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Abstract. The paper presents groups of triangles inscribed in a given triangle
ABC that have the same Brocard angle as 4ABC . Some of them are similar
to 4ABC and some are not. The central group consists of the exterior and
interior Pappus triangles of 4ABC . We prove that the Miquel points of Pappus
triangles produce pedal triangles that have the same Brocard angle as 4ABC .
Furthermore, we prove that the locus of all points, that produce pedal triangles
inside 4ABC with the same Brocard angle, is a circle. For Miquel points of
exterior Pappus triangles, we prove that all these points are located on the Brocard
circle.
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1. Brocard points and Brocard angle

It is known that every triangle ABC has two Brocard points M1 and M2 (Henry Brocard,
French mathematician, 1845–1922). These points are isogonal conjugates (Figure 1), i.e., the
lines AM2, BM2 and CM2 are obtained by reflecting the lines AM1, BM1 and CM1 in the
bisectors of ∠A, ∠B, and ∠C, respectively. The Brocard points satisfy

∠M1BA = ∠M1AC = ∠M1CB = ω and ∠M2AB = ∠M2BC = ∠M2CA = ω .

The points M1 and M2 are also called the first Brocard point and the second Brocard point,
respectively. Angle ω is called the Brocard angle of the triangle ABC [2, pp. 99–109] or [7].
It can be found by the formulas

cotω =
AB2 + BC 2 + AC 2

4∆
, (1)
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Figure 1: Two Brocard points M1 and M2 Figure 2: 4DEF is the pedal triangle of M1

where ∆ denotes the area of the triangle, and

cotω = cotA+ cotB + cotC, (2)

cotω =
1 + cosA · cosB · cosC

sinA · sinB · sinC
, (3)

and others.
It is known that ω ≤ 30◦, where equality holds only for equilateral triangles [2, p. 103].

Note, that formula (2) implies that two similar triangles have the same Brocard angle.

2. Properties of Brocard points

There are many interesting properties related to the Brocard points and the Brocard angle.
We present only those related to this paper.

1. The pedal triangles of Brocard points are congruent to each other, and similar to the

triangle ABC (Figure 2). Moreover
FD

AB
=

FE

BC
=

ED

AC
= sinω. Then

∆1

∆
= sin2 ω, where

∆1 denotes the area of pedal triangle FDE (Reminder: for the pedal triangle DEF of
the point M1, the segments DM1, EM1 and FM1 are perpendicular to the sides of
4ABC ).

2. The distance between the two Brocard points is equal to M1M2 = 2R sinω
√

1− 4 sin2 ω,
where R is the circumradius of triangle ABC . The distance d between the incenter O of

the triangle ABC and each of the Brocard points is d = R
√

1− 4 sin2 ω [9]. From these
two formulas follows that in an isosceles triangle M1OM2 ∠M1OM2 = 2ω. Therefore,
for two triangles ABC and A′B′C ′ that have the same Brocard angle, the triangles
M1OM2 and M ′

1O
′M ′

2 are similar with similarity ratio R/R′.

3. There is an interesting property related to an equilateral triangle. Let O be the circum-
center of the equilateral triangle ABC and O be any circle inside the triangle which has
radius d and center O. Then all points M that lie on O have pedal triangles with the
same area and the same Brocard angle (Figure 3).

Really,
∆1

∆
=

R2 − d2

4R2
, where ∆1 is the area of pedal triangle DEF of point M [3, pp. 139–140].

So we obtain

∆1 =
R2 − d2

4R2
· 3
√

3R2

4
=

3
√

3 (R2 − d2)
16

,

i.e., for all points M on O the pedal triangles have the same area.
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Figure 3: 4DEF is the pedal triangle of
point M lying on the circle O with the
center O, the circumcenter of 4ABC

Figure 4: Exterior and interior Pappus triangles

It is known that for any triangle the following equality holds [1, p. 70]:

AM 2 + BM 2 + CM 2 = AO2 + BO2 + CO2 + 3d2.

Therefore, for the equilateral triangle we have AM 2 +BM 2 +CM 2 = 3R2 +3d2. On the other
hand, according to the sines’ law, follows

AM sin∠A = FD , BM = FE sin∠B, CM = DE sin∠C,

and so

sin2 60◦
(
AM 2 + BM 2 + CM 2

)
= EF 2 + ED2 + FD2 =

3

4
(3R2 + 3d2)

and
EF 2 + ED2 + FD2

4∆1

=
9(R2 + d2)

16
· 16

3
√

3 (R2 − d2)
=

√
3 (R2 + d2)

R2 − d2
.

