
Journal for Geometry and Graphics
Volume 21 (2017), No. 1, 7–27.

Vertex Positions of the Generalized
Orthocenter and a Related Elliptic Curve

Igor Minevich 1, Patrick Morton 2

1Department of Mathematics, Maloney Hall, Boston College
140 Commonwealth Ave., Chestnut Hill, Massachusetts, 02467-3806, USA

email: igor.minevich@bc.edu

2Dept. of Mathematical Sciences, Indiana University –Purdue University at Indianapolis
402 N. Blackford St., Indianapolis, Indiana, 46202, USA

email: pmorton@math.iupui.edu

Abstract. We study triangles ABC and points P for which the generalized
orthocenter H corresponding to P coincides with a vertex. The set of all such
points P is a union of three ellipses minus six points. If TP is the affine map
taking ABC to the cevian triangle of P , P ′ is the isotomic conjugate of P , and K
is the complement map for ABC, we also study the affine map MP = TP ◦K−1◦TP ′

taking the circumconic of ABC for P to the inconic of ABC for P . We show that
the locus of points P for which this map is a translation is an elliptic curve minus
six points, and show how this locus can be synthetically constructed using the
geometry of the triangle.
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1. Introduction

In the third of our series of papers on cevian geometry [9], we have studied the properties
of the generalized orthocenter H of a point P with respect to an ordinary triangle ABC
in the extended Euclidean plane, using synthetic techniques from projective geometry. This
generalized orthocenter is defined as follows. Letting K denote the complement map with
respect to ABC and ι the isotomic map (see [1], [6]), the point Q = K ◦ ι(P ) is called
the isotomcomplement of P . Further, let D,E, F denote the traces of P on the sides of
ABC. The generalized orthocenter H is defined to be the unique point H for which the lines
HA,HB,HC are parallel to QD,QE,QF , respectively. We showed (synthetically) in [7] that
H is given by the formula

H = K−1 ◦ T−1P ′ ◦K(Q),
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Figure 1: The conics C̃O (strawberry) and I (green).

where TP ′ is the unique affine map taking ABC to the cevian triangle D3E3F3 of the isotomic
conjugate P ′ = ι(P ) of P . The related point

O = K(H) = T−1P ′ ◦K(Q)

is the generalized circumcenter (for P ) and is the center of the circumconic C̃O = T−1P ′ (NP ′),
where NP ′ is the nine-point conic for the quadrangle ABCP ′ (see [9, Theorems 2.2 and 2.4]
and [2, p. 84]).

We also showed in [9, Theorem 3.4], that if TP is the unique affine map taking ABC to
the cevian triangle DEF of P , then the affine map M = TP ◦ K−1 ◦ TP ′ is a homothety or
translation which maps the circumconic C̃O to the inconic I, defined to be the conic with
center Q which is tangent to the sides of ABC at the points D,E, F . In the classical case,
when P = Ge is the Gergonne point of triangle ABC, the points O and H are the usual
circumcenter and orthocenter, and the conics C̃O and I are the circumcircle and incircle,
respectively. In that case the map M taking C̃O to I is a homothety, and its center is the
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insimilicenter S. In general, if G is the centroid of ABC, and Q′ = K(P ), then the center of
the map M is the point

S = OQ ·GV = OQ ·O′Q′, where V = PQ · P ′Q′,

and O′ = T−1P ◦K(Q′) is the generalized circumcenter for the point P ′ (see Figure 1).

In this paper we first determine synthetically the locus of points P for which the general-
ized orthocenter is a vertex of ABC. This turns out to be the union of three conics minus six
points. Excepting the points A,B,C, these three conics lie inside the Steiner circumellipse
ι(l∞) (l∞ is the line at infinity), and each of these conics is tangent to ι(l∞) at two of the
vertices (see Figure 2). We also consider a special case in which H is a vertex of ABC and
the map M is a translation, so that the circumconic C̃O and the inconic are congruent (see
Figures 3 and 4 in Section 2). In Section 3, we determine the locus of all points P for which
M is a translation, which is the set of P for which S ∈ l∞. We determine necessary and
sufficient conditions for this to occur in Theorem 3.1; for example, we show M is a translation
if and only if the point P lies on the conic C̃O. (This situation does not occur in the classical
situation, when P is the Gergonne point, since this point always lies inside the circumcircle.)
Using barycentric coordinates we show that this locus is an elliptic curve minus six points
(see Figure 5). We also show that there are infinitely many points P in this locus which can
be defined over the quadratic field Q(

√
2), i.e., whose barycentric coordinates can be taken to

lie in this field. In particular, given two points in this locus, a third point can be constructed
using the addition on the elliptic curve. In Section 4 we show how this elliptic curve, minus
a set of 12 torsion points, may be constructed as the locus of points P = A(P1), where A
runs over the affine mappings taking inscribed triangles (with a fixed centroid) on a subset
A of a hyperbola C (consisting of six open arcs; see equation (5)) to a fixed triangle ABC,
and where P1 is a fixed point on the hyperbola (an endpoint of one of the arcs making up
A ). In another paper [11] we will show that the locus of points P , for which the map M is
a half-turn, is also an elliptic curve, which can be synthetically constructed in a similar way
using the geometry of the triangle.

We adhere to the notation of [6] – [10]: P is always a point not on the extended sides of the
ordinary triangles ABC and K−1(ABC); D0E0F0 = K(ABC) is the medial triangle of ABC,
with D0 on BC, E0 on CA, F0 on AB (and the same for further points Di, Ei, Fi); DEF is
the cevian triangle associated to P ; D2E2F2 the cevian triangle for Q = K ◦ ι(P ) = K(P ′);
D3E3F3 the cevian triangle for P ′ = ι(P ). As above, TP and TP ′ are the unique affine maps
taking triangle ABC to DEF and D3E3F3, respectively, and λ = TP ′ ◦ T−1P . See [6] and [8]
for the properties of these maps.

We also refer to the papers [6], [8], [9], and [10] as I, II, III, and IV respectively. See [1],
[2], [3] for results and definitions in triangle geometry and projective geometry.

2. The special case H = A, O = D0

We now consider the set of all points P such that H = A and O = K(H) = K(A) = D0. We
start with a lemma.

Lemma 2.1. Provided the generalized orthocenter H of P is defined, the following are equiv-
alent:

(a) H = A.

(b) QE = AF and QF = AE.
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(c) F3 is collinear with Q, E0, and K(E3).

(d) E3 is collinear with Q, F0, and K(F3).

Proof. (See Figure 2.) We use the fact that K(E3) is the midpoint of segment BE and K(F3)
is the midpoint of segment CF from I, Corollary 2.2. Statement (a) holds iff QE ‖ AB and
QF ‖ AC, i.e., iff AFQE is a parallelogram, which is equivalent to (b). Suppose (b) holds.
Let X = BE · QF3. Then triangles BXF3 and EXQ are congruent since QE ‖ BF3 = AB
and QE = AF = BF3. Therefore, BX = EX, i.e. X is the midpoint K(E3) of BE, so Q,F3,
and X = K(E3) are collinear. The fact that E0 is also collinear with these points follows from
K(BP ′E3) = E0QK(E3) and the collinearity of B,P ′, E3. Similarly, Q,E3, F0, and K(F3)
are collinear. This shows (b) ⇒ (c), (d).

