ = θ, then BC = CD, B′C ′ = C ′D′, so that in particular Q and Q′ are ordered
congruent-like quadrilaterals. If η = ε then DA = AB and D′A′ = A′B′, thus the sequences
DA → AB → BC → CD and A′B′ → D′A′ → D′C ′ → B′C ′ coincide. This contradiction
completes the proof.

Lemma 2.5. Let Q and Q′ be congruent-like quadrilaterals. If Q is a parallelogram, then Q
and Q′ are congruent.

Proof. We set Q = (A,B,C,D) and Q′ = (A′, B′, C ′, D′). Without loss of generality, we may
suppose that AB = A′B′. By hypothesis we may assume that one of the two adjacent sides
of AB is congruent to one of the adjacent sides of A′B′, say DA = D′A′. If Â = Â′, then
Q and Q′ are congruent by the Side-Angle-Side criterion, applied to DA = D′A′, Â = Â′,
AB = A′B′.
Thus we may suppose that Â 6= Â′. Then by hypothesis Â′ must be congruent to B̂ = D̂. On
the other hand CD = A′B′, thus Q and Q′ are congruent by the Side-Angle-Side criterion,
applied to CD = A′B′, D̂ = Â′ and DA = D′A′.

Theorem 2.6. (Angle-Side-Angle criterion) Let Q and Q′ be congruent-like convex quadri-
laterals. If they have a side together with the adjacent angles respectively congruent, then the
quadrilaterals are congruent.

Proof. In order to show that Q = (A,B,C,D) and Q′ = (A′, B′, C ′, D′) are congruent, we
may suppose that they have AB = A′B′, Â = Â′ and B̂ = B̂′.
First we note that if B′C ′ = BC then we can apply the Side-Angle-Side criterion applied to
AB = A′B′, B̂ = B̂′ and B′C ′ = BC, so that Q and Q′ are congruent. By hypothesis BC
must be congruent either to C ′D′ or to D′A′. Therefore we may split the analysis into two
main cases:

1) C ′D′ = BC.
In this case we have that the disposition of the sides and angles of Q′ is prescribed. In fact,
by the Side-Angle-Side criterion, we may suppose that AD 6= A′D′, and by hypothesis we
have A′D′ = DC, and B′C ′ = AD (see Figures 9 and 10). By the Side-Angle-Side criterion,
we may suppose that D̂′ differs from Ĉ. Therefore D̂′ = D̂ and Ĉ ′ = Ĉ.

1.i) Â+ B̂ > π.
Extending the adjacent sides of AB and A′B′, we determine two congruent triangles
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Figure 9: Case 1.i : C ′D′ = BC and Â+ B̂ > π.

(A,B, I) and (A′, B′, J). Moreover the triangles (I, C,D) and (J,C ′, D′) are similar.
Referring to the notation of Figure 9, the following proportion holds:

(y + b) : (y + d) = (x+ d) : (x+ c) = c : b.

If b ≥ c we have d ≥ b and c ≥ d, thus b = d = c. And similarly, from b ≤ c follows
that b = d = c. Therefore b = c = d, and Q = Q′ are congruent.

Figure 10: Case 1.ii : C ′D′ = BC and Â+ B̂ < π.

1.ii) Â+ B̂ < π.
Extending the sides adjacent to AB and A′B′, we determine two congruent triangles
(A,B, I) and (A′, B′, J) (see Figure 10). Moreover, the triangles (C,D, I) and (C ′, D′, J)
are similar, so that x : x′ = y : y′ = c : b. Thus if b ≥ c we have y′ ≥ y and x′ ≥ x. On
the other hand, the triangles (A,B, I) and (A′, B′, J) are congruent, so that d+y′ = b+y,
and c+x′ = d+x. It follows that d ≤ b and c ≤ d. This shows that b = c = d. Similarly
if c ≥ b, we have again b = c = d. Therefore Q = Q′ are congruent by case (1.i).