From this formula and from (1) we obtain the following for the pedal triangle DEF of any
point M on O:

cotω =

√
3 (R2 + d2)

R2 − d2
,

i.e., all these pedal triangles have the same Brocard angle.

3. Exterior and interior Pappus triangles

One of the Pappus theorems (Pappus of Alexandria, one of the great Greek mathematicians
of antiquity, about 290 – 350 AD) discusses a triangle ABC where points D, E, F on the sides
BC , AC , AB divide the sides in the same ratio [6, p. 53, problems 448–450].

For any given triangle ABC , let the points D, E, F on the sides BC, AC and AB (see
Figure 4) satisfy the ratio

BF

FA
=

AE

EC
=

CD

DB
= k, 0 ≤ k <∞.
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We denote the points of intersection of BE and AD, of AD and CF and of BE and CF by
D1, F1 and E1 respectively. Let us call triangle DEF the exterior k-related Pappus triangle
of 4ABC . Similarly, let us call triangle D1E1F1 the interior k-related Pappus triangle.

It turns out that Pappus triangles have a number of interesting qualities in relation to
the Brocard angle. We will examine some of them in this article. First, we should mention
that any exterior or interior Pappus triangle of 4ABC has the same Brocard angle as the
triangle ABC . This fact appears as Theorem 476 in the book [3, p. 284], for exterior Pappus
triangles without detailed proof. For interior Pappus triangles this fact is shown in [3, p. 284]
as an exercise. These two qualities of Pappus triangles have a natural extension — they are
also true for the external division of the sides of triangle ABC .

We will present detailed proofs of the statements formulated above.

Theorem 1. For a given triangle ABC , all its exterior and interior k-related Pappus triangles
have the same Brocard angle as 4ABC .

We emphasize that the Brocard angle of the exterior and interior k-related Pappus tri-
angles does not depend on k, i.e., it does not depend on the division ratio of the sides of
4ABC .

Proof a) for exterior k-related Pappus triangles:

Lemma 1.
∆1

∆
=
k2 − k + 1

(k + 1)2
, where ∆1 is the area of the triangle FDE.

Proof. According to Routh’s theorem [4], for a triangle ABC with points D, E, F dividing
the sides in the ratios CD/DB = α, AE/EC = β, BF/FA = γ, we have

∆1

∆
=

1 + αβγ

(1 + α)(1 + β)(1 + γ)
.

Since for the k-related Pappus triangle FDE holds k = α = β = γ, we obtain

∆1

∆
=

1 + k3

(1 + k)3
=
k2 − k + 1

(k + 1)2
,

as stated.

Lemma 2.
EF 2 + FD2 + DE 2

a2 + b2 + c2
=
k2 − k + 1

(k + 1)2
, where BC = a, AC = b, AB = c.

Proof. From the law of cosines for the triangle FAE , one can easily obtain the formula

EF 2 =
c2(1− k) + b2(k2 − k) + a2k

(k + 1)2
.

Similarly, one can obtain the formulas for FD2 and DE 2. These formulas prove the statement
of the lemma.

Corollary 1.
∆1

∆
=

EF 2 + FD2 + DE 2

a2 + b2 + c2
.

This formula is derived from the Lemmas 1 and 2.

Corollary 2.
EF 2 + FD2 + DE 2

4∆1

= cotω.

This statement is derived from (1) and Corollary 1.

So for each k, where 0 ≤ k < ∞, the triangles ABC and FDE have the same Brocard
angle; thus Theorem 1 is proved for exterior k-related Pappus triangles.
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Figure 5: 4KMN is similar to the
Pappus triangle D1F1E1

Figure 6: The case of the external division
of sides of 4ABC

Proof of Theorem 1 b) for interior k-related Pappus triangles:
For this case, we prove the following lemma.

Lemma 3. There exist points K, M , N on the sides AC, BC, AB, respectively, for which
NK ‖ BE, KM ‖ AD and MN ‖ FC (Figure 5).

Proof. The points K, M and N on the sides AC, CB and BA, respectively, satisfy

AK

KC
=

CM

MB
=

BN

NA
=

k

k + 1
.

Then
AC

AK
=

2k + 1

k
. Since

AE

EC
= k,

AC

AE
=

k + 1

k
and so

AE

AK
=

2k + 1

k + 1
=

AB

NA
, i.e., KN ‖ EB .

Similarly, one can obtain that KM ‖ AD and MN ‖ CF .