Next, we show (c) and (d) are equivalent. Suppose (c) holds. The line F3E0 = E0K(E3) =
K(BE3) is the complement of the line BE3, hence the two lines are parallel and

AF3

F3B
=

AE0

E0E3

. (1)

Conversely, if this equality holds, then the lines are parallel and F3 lies on the line through
K(E3) parallel to P ′E3, i.e., the line K(P ′E3) = QK(E3), so (c) holds. Similarly, (d) holds
if and only if

AE3

E3C
=

AF0

F0F3

. (2)

A little algebra shows that (1) holds if and only if (2) holds. Using signed distances, and
setting AE0/E0E3 = x, we have AE3/E3C = (x + 1)/(x − 1). Similarly, if AF0/F0F3 = y,
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Figure 2: The conics CA (red), CB (purple), CC (green), and ι(l∞) (blue).
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then AF3/F3B = (y + 1)/(y − 1). Now (1) is equivalent to x = (y + 1)/(y − 1), which is
equivalent to y = (x+ 1)/(x− 1), hence also to (2). Thus, (c) is equivalent to (d). Note that
this part of the lemma does not use that H is defined.

Now assume (c) and (d) hold. We will show (b) holds in this case. By the reasoning in the
previous paragraph, we have F3Q ‖ E3P

′ and E3Q ‖ F3P
′, so F3P

′E3Q is a parallelogram.
Therefore, F3Q = P ′E3 = 2 · QK(E3), so F3K(E3) = K(E3)Q. This implies the triangles
F3K(E3)B and QK(E3)E are congruent (SAS), so AF = BF3 = QE. Similarly, AE =
CE3 = QF , so (b) holds.

Theorem 2.2. The locus LA of points P such that H = A is a subset of the conic CA through
B, C, E0, and F0, whose tangent at B is K−1(AC) and whose tangent at C is K−1(AB).
Namely, LA = CA \ {B,C,E0, F0}.

Proof. Given E on AC we define F3 as F3 = E0K(E3) ·AB, and F to be the reflection of F3

in F0. Then we have the following chain of projectivities (G is the centroid):

BE ∧−E ∧−E3

G

∧=K(E3)
E0

∧= F3 ∧−F ∧−CF.

Then P = BE · CF varies on a line or a conic. From the lemma it follows that:
(a) for a point P thus defined, H = A; and
(b) if H = A for some P , then P arises in this way, i.e., F3 is on E0K(E3).

Now we list four cases in the above projectivity for which H is undefined, namely when
P = B,C,E0, F0. Let A∞, B∞, C∞ represent the points at infinity on the respective lines
BC, AC, and AB.

1. For E = B∞ = E3 = K(E3), we have E0K(E3) = AC so F3 = A, F = B, and
P = BE · CF = B.

2. For E = C, we have E3 = A, K(E3) = D0, E0K(E3) = D0E0 ‖ AB, F = F3 = C∞, so
P = BE · CF = C.

3. For E = E0, we have E3 = E0 and K(E0) is the midpoint of BE0, so F3 = B, F = A,
and P = BE · CF = E0.

4. For E = A, we have E3 = C, K(E3) = F0, F3 = F = F0, and P = BE · CF = F0.

Since the four points B, C, E0, F0 are not collinear, this shows that the locus of points
P = BE · CF is a conic CA through B, C, E0, F0. Moreover, the locus LA of points P such
that H = A is a subset of CA \ {B,C,E0, F0}.

We claim that if E is any point on line AC other than A, C, E0, or B∞, then P is a point
for which H is well-defined. First, E3 is an ordinary point because E 6= B∞. Second, because
E 6= B∞, the line E0K(E3) is not a sideline of ABC. The line E0K(E3) intersects AB in A
if and only if K(E3) lies on AC, which is true only if E3 = B∞. The line E0K(E3) intersects
AB in B iff K(E3) is on BE0, which holds iff E3 is on K−1(B)B = BE0, and this is the case
exactly when E = E3 = E0. Since K(E3) lies on K(AC) = D0F0, the line E0K(E3) is parallel
to AB iff K(E3) = D0, giving E3 = A and E = C. Thus, the line E0K(E3) intersects AB in
an ordinary point which is not a vertex, so F3 and F are not vertices and P = BE · CF is a
point not on the sides of ABC.

It remains to show that P does not lie on the sides of the anticomplementary triangle of
ABC. If P is on K−1(AB) then F = F3 = C∞, which only happens in the excluded case
E = C (see Case 2 above). If P is on K−1(AC) then E = B∞, which is also excluded. If P
is on K−1(BC) then P ′ is also on K−1(BC) so Q = K(P ′) is on BC.
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To handle the last case, suppose Q is on the same side of D0 as C. Then P ′ is on the
opposite side of line AD0 from C, so it is clear that CP ′ intersects AB in the point F3 between
A and B. If Q is between D0 and C, then F3 is between A and F0 (since F0, C, and G are
collinear), and it is clear that F3E0 can only intersect BC in a point outside of the segment
D0C, on the opposite side of C from Q. But this is a contradiction, since by construction
F3, E0, and K(E3) are collinear, and Q = K(P ′) lies on K(BE3) = E0K(E3). On the other
hand, if the betweenness relation D0 ∗ C ∗ Q holds, then F3 is between B and F0, and it is
clear that F3E0 can only intersect BC on the opposite side of B from C. This also applies
when P ′ = Q is a point on the line at infinity, since then F3 = B, and B, E0 and Q = A∞ (the
point at infinity on BC) are not collinear, contradicting part (c) of Lemma 2.1. A symmetric
argument applies if Q is on the same side of D0 as B, using the fact that parts (c) and (d)
of Lemma 2.1 are equivalent. Thus, no point P in CA \ {B,C,E0, F0} lies on a side of ABC
or its anticomplementary triangle, and the point H is well-defined; further, H = A for all of
these points.

Finally, by the above argument, there is only one point P on CA that is on the line
K−1(AB), namely C, and there is only one point P on CA that is on the line K−1(AC),
namely B, so these two lines are tangents to CA.

This theorem shows that the locus of points P , for which the generalized orthocenter H is
a vertex of ABC, is the union of the conics CA ∪CB ∪CC minus the vertices and midpoints of
the sides. The Steiner circumellipse is tangent to the sides of the anticomplementary triangle
K−1(ABC), so the conic CA, for instance, has the double points B, C in common with ι(l∞).
Since the conic CA lies on the midpoints E0 and F0, which lie inside ι(l∞), it follows from
Bezout’s theorem that the set CA \ {B,C} lies entirely in the interior of ι(l∞), with similar
statements for CB and CC .

In the next proposition and its corollary, we consider the special case in which H = A
and D3 is the midpoint of AP ′. We will show that, in this case, the map M is a translation
(see Figure 4). We first show that this situation occurs.