1.iii) Â+ B̂ = π.
If Â+D̂ < π, elementary considerations show that b < d and d < c . On the other hand,
the triangles (K,C,D) and (K ′, C ′, D′) are congruent, and in particular b = c, that is
a contradiction (see Figure 11). Similarly if Â + D̂ > π we get again a contradiction.
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Figure 11: Case 1.iii : C ′D′ = BC and Â+ B̂ = π.

Therefore Â + D̂ = π, and Q is a parallelogram. It follows by Lemma 2.5 that Q and
Q′ are congruent.

2) D′A′ = BC.
It follows that either B′C ′ = DA and C ′D′ = CD hold or B′C ′ = CD and C ′D′ = DA. In
both cases, if Ĉ ′ = D̂ we have that Q and Q′ are congruent by the Side-Angle-Side criterion.
Therefore we can assume that Ĉ ′ = Ĉ, and hence D̂′ = D̂ (see Figures 12, 13 and 14). We
split the analysis into three cases looking at the sum Â+ B̂. In each case we must take into
account that either B′C ′ = DA and C ′D′ = CD hold or B′C ′ = CD and C ′D′ = DA:

Figure 12: Case 2.i : D′A′ = BC and Â+ B̂ > π. Here there are two possibilities.

2.i) Â+ B̂ > π.
If B′C ′ = DA and C ′D′ = CD (see Figure 12, pair on the left), then the triangles
(J,C ′, D′) and (I, C,D) are congruent, so that x + d = x + b, that is, d = b and Q is
congruent to Q′.
Suppose that B′C ′ = CD and C ′D′ = DA (see Figure 12, pair on the right). By the
similarity of the triangles (J,C ′, D′) and (I, C,D) we have: c ≤ d ⇐⇒ d + x ≤
b + x ⇐⇒ b + y ≤ c + y or c ≥ d ⇐⇒ d + x ≥ b + x ⇐⇒ b + y ≥ c + y. In both
cases we have c = b = d, and the assertion follows.

2.ii) Â+ B̂ < π.
If B′C ′ = DA and C ′D′ = CD (see Figure 13 on the left), then the triangles (C,D, I)
and (C ′, D′, J) are congruent. On the other hand, (A,B, I) is congruent to (A′, B′, J)
so that d = b, and Q is congruent to Q′.
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Figure 13: Case 2.ii : D′A′ = BC and Â+ B̂ < π. Here there are two possibilities.

Suppose now that B′C ′ = CD and C ′D′ = DA (see Figure 13 on the right). If we set
a′ = A′B′, b′ = B′C ′, c′ = C ′D′, d′ = D′A′, then a = a′, b = d′, c = b′, d = c′, and the
assertion follows from the case 1.i .

2.iii) Â+ B̂ = π.
Suppose that B′C ′ = DA and C ′D′ = CD. If Â + D̂ < π elementary considerations
on Q and Q′, respectively, show b < d and d < b; that is a contradiction. Similarly if
Â+D̂ > π we get again a contradiction. Therefore Â+D̂ = π, and Q is a parallelogram.
It follows by Lemma 2.5 that Q is congruent to Q′.
Then we can suppose B′C ′ = CD and C ′D′ = DA. Arguing as in the second part of
2.ii, if we set a′ = A′B′, b′ = B′C ′, c′ = C ′D′, d′ = D′A′, then a = a′, b = d′, c = b′,
d = c′, and the assertion follows from the case 1.iii .

Figure 14: Case 2.iii : D′A′ = BC and Â+ B̂ = π. Here there are two possibilities.

Remark 2.1. We highlight that the above criterions do not hold for n-gons when n ≥ 5 as
Figures 2 and 3 show.

3. Ordered congruent-like quadrilaterals

Lemma 3.1. Let Q = (A,B,C,D) and Q′ = (A′, B′, C ′, D′) such that AB = A′B′, BC =
B′C ′, CD = C ′D′ and DA = D′A′. Then Â > Â′ ⇐⇒ Ĉ > Ĉ ′ ⇐⇒ B̂ < B̂′ ⇐⇒ D̂ < D̂′.
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Proof. We show the first sequence of implications. Suppose that Â > Â′, then by the Hinge’
property DB > D′B′, and hence Ĉ > Ĉ ′. Note that the sum of all internal angles of any
quadrilateral is 2π, it turns out that is either B̂ < B̂′ or D̂ < D̂′. A new application of the
Hinge’ property yields: B̂ < B̂′ ⇐⇒ AC < A′C ′ ⇐⇒ D̂ < D̂′, so that we have both the
relations B̂ < B̂′ and D̂ < D̂′. The converse is specular.