Corollary 3. From Lemma 3 follows that 4KMN is similar to the interior k-related Pappus
4D1F1E1. Therefore these triangles have the same Brocard angle, which also is the Brocard
angle of 4ABC .

Corollary 4. Since
KN

BE
=
KM

AD
=
MN

CF
=

k + 1

2k + 1
,

the three cevians BE, AD and CF form a triangle that is similar to 4NKM and so it has
the same Brocard angle as the original 4ABC . In particular, the triangle formed by the three
medians of 4ABC , has the same Brocard angle as 4ABC .

This concludes the proof of Theorem 1.

Theorem 2. Let D, E and F be any points on extension of the sides of 4ABC (Figure 6)
such that

AD

BD
=
EB

EC
=
CF

FA
= k ,

where k < 1. Then 4DEF has the same Brocard angle as 4ABC .

Proof. Let denote the points of intersection of straight lines DB, FC, EA with straight lines

FE, ED and FD by A1, B1, C1, respectively. From
AD

AD + AB
= k follows AD =

AB · k
1− k

and

BD =
AB

1− k
. Similarly BE =

BC · k
1− k

and EC =
BC

1− k
.
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By using Menelaus’ theorem for 4EDB that is intersected by a straight line passing through
the points C, A and C1, we obtain

EC

BC
· AB
AD
· DC1

C1E
= 1 .

Then
BC/(1− k)

BC
· AB

AB · k/(1− k)
· DC1

C1E
= 1 , i.e.,

DC1

C1E
= k .

Similarly we obtain that
FA1

A1E
= k and

EB1

B1D
= k. Therefore, 4ABC is the interior k-related

Pappus triangle of 4DEF , and consequently both have the same Brocard angle.

4. Other triangles inscribed in 4ABC with the same Brocard angle

An exterior Pappus triangle is not the only triangle inscribed in 4ABC that has the same
Brocard angle. There are many additional examples for such triangles, three of which will be
shown below:

1. An example of a triangle that is not a Pappus triangle but similar to some exterior
Pappus triangle.

2. An example of a triangle that is not a Pappus triangle itself and not similar to 4ABC ,
but has the same Brocard angle.

3. An example of a triangle that is not a Pappus triangle but is similar to4ABC (dividing
4ABC into four triangles that are similar to 4ABC ).

5. Pappus triangles and pedal triangles of a given triangle ABC

Let 4LPS be a pedal triangle of any point M inside 4ABC . The question arises: Can the
pedal triangle be a Pappus triangle ? The following lemma gives the answer.

Lemma 4. For a given triangle ABC , its only Pappus pedal triangle is the pedal triangle of
the circumcenter of 4ABC .

Proof. It is known [5, pp. 85–86] that AS 2 + CP2 + BL2 = SC 2 + PB2 + LA2 (Figure 7).
Since SC = AC − AS, PB = BC − CP , AL = AB −BL, one can easily obtain that

AC · AS +BC · CP + AB ·BL =
1

2
(AB2 + AC 2 + BC 2).

If the pedal triangle LPS is also a k-related Pappus triangle of 4ABC then

AS

AC
=
CP

BC
=
BL

AB
=

k

k + 1
,

and so
k

k + 1
(AB2 + AC 2 + BC 2) =

1

2
(AB2 + AC 2 + BC 2), hence k = 1,

i.e., L, P and S are the midpoints of the sides of 4ABC and M is its circumcenter.

In the coming sections we show two examples of pedal triangles inscribed in 4ABC that
are not Pappus triangles, but have the same Brocard angle as 4ABC .
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Figure 7: M is the Miquel point of 4ABC Figure 8: G is the symmedian point of4ABC

6. Brocard angle and Miquel point

Let D, E, F be three points on the sides of 4ABC (Figure 7). Then, according to Miquel’s
theorem, the circumcircles of the triangles AFE, BFD and CDE pass through the common
point M called the Miquel point [3, pp. 131–133].

Lemma 5. Let M be the Miquel point of the triangle ABC and LPS be the pedal triangle of
M . Then 4LPS is similar to 4FDE.

Proof. ∠LFM +∠BDM = 180◦ and also ∠PDM +∠BDM = 180◦. Then ∠LFM = ∠PDM =

α, ∠LMF = ∠PMD and ∠LMP = ∠FMD . Since
LM

FM
= sinα =

PM

DM
, the triangle LMP

is similar to 4FMD and
LP

FD
= sinα. Similarly, one can easily check that

LS

FE
= sinα and

PS

DE
= sinα, i.e., the triangles DEF and PSL are similar.