Lemma 2.3. If the equilateral triangle ABC has sides of length 2, then there is a point P
with AP ·BC = D and d(D0, D) =

√
2, such that D3 is the midpoint of the segment AP ′ and

H = A.

Proof. (See Figure 3.) We will construct P ′ such that D3 is the midpoint of AP ′ and H = A,
and then show that P satisfies the hypothesis of the lemma. The midpoint D0 of BC satisfies
D0B = D0C = 1 and AD0 =

√
3. Let the triangle be positioned as in Figure 3. Let Ã be the

reflection of A in D0, and let D be a point on BC to the right of C such that D0D =
√

2.
In order to ensure that the reflection D3 of D in D0 is the midpoint of AP ′, take P ′ on
l = K−2(BC) with P ′Ã = 2

√
2 and P ′ to the left of Ã. Then Q = K(P ′) is on K−1(BC), to

the right of A, and AQ =
√

2. Let E3 and F3 be the traces of P ′ on AC and BC, respectively.

We claim BF3 =
√

2. Let M be the intersection of BC and the line through F3 parallel
to AD0. Then triangles BMF3 and BD0A are similar, so F3M =

√
3 ·MB. Let N1 be the

intersection of BC and the line through P ′ parallel to AD0. Triangles P ′N1C and F3MC are
similar, so

F3M

MC
=
P ′N1

N1C
=

AD0

P ′Ã+ 1
=

√
3

2
√

2 + 1
.

Therefore, √
3

2
√

2 + 1
=
F3M

MC
=

√
3 ·MB

MB + 2
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Figure 3: Proof of Lemma 2.3

which yields that MB = 1/
√

2. Then BF3 =
√

2 is clear from similar triangles.

Now, let F be the reflection of F3 in F0 (the midpoint of AB). Then AQF is an equilateral
triangle because m(∠FAQ) = 60◦ and AQ ∼= BF3

∼= AF , so ∠AQF ∼= ∠AFQ. Therefore,
QF ‖ AC. It follows that the line through F0 parallel to QF is parallel to AC, hence is a
midline of triangle ABC and goes through D0. Hence, the point O, which is the intersection
of the lines through D0, E0, F0, parallel to QD,QE,QF , respectively, must be D0, giving that
H = K−1(O) = A. Clearly, P = AD · CF is a point outside the triangle ABC, not lying on
an extended side of ABC or its anticomplementary triangle, which satisfies the conditions of
the lemma.

The next proposition deals with the general case, and shows that the point P we con-
structed in the lemma lies on a line through the centroid G parallel to BC. In this proposition
and in the rest of the paper, we will use various facts about the center Z of the cevian conic
CP = ABCPQ, which we studied in detail in the papers [8] and [9]. Recall that Z lies on
the nine-point conic NH . We also recall the definition of the affine reflection η from II, p. 27,
which fixes the line GV , with V = PQ · P ′Q′, and moves points parallel to the line PP ′.

Proposition 2.4. Assume that H = A, O = D0, and D3 is the midpoint of AP ′. Then the
circumconic C̃O = ι(l), where l = K−1(AQ) = K−2(BC) is the line through the reflection Ã
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Figure 4: The case H = A, O = D0, and midpoint of AP ′ = D3.

of A in O parallel to the side BC. The points O, O′, P , P ′ are collinear, with d(O,P ′) =
3d(O,P ), and the map M taking C̃O to the inconic I is a translation. In this situation, the
point P is one of the two points in the intersection lG ∩ C̃O, where lG is the line through the
centroid G which is parallel to BC.

Proof. (See Figure 4.) Since the midpoint R′1 of segment AP ′ is D3, lying on BC, P ′ lies on
the line l which is the reflection of K−1(BC) (lying on A) in the line BC. It is easy to see that
this line is l = K−2(BC), and hence Q = K(P ′) lies on K−1(BC). From I, Corollary 2.6 we
know that the points D0, R

′
1 = D3, and K(Q) are collinear. Since K(Q) is the center of the

conic NP ′ (the nine-point conic of quadrilateral ABCP ′; see III, Theorem 2.4), which lies on
D0 and D3, K(Q) is the midpoint of segment D0D3 on BC. Applying the map T−1P ′ gives that
O = T−1P ′ (K(Q)) is the midpoint of T−1P ′ (D3D0) = AT−1P ′ (D0). It follows that T−1P ′ (D0) = Ã
is the reflection of A in O, so that Ã ∈ C̃O. Moreover, K(A) = O, so Ã = K−1(A) lies on
l = K−1(AQ) ‖ BC.

Next we show that C̃O = ι(l), where the image ι(l) of l under the isotomic map is a
circumconic of ABC (see Lemma 3.4 in [10]). It is easy to see that ι(Ã) = Ã, since Ã ∈ AG
and ABÃC is a parallelogram. Therefore, both conics C̃O and ι(l) lie on the four points A,
B, C, Ã. To show they are the same conic, we show they are both tangent to the line l at
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the point Ã. From III, Corollary 3.5 the tangent to C̃O at Ã = T−1P ′ (D0) is parallel to BC,
and must therefore be the line l. To show that l is tangent to ι(l), let L be a point on l∩ ι(l).
Then ι(L) ∈ l ∩ ι(l). If ι(L) 6= L, this would give three distinct points, L, ι(L), and Ã, lying
on the intersection l ∩ ι(l), which is impossible. Hence, ι(L) = L, giving that L lies on AG
and therefore L = Ã. Hence, Ã is the only point on l ∩ ι(l), and l is the tangent line. This
shows that C̃O and ι(l) share four points and the tangent line at Ã, proving that they are
indeed the same conic.

From this we conclude that P = ι(P ′) lies on C̃O. Hence, P is the fourth point of
intersection of the conics C̃O and CP = ABCPQ. From III, Theorem 3.14 we deduce that
P = Z̃ = ROK

−1(Z), where RO is the half-turn about O; and we showed in the proof of that
theorem that Z̃ is a point on the line OP ′. Hence, P , O, P ′ are collinear, and applying the
affine reflection η gives that O′ = η(O) lies on the line PP ′, as well (see III, Theorem 2.4).
Now, Z is the midpoint of HP = AP , since H = K ◦ RO is a homothety with center H = A
and similarity factor 1/2. Since Z lies on GV , where V = PQ · P ′Q′ (II, Prop. 2.3), it is
clear that P and Q are on the opposite side of the line GV from P ′, Q′, and A. The relation
K(Ã) = A means that Ã and also O are on the opposite side of GV from A and O′. Also,
J = K−1(Z) = RO(Z̃) = RO(P ) lies on the line GV and on the conic C̃O. This implies that
O lies between J and P , and applying η shows that O′ lies between J and P ′. Hence, OO′ is
a subsegment of PP ′, whose midpoint is exactly J = K−1(Z), since this is the point on GV
collinear with O and O′. Now the map η preserves distances along lines parallel to PP ′ (see II,
p. 27), so JO′ ∼= JO ∼= OP ∼= O′P ′, implying that OO′ is half the length of PP ′. Furthermore,
segment QQ′ = K(PP ′) is parallel to PP ′ and half as long. Hence, OO′ ∼= QQ′, which implies
that OQQ′O′ is a parallelogram. Consequently, OQ ‖ O′Q′, and III, Theorems 3.4 and 3.9
show that M is a translation. Thus, the circumconic C̃O and the inconic I are congruent in
this situation. This argument implies the distance relation d(O,P ′) = 3d(O,P ).