Figure 15: If one angle decreases, then the opposite one also decreases, and the other
two increase.

Remark 3.1. Let Q = (A,B,C,D) and Q′ = (A′, B′, C ′, D′) be two ordered congruent-like
quadrilaterals, then without loss of generality we may suppose that AB = A′B′, BC = B′C ′,
CD = C ′D′, and DA = D′A′. In order to show that Q and Q′ are congruent, we may assume
that Â is the angle of Q of greatest radian measure, and that B̂ is greater than D̂. Therefore
α + β ≥ π and β ≥ δ.
It turns out that one of the following cases appears:

1) α ≥ β ≥ γ ≥ δ;

2) α ≥ γ ≥ β ≥ δ;

3) α ≥ β ≥ δ ≥ γ.
According to the above cases, we will refer toQ as a quadrilateral of type 1, 2 or 3, respectively.

Lemma 3.2. Let Q = (A,B,C,D) and Q′ = (A′, B′, C ′, D′) be ordered congruent-like quadri-
laterals. If Â = B̂′, B̂ = Ĉ ′, Ĉ = D̂′, and D̂ = Â′, then Q and Q′ are congruent.

Proof. By hypothesis, we may assume the positions of Remark 3.1. If Â = Â′, the assertion
follows from Theorem 2.4. So we can assume that Â > Â′ = D̂. By hypothesis and applying
Lemma 3.1 we have

Ĉ > Ĉ ′ = B̂, B̂ < B̂′ = Â, D̂ < D̂′ = Ĉ.

Hence Q is of type 2, that is α ≥ γ ≥ β ≥ δ, α ≥ π/2 and δ ≤ π/2.
Clearly we may suppose that Q is not a rectangle. If B̂ is not acute, then Ĉ is even not acute
so that by Lemma 2.3 applied to Q we have in particular that a < c . On the other hand, if
we apply Lemma 2.3 to the quadrilateral Q′ we have c < a. This is a contradiction. Then we
can suppose that B̂ is acute.
Consider now the triangles (A,B,D) and (A′, B′, C ′), and note that AB = A′B′, Â = B̂′ and
the AD̂B and A′Ĉ ′B′ are both acute angles, as α ≥ π/2 (look at Figure 16, pairs of hatched
triangles). An application of Lemma 2.2 yields

d ≤ b ⇐⇒ DB ≤ A′C ′. (1)
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Figure 16: A special pair of ordered congruent-like quadrilaterals of type 2: they must
be congruent.

Similarly, looking at the triangles (D,B,C) and (A′, C ′, D′) (look at Figure 16, pairs of dotted
triangles), we note CD = C ′D′, Ĉ = D̂′, and the angles D′Â′C ′ and CB̂D are both acute
(CB̂D ≤ β). Then by Lemma 2.2 follows that

d ≤ b ⇐⇒ A′C ′ ≤ DB. (2)

Relations (1) and (2) show that d = b. Therefore Q and Q′ are congruent by the Side-Angle-
Side criterion for congruent-like quadrilaterals, as DA = C ′B′, Â = B̂′, AB = A′B′.

It is useful to highlight that above result can be extended as follows:

Lemma 3.3. Let Q = (A,B,C,D) and Q′ = (A′, B′, C ′, D′) be ordered congruent-like quadri-
laterals. If Â = D̂′, B̂ = Â′, Ĉ = B̂′, and D̂ = Ĉ ′, then Q and Q′ are congruent.

Proof. It is enough to invert the role of Q and Q′ in Lemma 3.2.