The relation O′Q′ ‖ OQ implies, finally, that TP (O′Q′) ‖ TP (OQ), or K(Q′)P ‖ A0Q =
AQ, since O′ = T−1P K(Q′) from [7, Theorem 6]; TP (Q′) = P from I, Theorem 3.7; TP (O) =
TP (D0) = A0; and A0 is collinear with A and the fixed point Q of TP by I, Theorem 2.4.
Hence, PG = PQ′ = PK(Q′) is parallel to AQ and BC.

There are many interesting relationships in the diagram of Figure 4. We point out several
of these relationships in the following corollary.

Corollary 2.5. Assume the hypotheses of Proposition 2.4.
a) If Qa is the vertex of the anticevian triangle of Q (with respect to ABC) opposite the

point A, then the corresponding point Pa is the second point of intersection of the line
PG with C̃O.

b) The point A3 = TP (D3) is the midpoint of segment OD and P is the centroid of triangle
ODQ.

c) The ratio
OD

OC
=
√

2 .

Proof. The anticevian triangle of Q with respect to ABC is T−1P ′ (ABC) = QaQbQc (see I,
Cor. 3.11 and III, Section 2). Since D3 is the midpoint of AP ′, this gives that T−1P ′ (D3) = A
is the midpoint of T−1P ′ (AP ′) = QaQ. Therefore, Qa lies on the line AQ = K−1(BC), so
P ′a = K−1(Qa) lies on the line l and is the reflection of P ′ in the point Ã. Thus, the picture
for the point Pa is obtained from the picture for P by performing an affine reflection about
the line AG = AÃ in the direction of the line BC. This shows that Pa also lies on the line
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PG ‖ BC. The conic C̃O only depends on O, so this reflection takes C̃O to itself. This proves
a).

To prove b) we first show that P lies on the line QÃ. Note that the segment K(P ′Ã) = AQ
is half the length of P ′Ã, so P ′Ã ∼= QaQ. Hence, QaQÃP

′ is a parallelogram, so QÃ ∼=
QaP

′. Suppose that QÃ intersects line PP ′ in a point X. From the fact that K(Q) is the
midpoint of D3D0 we know that Q is the midpoint of K−1(D3)A. Also, D3Q

′ lies on the point
λ(A) = λ(H) = Q, by II, Theorem 3.4(b) and III, Theorem 2.7. It follows that K−1(D3),
P = K−1(Q′), P ′ = K−1(Q) are collinear and K−1(D3)QX ∼ P ′ÃX, with similarity ratio
1/2, since K−1(D3)Q has half the length of P ′Ã. Hence d(X,K−1(D3)) = 1

2
d(X,P ′). On

the other hand, d(O,P ) = 1
3
d(O,P ′), whence it follows, since O is halfway between P ′ and

K−1(D3) on line BC, that d(P,K−1(D3)) = 1
2
d(P, P ′). Therefore, X = P and P lies on QÃ.

Now, P = AD3OQ is a parallelogram, since K(AP ′) = OQ, so opposite sides in AD3OQ
are parallel. Hence, TP (P) = DA3A0Q is a parallelogram, whose side A3A0 = TP (D3D0)
lies on the line EF = TP (BC). Applying the dilatation H = KRO (with center H = A) to
the collinear points Q, P , Ã shows that H(Q), Z, and O are collinear. On the other hand,
O = D0, Z, and A0 are collinear by [7], Corollary 5 (since Z = R is the midpoint of AP ), and
A0 lies on AQ by I, Theorem 2.4. This implies that A0 = H(Q) = AQ ·OZ is the midpoint of
segment AQ, and therefore A3 is the midpoint of segment OD. Since P lies on the line PG,
2/3 of the way from the vertex Q of ODQ to the opposite side OD, and lies on the median
QA3, it must be the centroid of ODQ. This proves b).

To prove c), we apply an affine map taking ABC to an equilateral triangle. It is clear
that such a map preserves all the relationships in Figure 4. Thus we may assume ABC is
an equilateral triangle whose sidelengths are 2. By Lemma 2.3 there is a point P for which
AP · BC = D with D0D =

√
2, O = D0, and D3 the midpoint of AP ′. Now Proposition 2.4

implies the result, since the equilateral diagram has to map back to one of the two possible
diagrams (Figure 4) for the original triangle.

By Proposition 2.4 and III, Theorem 2.5 we know that the conic CA lies on the points P1,
P2, P3, P4, where P1 and P2 = (P1)a are the points in the intersection C̃O ∩ lG described in
Corollary 2.5, and P3 = (P1)b, P4 = (P1)c are the anti-isotomcomplements of the points (Q1)b,
(Q1)c, since these points all have the same generalized orthocenter H = A (see Figure 2). It
can be shown that the equation of the conic CA in terms of the barycentric coordinates of the
point P = (x, y, z) is xy + xz + yz = x2 (see [7]). Furthermore, the center of C̄A lies on the
median AG, 6/7-ths of the way from A to D0.

Remarks. 1. The polar of A with respect to the conic C̄A is the line lG through G parallel to
BC. This holds because the quadrangle BCE0F0 is inscribed in C̄A, so its diagonal triangle,
whose vertices are A,G, and BC · l∞, is self-polar. Thus, the polar of A is the line lG.

2. The two points P in the intersection C̄A ∩ lG have tangents which go through A. This
follows from the first remark, since these points lie on the polar a = lG of A with respect to
C̄A. As a result, the points D on BC, for which there is a point P on AD satisfying H = A,
have the property that the ratio of unsigned lengths DD0/D0C ≤

√
2. This follows from the

fact that C̄A is an ellipse: since it is an ellipse for the equilateral triangle, it must be an ellipse
for any triangle. Then the maximal ratio DD0/D0C occurs at the tangents to C̄A from A;
and we showed above that for these two points P , D = AP ·BC satisfies DD0/D0C =

√
2.
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3. The locus of points P for which M is a translation

We can characterize the points P , for which M is a translation, as follows. We will have
occasion to use the fact that M = TP ◦K−1 ◦ TP ′ is symmetric in the points P and P ′, since
TP ◦K−1 ◦ TP ′ = TP ′ ◦K−1 ◦ TP . This follows easily from the fact that the maps TP ◦K−1
and TP ′ ◦K−1 commute with each other (see III, Proposition 3.12 and IV, Lemma 5.2).

Theorem 3.1. Let P and P ′ be ordinary points not on the sides or medians of ABC or
K−1(ABC). Then the map M = TP ◦K−1 ◦ TP ′ is a translation if and only if any one of the
following statements holds.

1. OQQ′O′ is a parallelogram;

2. P is on the circumconic C̃O;

3. O and O′ lie on PP ′;

4. Z lies on QQ′;

5. The signed ratio
GZ

ZV
=

1

3
;

6. U = K−1(Z) = K(V ).

Proof. It is easy to see that M is a translation if and only if OQQ′O′ is a parallelogram, since
M(O) = Q and M(O′) = Q′ and the center of M is the point S = OQ ·GV = OQ · O′Q′ (see
III, Theorem 3.4 and the proof of III, Theorem 3.9). Thus, we will prove that the statements
(2) – (6) are equivalent to (1).

First we prove that (1) ⇒ (4). If OQQ′O′ is a parallelogram, then OQ ‖ O′Q′. By IV,
Propsition 3.10, q = OQ is the tangent to the conic CP = ABCPQ at Q and q′ = O′Q′ is the
tangent to CP at Q′. It follows that q · q′ is on l∞, which is the polar of the center Z of CP .
Therefore, QQ′ lies on Z.

Conversely, assume (4). Then Z ∈ QQ′ implies that q · q′ lies on l∞, so OQ ‖ O′Q′, giving
that S ∈ l∞ and M is a translation. Hence, (4) ⇒ (1). Furthermore, (1) ⇒ (3), as follows.
M is a translation so QM(Q) ∼= OM(O) = OQ, i.e., Q is the midpoint of OM(Q), where
M(Q) = TP ′ ◦K−1 ◦ TP (Q) = TP ′(P ′). But Q is also the midpoint of PV , so triangles PQO
and V QM(Q) are congruent, giving M(Q)V ‖ OP . We know M(Q)V = K−1(PP ′) by II,
Proposition 2.3(f) and IV, Theorem 3.11(7.). Since the line through P parallel to K−1(PP ′)
is PP ′, O lies on PP ′. Hence, η(O) = O′ also lies on PP ′, giving (3).

Now (4) holds if and only if Z is the midpoint of QQ′ (Z lies on GV , the fixed line of
η, and η(Q) = Q′). The point V is the midpoint of segment K−1(PP ′) (II, Proposition 2.3),
so K(V ) is the midpoint of segment PP ′ and K2(V ) is the midpoint of K(PP ′) = QQ′.
Hence, (4) holds if and only if K2(V ) = Z, which holds if and only if K−1(Z) = K(V ). Thus,
(4) ⇐⇒ (6). This allows us to show (4) ⇒ (2), as follows. Since (4) also implies (1) and (3),
we have that OO′ = QQ′ = 1

2
PP ′. Also, K(V ) on GV is the midpoint of PP ′ and OO′. Since

OQ ‖ GV and QP ′ intersects GV at G, it is clear that O and P lie on the same side of line
GV . Hence, O must be the midpoint of PK(V ) (the dilation with center U = K(V ) takes
OO′ to PP ′). Now K(V ) = K−1(Z) ∈ C̃O, since Z ∈ NH = K(C̃O); so P = RO(K−1(Z)) lies
on C̃O, hence (2). Thus (4) ⇒ (2).

We next show that (2) ⇒ (3). Assume that P lies on C̃O. Then P is the fourth point
of intersection of the conics C̃O and CP = ABCPQ. From III, Theorem 3.14 we deduce that
P = Z̃ = RO ◦ K−1(Z). Furthermore, Z̃ lies on OP ′. Hence, P,O, P ′ are collinear, and
applying the affine reflection η gives that O′ lies on the line PP ′, as well.
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Now suppose that (3) holds, so that O lies on PP ′. From II, Corollary 2.2 we know that
TP (P ′) lies on PP ′, so that IV, Theorem 3.11 implies that O = OQ · PP ′ = TP (P ′). Let
H̃ = T−1P (H) = T−1P ′ (Q), as in III, Theorem 2.10. Note that

M(H̃) = TP ◦K−1 ◦ TP ′(H̃) = TP ◦K−1(Q) = TP (P ′) = O.

Hence, M(H̃O) = OQ. Part III, Lemma 3.8 says that O is the midpoint of H̃Q, so M(H̃O) ∼=
H̃O. (Note that H̃ = T−1P ′ (Q) 6= T−1P ′ ◦ K(Q) = O.) The result of III, Theorem 3.4 says
that M is a homothety or translation. A homothety expands or contracts all segments on
lines by the same factor k, so if M were not a translation, the factor k = ±1. But k 6= 1
since M is not the identity map and k 6= −1 since it preserves the orientation of the segment
H̃O on the line OQ. Hence, M must be a translation. This proves (3) ⇒ (1), and therefore
(1)⇒ (4)⇒ (2)⇒ (3)⇒ (1).

Furthermore, (5) ⇐⇒ (6). If U = K−1(Z) = K(V ), then taking signed distances yields

GZ = GK(U) = 1
2
UG = 1

4
GV , which gives that

GZ

ZV
=

1

3
. Conversely, if

GZ

ZV
=

1

3
, then

GZ

GV
=

1

4
, which implies Z = K2(V ), since K2(V ) = K(K(V )) is the unique point X on GV

for which the signed ratio
GX

GV
=

1

4
. Thus, (5) ⇐⇒ (6) ⇐⇒ (4) (from above).

This completes the proof that (1) – (6) are equivalent.
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Figure 5: Locus of M a translation (curve ES in brown) with

Steiner circumellipse (teal) and C̃O (blue).
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Corollary 3.2. Under the hypotheses of Theorem 3.1, if M is a translation:

1. HK−1(Z)PV is a parallelogram;

2. TP (P ) is the midpoint of segment HV ;

3. TP (P ′) = O;

4. The points P ′, O′, U = K−1(Z), O, P are equally spaced on line PP ′;

5. OH is tangent to the conic CP = ABCPQ at H.

Proof. (See Figure 5.) Statements (3) and (4) were proved in the course of proving (3)⇒ (1)
and (4) ⇒ (2) above. With U = K−1(Z) = K(V ), (4) gives that that UO = 1

2
UP , so

UO ∼= K(UP ) = ZQ′. This shows that UO ‖ ZQ′ and OZQ′U is a parallelogram. Thus,
K−1(OZQ′U) = HUPV is also a parallelogram. In particular, QQ′ ‖ PP ′ ‖ HV . Since
M(U) = M ◦ K−1(Z) = Z (by the Generalized Feuerbach Theorem in III) and Z is the
midpoint of segment UV , the translation M maps parallelogram OZQ′U to QVM(Q′)Z, where
M(Q′) = TP ◦K−1◦TP ′(Q′) = TP (P ). As Z is the center of parallelogram HUPV and O is the
midpoint of the side UP , while Q is the midpoint of side PV , it follows that Q′ is the midpoint
of side HU and M(Q′) = TP (P ) = OZ ·HV is the midpoint of HV , proving statement (2).
Finally, let O∗ = PP ′ ·QH. Triangles PO∗Q and UO∗H are similar (UH ‖ PV = PQ) and
PQ = 1

2
UH, so PQ is the midline of triangle UO∗H and PO∗ = UP = 1

2
PP ′. This implies

PO∗

O∗P ′
= −1

3
= − PO

OP ′
, and therefore O∗ is the harmonic conjugate of O with respect to P and

P ′. Thus, O∗ is conjugate to O with respect to the polarity induced by CP . As in the proof
of the theorem, q = OQ is tangent to CP at Q, so Q is also conjugate to O. Thus, the polar
of O is o = QO∗ = QH and since H and Q are on CP (III, Theorem 2.8), this implies that
OH is the tangent to CP at H. This proves (5).