Lemma 3.4. Let Q and Q′ be ordered congruent-like quadrilaterals. If Â = B̂′, B̂ = D̂′,
Ĉ = Â′, and D̂ = Ĉ ′, then Q and Q′ are congruent.

Proof. By hypothesis, we may assume the positions of the Remark 3.1. If Â = Â′, the
assertion follows from Theorem 2.4. So we can assume that Â > Â′ = Ĉ. By hypothesis and
applying Lemma 3.1 we have

Ĉ > Ĉ ′ = D̂, B̂ < B̂′ = Â, D̂ < D̂′ = B̂. (3)

As D̂ = Ĉ ′ < Ĉ, the case α ≥ δ ≥ β ≥ γ does not occur. Hence Q is either of type 1 or of
type 2, that is, either α ≥ β ≥ γ ≥ δ or α ≥ γ ≥ β ≥ δ.
By contradiction suppose that α + δ 6= π, so we have two cases:

1) α + δ > π.
In this case we can consider the configuration as in Figure 17.
We note that the triangles (D,A,H) and (B′, C ′, H ′) are similar, and also the triangles
(B,C,H) and (A′, D′, H ′) are similar, so that, referring to Figure 17, the following proportions
hold:

d : b = x : x′ = y : y′ (4)

and
d : b = c+ x′ : y + a = a+ y′ : c+ x. (5)
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Figure 17: Case 1: α + δ > π. Here we have that d = b.

– Assume that β ≥ γ, then we have CH ≥ HB, that is c + x ≥ a + y (look at triangle
(B,C,H)).
If d > b, we have c+ x ≥ a+ y > a+ y′ by (4), so that d < b by (5), a contradiction.
If d < b, we have that a+y ≤ c+x < c+x′ by (4), so that d > b by (5), a contradiction.

– Assume that β ≤ γ, then we have CH ≤ HB, that is c+ x ≤ a+ y.
If d > b, we have that c+x′ < c+x ≤ a+y by (4), so that d < b by (5), a contradiction.
If d < b, we have that c + x ≤ a + y < a + y′ by (4), so that d > b by (5), again a
contradiction.

Then, if α + δ > π then d = b.

2) Similarly, it can be proved that if α + δ < π then d = b (look at Figure 18).

Figure 18: Case 2: α + δ < π. Here we have that d = b.

Therefore if α+ δ 6= π then Q and Q′ are congruent by the Angle-Side-Angle criterion (they
have d = b′, and the respective angles α = β′ and δ = γ′).
Thus we may assume that α + δ = π. By relation (3) follows γ > δ. In particular we have
that α + γ = α′ + β′ > π, and Q and Q′ are trapezoids as in Figure 19.
As Q is of type 1 or 2, then β ≥ δ, and hence α + β ≥ π. If α + β > π, then b < d (see
figure on the left: AE is opposite to D̂, and DA is opposite to DÊA that has radian measure
γ > δ). On the other hand, if α′ + β′ > π then d ≤ b (see figure on the right), and this is a
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Figure 19: If α + δ = π, then Q and Q′ are congruent parallelograms.

contradiction. It follows that α + β = π, and hence Q and Q′ are congruent parallelograms
by Lemma 2.5.

Theorem 3.5. Let Q and Q′ be ordered congruent-like convex quadrilaterals. Then Q and
Q′ are congruent.

Proof. Let Q = (A,B,C,D) and Q′ = (A′, B′, C ′, D′) be ordered congruent-like quadrilater-
als, with the notations in agreement with Remark 3.1.

If Â = Â′, the assertion follows from the Side-Angle-Side criterion 2.4. So we can assume
that Â > Â′, and by Lemma 3.1 we have Ĉ ′ < Ĉ, B̂′ > B̂ and D̂′ > D̂.

As Ĉ ′ < Ĉ, the case α ≥ β ≥ δ ≥ γ cannot occur. Hence Q is either of type 1 or 2, that is,
either α ≥ β ≥ γ ≥ δ or α ≥ γ ≥ β ≥ δ.

1) α ≥ β ≥ γ ≥ δ.