Remark. The statements in Corollary 3.2 are actually all equivalent to the map M being a
translation. For the sake of brevity, we leave this verification to the interested reader.

The set of points P = (x, y, z), for which M is a translation, can be determined using
barycentric coordinates. This is just the set of points for which S ∈ l∞. It can be shown (see
[5, eq. (8.1)]) that homogeneous barycentric coordinates of the point S are

S =
(
x(y + z)2, y(x+ z)2, z(x+ y)2

)
,

where P = (x, y, z). Thus, the locus in question has the projective equation

ES : x(y + z)2 + y(x+ z)2 + z(x+ y)2 = 0.

Setting z = 1−x−y, so that (x, y, z) are absolute barycentric coordinates, the set of ordinary
points for which M is a translation has the affine equation

(3x+ 1)y2 + (3x+ 1)(x− 1)y + x2 − x = 0. (3)

Since the discriminant of this equation, with respect to y, is D = (x−1)(3x+1)(3x2−6x−1),
this curve is birationally equivalent to

Y 2 = (X − 1)(3X + 1)(3X2 − 6X − 1).

Using X =
u− 1

u+ 3
, Y =

8v

(u+ 3)2
, this equation can be written in the form

E ′S : v2 = u(u2 + 6u− 3),
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which is an elliptic curve with j-invariant j = 54000 = 243353 and infinitely many points
defined over real quadratic fields. Thus, we see that there are infinitely many points for
which M is a translation. Note that E ′S is isomorphic to the curve (36A2) in Cremona’s
tables [4] (via the substitution u = x − 2, v = y). Consequently, E ′S has the torsion points
T = {Õ, (0, 0), (1,±2), (−3,±6)} (Õ is the base point) and rank r = 0 over Q. These six
points correspond to the vertices of triangle ABC and the infinite points on its sides; the
latter points are (0, 1,−1), (1, 0,−1), (1,−1, 0).

It is not hard to calculate, using the equation (3) and the equation xy+ xz + yz = x2 for
CA that the intersection ES ∩ CA consists of the points B = (0, 1, 0) and C = (0, 0, 1), with
intersection multiplicity 2 at both points, together with the points

P =

(
1

3
,
1 +
√
2

3
,
1−
√
2

3

)
and Pa =

(
1

3
,
1−
√
2

3
,
1 +
√
2

3

)
, (4)

where P and Pa are the points pictured in Figure 4. (These points are labeled P1 and P2 in
Figure 2.) That these are the correct points follows from the fact that

P −G = P −
(
1

3
,
1

3
,
1

3

)
=

√
2

3
(0, 1, −1),

and therefore PG ‖ BC. The affine coordinates of P on (3) are (x, y) =

(
1

3
,

1 +
√
2

3

)
, which

corresponds to the point P̃ = (u, v) = (3, 6
√

2) on E ′S. The double of the latter point is

[2] P̃ =

(
1

2
,

√
2

4

)
, and [4] P̃ =

(
169

8
, −2483

√
2

32

)
. Using [12, Theorem VII.3.4, p. 193], with

p = 2 over the local field K = Q2(
√

2), the coordinates of the last point show that P̃ is a
point of infinite order on E ′S, and therefore P is a point of infinite order on (3). Hence, there
are infinitely many points on ES which have coordinates in the field Q(

√
2).

It follows from this calculation that the only points, other than the vertices of ABC, in
the intersection ES ∩ L of ES and the locus L = LA ∪ LB ∪ LC of Section 2 are the 6
points obtained by permuting the coordinates of the point P in (4). There are, however, 6
more important points on the curve ES. These are the intersections of ES with the medians of
triangle ABC, which are found by setting two variables equal to each other in the equation
for ES. This yields the following six points on ES, paired with their isotomic conjugates:

P1 = (1, −2 +
√

3, −2 +
√

3), P ′1 = (1, −2−
√

3, −2−
√

3)

P2 = (−2 +
√

3, 1, −2 +
√

3), P ′2 = (−2−
√

3, 1, −2−
√

3)

P3 = (−2 +
√

3, −2 +
√

3, 1), P ′3 = (−2−
√

3, −2−
√

3, 1).

These correspond to the six points

(x, y) =

(
1± 2

3

√
3, ∓

√
3

3

)
,

(
±
√

3

3
, 1∓ 2

3

√
3

)
,

(
±
√

3

3
, ±
√

3

3

)
on (3); and to the six points

(u, v) = (−3± 2
√

3, 0), (3± 2
√

3, 12± 6
√

3), (3± 2
√

3, −12∓ 6
√

3)

on E ′S. Together with the points in T , these points form a torsion group T12 of order 12 defined
over Q(

√
3), with T12 ∼= Z2 ⊕ Z2 ⊕ Z3. The points in T12 are the points which are excluded

in Theorem 3.1 and Corollary 3.2. In particular, there are only two excluded points on each
median, for which M is a translation.
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4. Constructing the elliptic curve

In this section we will use the results of the previous section to give a geometric construction
of the elliptic curve ES. We start with the following lemma.

Lemma 4.1. Assume that P is a point for which the map M is a translation. Then the line
GZ = GV does not intersect the conic CP , which is a hyperbola.

Proof. We will use the characterization of CP as the set of points Y for which P , Y , and
TP (Y ) are collinear (II, Corollary 2.2).

Let Y be a point on GV and Y ′ = PTP (Y ) · GV the projection of YP = TP (Y ) onto
GV from P . The mapping Y → YP is projective, since TP is an affine map, so the mapping
π : Y ∧−Y ′ is a projectivity from GV to itself. We will show that π has no invariant points.
This will imply the lemma, since if Y ∈ CP , then Y lies on PTP (Y ), implying that Y = Y ′.

We will show that the projectivity π has order 3 by showing that π coincides with the
projectivity UZV ∧−ZV U on GV . First, π(U) = Z, because TP (U) = TP (K−1(Z)) = Z is
already onGV . Also, since Z is the midpoint ofQQ′, TP (Z) is the midpoint of TP (QQ′) = QP .
This implies that π(Z) = QP ·GV = V . Now, TP (V ) is the intersection of TP (PQ) = QTP (P )
and TP (P ′Q′) = OP = PP ′ by Corollary 3.2. Hence, π(V ) = PTP (V ) ·GV = PP ′ ·GV = U .

Since π has order 3, it cannot have any invariant points (see [2, p. 43] or [3, p. 35,
Exercises]). Finally, since GV lies on the center Z of CP , but does not intersect CP , the conic
must be a hyperbola. This completes the proof.

Thus, the line GV is an exterior line of CP ([2, p. 72]), so its pole V∞ is an interior point,
which implies that the line GV∞ ‖ PP ′ is a secant for the conic CP , and therefore meets CP in
two points E and F . (These are different points from the similarly named points in Figure 4.)
Hence, as η fixes the line EF and maps the conic CP to itself (II, p. 27), we have η(E) = F
and G on GV is the midpoint of segment EF . But EF = GV∞ is the polar of V with respect
to CP , so V E and V F are tangent to CP at E and F , respectively. We choose notation so
that E is the intersection of GV∞ with the branch of the hyperbola through P ′ and Q′, which
exists since P ′ and Q′ are on the same side of the line GV .

Proposition 4.2. Assume P is a point for which M is a translation. If E ′ and F ′ are the
midpoints of segments EG and GF , then the lines ZE ′ and ZF ′ are the asymptotes of CP .

Proof. (See Figure 6.) We know Z = K(U) is the midpoint of segment UV and the center of
CP . If we rotate the tangents EV and FV by a half-turn about Z, we obtain two lines E ′′U
and F ′′U through U which are also tangent at points E ′′ and F ′′ respectively. In particular,
Z is the midpoint of segments EE ′′, FF ′′, and UV . This implies F ′′V ‖ UF and Z is the
center of the parallelogram V F ′′UF . Now define E ′ to be the midpoint of UF ′′. The line ZE ′

is halfway between F ′′V and UF , hence ZE ′ ‖ F ′′V .
Next we show that EF ′′G′G is a parallelogram, where G′ = RZ(G). Now, Z is the

midpoint of EE ′′ and FF ′′, so EF ′′E ′′F is a parallelogram. Since G is the midpoint of
EF , G′ is the midpoint of E ′′F ′′. This implies F ′′G′ ∼= EG, which proves EF ′′G′G is a
parallelogram. Also, using part (6.) of Theorem 3.1 it is easy to see that G is the midpoint
of UG′ so UG ∼= GG′ ∼= EF ′′ and EF ′′GU is a parallelogram, with center E ′. This verifies
that E ′ is the midpoint of segment EG.

But E ′ on EG = v implies V lies on its polar e′. Also, E ′ is on UF ′′ = f ′′, so F ′′ lies
on e′. Together, this implies e′ = F ′′V , so from the first paragraph of the proof, e′ ‖ ZE ′.
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Figure 6: The parallelogram HV PU and conic CP .

Hence, e′, ZE ′, and l∞ are concurrent. The dual of this statement says that E ′, l∞ · e′, and
Z are collinear. Thus, the infinite point l∞ · e′ lies on ZE ′, which its own polar ! Hence,
l∞ · e′ must lie on the conic and ZE ′ must be an asymptote. Applying the map η shows that
ZF ′ = η(ZE ′) is also an asymptote.

We now consider a fixed configuration of points, as in Figure 6, consisting of the par-
allelogram HUPV , its center Z, the point O which is the midpoint of side UP , the point
G = UV · HO, the midpoints Q,Q′ of opposite sides HU and PV , and the points O′, P ′

which are the affine reflections of the points O,P through the line UV = GZ in the direction
of the line UP , together with the conic C = PQHQ′P ′. By Theorem 3.1 and Corollary 3.2
this configuration arises from a triangle ABC and the point P (not on the sides of ABC or
K−1(ABC)), for which the map M is a translation, and such a configuration certainly exists
because it can be taken to be the image under an affine map of the configuration constructed
in Lemma 2.3 and Proposition 2.4. For this configuration the conclusions of Lemma 4.1 and
Proposition 4.2 hold, so that C is a hyperbola. Our focus now is on finding all triangles
A1B1C1 inscribed in the conic C = CP for which the map MP corresponding to A1B1C1 is a
translation. This will lead us to a synthetic construction of the elliptic curve ES discussed in
Section 3.

Let A1 be any point on the conic C = PQHQ′P ′, and define D0 = K(A1), where K is
the dilation about G with signed ratio −1/2. Further, let C(A1) be the reflection of the conic
C in the point D0. If the conics C(A1) and C intersect in two points B1, C1, then A1B1C1 is
the unique triangle with vertex A1 and centroid G which is inscribed in C. This is because
D0 must be the midpoint of side B1C1 in any such triangle, and lying on C, B1 and C1 must
both lie on C(A1). Since C(A1) is the reflection of C in D0, its asymptotes c = RD0(a) and
d = RD0(b) are parallel to the respective asymptotes a and b of C. It follows that C ∩ C(A1)
can consist of at most two points other than the infinite points on the asymptotes.
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Figure 7: Conics C (brown), K(CP ) (tan), C(A1) (grey), C ′ (light tan), with A1 on the arc E .

Lemma 4.3. The conics C(A1) and C = PQHQ′P ′ intersect in two ordinary points if and
only if A1 does not lie on either of the closed arcs of C between the lines EF = GV∞ and P ′P .

Proof. It suffices to prove the lemma for the configuration pictured in Figures 7 and 8,
since any two configurations for which M is a translation are related by an affine map. In
particular, Corollary 3.2 shows that one configuration can be mapped to any other by an
affine map taking the parallelogram HUPV for the one configuration to the corresponding
parallelogram for the other.

Let c = RD0(a) and d = RD0(b) be the asymptotes of C(A1), where a = ZF ′ and b = ZE ′

are the asymptotes of C. When A1 = E, then D0 = K(E) = F ′ lying on a = ZF ′, so the
lines a, c coincide. Then C and C(A1) have the common tangent a = c, so they intersect with
multiplicity at least 2 at a · l∞. They also intersect with multiplicity 1 at b · l∞, since they
have different tangents at that point (D0 = F ′ is on a but not b, so b 6= d). Hence, they can
have at most one ordinary point in common. However, reflecting in D0 (lying on a = c and
therefore in the exterior of C), any ordinary intersection of C and C(A1) would yield a second
intersection, so the two conics can’t have any ordinary points in common. On the other hand,
if A1 = P ′ on arc EP ′, then D0 = K(P ′) = Q lies on C ∩ C(A1) and also on the tangent OQ
to C, so that C and C(A1) touch at D0 = Q. Thus, they don’t intersect in any other ordinary
point.

We also claim that there are no ordinary points on C ∩C(A1) when A1 lies between E and
P ′ on the open arc E = EP ′. In this case D0 = K(A1) lies on the open arc of the conic K(C)
between F ′ and Q. For any A1 on the left branch of C, let A′1 be the reflection of the point
A1 in D0. Using D0 = K(A1) it is easy to see that A′1 = K−1(A1), so the tangent ` to C at
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Figure 8: Conics C (brown), K(CP ) (tan), C(A1) (grey), with A1 above E.