It follows that Ĉ ′ = D̂ and B̂′ = Â. Thus Â′ ∈ {B̂, Ĉ}, and we have two possibilities:

1.1) Ĉ ′ = D̂, B̂′ = Â, Â′ = B, and D̂′ = C. It follows that Q and Q′ are congruent by the
Angle-Side-Angle criterion 2.6 as Â = B̂′, AB = A′B′, and B̂ = Â′.

1.2) Ĉ ′ = D̂, B̂′ = Â, Â′ = C, and D̂′ = B. Here we may apply Lemma 3.4, so that Q and
Q′ are congruent.

2) α ≥ γ ≥ β ≥ δ.

It follows that B̂′ ∈ {Â, Ĉ}, and Ĉ ′ ∈ {B̂, D̂}, and we have four cases:

2.1) B̂′ = Â and Ĉ ′ = B̂, that implies D̂′ = Cand Â′ = D. Here, by Lemma 3.2, Q is
congruent to Q′.

2.2) B̂′ = Â and Ĉ ′ = D̂. This case splits in two.

i) Â′ = C and D̂′ = B. Here we may apply Lemma 3.4, so that Q and Q′ are
congruent.

ii) Â′ = B and D̂′ = C. It follows that Q and Q′ are congruent by the Angle-Side-
Angle criterion 2.6 as Â = B̂′, AB = A′B′, and B̂ = Â′.

2.3) B̂′ = Ĉ and Ĉ ′ = B̂. Then Q and Q′ are congruent again by the Angle-Side-Angle
criterion 2.6.

2.4) B̂′ = Ĉ and Ĉ ′ = D̂, that implies Â′ = B̂ and D̂′ = Â. Here we may apply Lemma 3.3.
Thus Q′ is congruent to Q.

This completes the proof.
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4. Conclusions

Citing H. Poincarè (see [2] and [9, p. 452]) we can say that

The definition will not be understood until you have shown not only the object defined,
but the neighbouring objects from which it has to be distinguished, until you have made
it possible to grasp the difference, and have added explicitly your reason for saying this
or that in stating the definition.

We think that the notion of congruent-like polygons may help to highlight and overcome some
critical aspects of the definition of pairs of congruent polygons. In this direction another
useful remark is the following:

If P = (A0, . . . , An−1) and P ′ = (A′0, . . . , A
′
n−1) are congruent-like polygons then each side

of P is congruent to a side of P ′, and each angle of P is congruent to an angle of P ′. In other
words, we have the following equality referred to the sets of the measures of sides and angles
of P and P ′:

{a0, a1, . . . , an−1} = {a′0, a′1, . . . , a′n−1} and {α0, α1, . . . , αn−1} = {α′0, α′1, . . . , α′n−1}. (6)

Two polygons satisfying the conditions in (6) will be called weakly congruent. Conversely,
if P and P ′ are weakly congruent, and the measures of the sides and the angles of P are
mutually different, then P and P ′ are congruent-like. But here we highlight that the converse
is not true if the correspondences between sides and angles of P and P ′ are not one to one,
as Figure 20 shows.

Figure 20: Pair of weakly congruent quadrilaterals that are not congruent-like. Note
that erecting on sides DA and D′A′ an external triangle and so on, we can easily detect
pairs of weakly congruent n-gons that are not congruent-like, for every n > 4.

Congruence theorems for quadrilaterals (and more generally for polygons) could appear
to be a difficult topic for many learners. The reasons for such difficulties relate to the com-
plexities in learning to analyze the attributes of different quadrilaterals and to distinguish
between critical and non-critical aspects (see [2]). On the other hand, this kind of studies re-
quires logical deduction to deal with many cases, together with suitable interactions between
concepts and images, and so we may think that it is an important topic within mathematics
education.

We conclude this article leaving some open questions. It should be a good exercise to
attempt to investigate one of them:

1) Are there two convex (non-ordered) congruent-like quadrilaterals that are not congru-
ent?

2) Are two convex ordered congruent-like pentagons necessarily congruent? In other words,
does Theorem 3.5 hold for pentagons?

3) More general, one could ask: What can we state without restricting to convex polygons?
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