A1 is mapped to a parallel tangent `′ = K−1(`) to C ′ = K−1(C) at A′1. On the other hand, `
is mapped by reflection in D0 to a line through A′1 parallel to `, so it must also be mapped to
`′. Therefore, `′ is tangent to both conics C ′ and C(A1) = RD0(C) at A′1. Hence, these conics
intersect with multiplicity 2 at A′1, and since their asymptotes are parallel, this is the only
ordinary point where they can intersect. This holds for any point A1 on the left branch of
C, and therefore the right branch of the conic C ′ is an envelope for the right branches of the
conics C(A1). For all A1 on the left branch of C, D0 lies below the asymptote K(b) of K(C),
which is parallel to and lies halfway between b and the asymptote b′ = K−1(b) = UF of C ′;
hence, the asymptote d of C(A1) lies below b′, implying that the right branch of C(A1) lies in
the interior of the right branch of C ′. Since C ′ intersects C at K−1(Q′) = P and K−1(Q) = P ′,
it crosses C at P , and points on C ′ to the right of P lie in the interior of C. For A1 = E, the
right branches of C and C(A1) are also asymptotic in the direction of line c = a. Therefore,
as A1 ∈ E moves from E to P ′, the right branch of C(A1) moves to the right, separated from
the right branch of C by the asymptote c and the conic C ′ and remaining in the interior of C.
It follows that the right branch of C(A1) contains no ordinary points of C for A1 ∈ E . Since
D0 is in the exterior of C for these points A1, any intersection of the left branch of C(A1) and
the left branch of C would reflect through D0 to an intersection of the right branches. The
left branch of C(A1) also does not intersect the right branch of C since it is the reflection of
that branch in D0. This proves the claim.

Now assume A1 lies outside the closed arc E on the left branch of C. First, if A1 lies above
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the point E, then D0 lies below the point F ′ on K(C), and since c lies on the same side of
the line a as D0, c lies to the left of the line a in Figure 8. Since c lies on a · l∞ and is not the
tangent a at that point, it must intersect the conic C in a second, ordinary, point. It cannot
intersect the right branch of C because that branch is on the other side of the line a. Hence, c
intersects the left branch of C, whence it follows that the left branch of C(A1) intersects C as
well (because this branch of C(A1) is asymptotic to an exterior ray of line d in one direction
and to c in the other direction). At the same time, this shows that the asymptote a of C
intersects the right branch of C(A1), so the right branch of C intersects the latter. It is easy
to see that these two intersection points are reflections of each other in the point D0.

On the other hand, if A1 lies below the point P ′ on the left branch of C, then D0 lies
above Q on K(C). Since Q ∈ C ∩K(C), points to the right of Q on K(C) are in the interior
of C, so the reflection Q0 of the point Q in D0 lies on the left branch of C(A1) in the interior
of C. It follows that the left branch of C(A1) must intersect the right branch of C in two
points. The same arguments apply to points A1 on the right branch of C, and this completes
the proof.

Lemma 4.4. The points A1 = Q,Q′ are the only points on C = PQHQ′P ′ for which A1 lies
on C(A1).

Proof. Certainly Q′ ∈ C(Q′) because D0 = K(Q′) is the midpoint of segment Q′P , so
Q′ = RD0(P ) lies on C(Q′), the reflection of C in D0. The same argument holds for Q. If
A1 is any point lying on C(A1), then A1 and its reflection A′1 in D0 = K(A1) both lie on
the conic C and are collinear with the point G. Since A′1 = K−1(A1), the locus of points A′1
coincides with the conic C ′ = K−1(C), whose asymptotes are parallel to the asymptotes of C.
Hence, C ′ intersects C in only the two points P = K−1(Q′) and P ′ = K−1(Q) . This proves
the lemma.

We now fix a parallelogram H1U1P1V1 with center Z1, distinguished point G1 = U1V1 ·
H1O1, and its corresponding conic C = P1Q1H1Q

′
1P
′
1, as in Figure 6. We will call this

configuration the P1 configuration, and consider it fixed for the following discussion.
Let ABC be a given triangle. For any point P , not on a median of ABC, for which

the map M, defined relative to ABC and P , is a translation, there is an affine map A−1

taking the parallelogram HUPV for ABC to the parallelogram H1U1P1V1. (We avoid points
on the medians of ABC, because for these points, the conic CP = ABCPQ = AP ∪ BC
and parallelogram HUPV are degenerate.) Since ABC is inscribed in the cevian conic CP =
ABCPQ = PQHQ′P ′ for P , and the points P ′, Q,Q′ are defined by simple affine relationships
in terms of the parallelogram HUPV , the image triangle A−1(ABC) = A1B1C1 under the map
A−1 is a triangle inscribed in the conic C = P1Q1H1Q

′
1P
′
1. By Theorem 3.1 and Corollary 3.2

all the same relationships hold for the two configurations. Hence, the centroid G maps to
the centroid G1 in the P1 configuration. It follows from Lemma 4.3 and Lemma 4.4 that the
image A1 of the point A must lie in the complement of the union of closed arcs E (from E to
P ′1) and F (from F to P1) on C, and that A1 is also distinct from the points Q1, Q

′
1 (as there

is no triangle A1B1C1 for these two points). Thus,

A1 ∈ A = C − (E ∪F ∪ {Q1, Q
′
1, A∞, B∞}), (5)

where A∞ = a · l∞ and B∞ = b · l∞ are the infinite points on the asymptotes. The set A is a
union of six open arcs on C.
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Conversely, let A1 ∈ A and let A1B1C1 be the corresponding triangle inscribed in CP1 .
Then the centroid of A1B1C1 is G1, and the cevian conic for A1B1C1 and P1 is A1B1C1P1Q

′
1 =

CP1 , coinciding with the conic C = P1Q1H1Q
′
1P
′
1. Moreover, the point P1 does not lie on a

median of A1B1C1; otherwise one of the vertices of the triangle would be collinear with P1

and G1, implying that this vertex would have to coincide with Q1 or Q′1. This conic has center
Z1, and the pole of G1Z1 is the point V∞ = P1P

′
1 · l∞. Now we use the characterization of

the isotomic conjugate ι(P1) (with respect to A1B1C1) as the unique point different from P1

lying in the intersection CP1 ∩ P1V∞ = C ∩ P1V∞ to deduce that ι(P1) = P ′1 (see II, p. 26).
Theorem 3.1 shows that M1 = MP1 for the triangle A1B1C1 must be a translation. If A is
an affine map taking A1B1C1 to ABC, then Theorem 3.1 shows once again that the map
M = AM1A

−1 is a translation for the point P = A(P1). Hence, P lies on the elliptic curve ES
of Section 3. The argument of the previous paragraph shows that every point P on ES, other
than the 12 points in its torsion group T12, is the image P = A(P1) for some triangle A1B1C1

inscribed in C and an affine map A for which A(A1B1C1) = ABC. This proves the following
theorem.

Theorem 4.5. Fix a parallelogram H1U1P1V1 and the corresponding hyperbola C =
P1Q1H1Q

′
1P
′
1, as in Figure 6. The elliptic curve ES, minus the torsion subgroup T12, cor-

responding to the vertices of ABC, the infinite points on its sides, and the points lying on the
medians of ABC, is the locus of images A(P1), where A1 is a point in the set A ⊂ C (a union
of six open arcs on the hyperbola C), B1 and C1 are the unique points on C for which triangle
A1B1C1 has centroid G1, and A is one of the two affine maps for which A1(A1B1C1) = ABC
or A2(A1C1B1) = ABC.

By virtue of the above discussion, we have taken the situation of Figure 8, where P1 is fixed
and the triangle A1B1C1 varies, and transformed it, via the locus of maps A corresponding to
A1 ∈ A , to the fixed triangle ABC and varying point A(P1) = P lying on the elliptic curve
ES.
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