Corollary 5. If 4DEF is an exterior Pappus triangle of 4ABC , then the pedal triangle PSL
of the Miquel point M has the same Brocard angle as 4ABC .

7. Brocard angle and symmedian point

For a given triangle ABC , the symmedian from vertex B is the cevian BK obtained from
median BP by reflection in the angle bisector BT (Figure 8). The three symmedians meet
at one point G called the symmedian point (or Lemoine point or Grebe point) [2, pp. 57–58].

Lemma 6. The pedal triangle FED of the symmedian point G has the same Brocard angle
as 4ABC .

Proof. We prove that 4FED is similar to the triangle formed by medians ma, mb and mc of
4ABC .
It is known that

GE

a
=
GD

b
=
GF

c
= 0.5 tanω,
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where ω is the Brocard angle of 4ABC [2, p. 109]. Then

FD2 = (0.5 tanω)2(b2 + c2 + 2bc cos∠A) = (0.5 tanω)2(2b2 + 2c2 − a2).

Since m2
a = 0.25 (2b2 + 2c2 − a2) [3, p. 68], FD2 = m2

a tan2 ω, i.e., FD = ma tanω.
Similarly we obtain that FE = mb tanω and ED = mc tanω. Therefore 4FED is similar to
the triangle formed by the medians ma, mb and mc, and both have the same Brocard angle
that is equal to the Brocard angle of 4ABC .

8. Brocard angle and dividing a triangle into four similar triangles

Lemma 7. Let BD be the symmedian of 4ABC , DE ‖ BC and DF ‖ AB (Figure 9). Then
each one of the triangles AED, DFC , FBE and EDF is similar to 4ABC and so they have
the same Brocard angle.

Figure 9: Dividing 4ABC into four similar
triangles with the help of the symmedian BD

Figure 10: The quadrilateral AV V CVB is
inscribed in the circle with diameter BV

Proof. Obviously, the triangles AED and DFC are similar to 4ABC . Then
BC

BF
=

AB

AE
.

Since for the symmedian BD holds that
AD

DC
=

AB2

BC 2 [2, p. 58], we obtain

AE 2

BF 2 =
AD

DC
=

AE

DF
, hence

AE

ED
=
ED

DF
.

From this follows that the triangles AED and EDF are similar, and then all the triangles
AED , DFC , FBE , and EDF are similar to 4ABC .

9. Locus of Miquel points of exterior Pappus triangles

We have already proved that if M is the Miquel point created from the exterior k-related
Pappus triangle DEF , then the pedal triangle of M is similar to the Pappus triangle DEF ; so
it has the same Brocard angle. When k changes from 0 to ∞, all Miquel points appropriated
to Pappus triangles are created. What is the locus of these points ? To answer this question
we will prove first the following theorem.

Theorem 3. Let P be some point in 4ABC and let APBPCP be the pedal triangle of P . Then
the locus of all points V , whose pedal triangles have the same Brocard angle as 4APBPCP ,
is a circle.
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Proof. We denote the Brocard angle of 4APBPCP by ω. According to Eq. (1),

cotω =
APBP

2 +BPCP
2 + APCP

2

4∆
,

where ∆ is the area of 4APBPCP . We consider 4ABC in some Cartesian coordinate system
and denote the respective coordinates of the vertices A, B and C by (xA, yA), (xB, yB) and
(xC , yC). Let point V = (x, y) belong to the locus (Figure 10). Since the quadrilateral
AV V CVB is inscribed in the circle with diameter BV , we have

AVC
2
V = BV 2 sin2∠B =

[
(x− xB)2 + (y − yB)2

]
sin2∠B.

Similarly, we obtain

BVC
2
V = AV 2 sin2∠A =

[
(x− xA)2 + (y − yA)2

]
sin2∠A

and
BVA

2
V = CV 2 sin2∠C =

[
(x− xC)2 + (y − yC)2

]
sin2∠C.

So we can conclude that

AVB
2
V +BVC

2
V + AVC

2
V = Mx2 +My2 +Nx+ Py +Q,

where M , N , P , and Q are constants for 4ABC .
The area ∆ of the pedal triangle AVBVCV of the point V can be calculated by the formula

∆ =
R2 − d2

4R2
·∆ABC , where ∆ABC is the area of triangle ABC , R is its circumradius, and d is

the distance between V and the circumcenter O of the triangle ABC . Then

4∆ = 1− ∆ABC

R2

[
(xO − x)2 + (yO − y)2

]
= Fx2 + Fy2 + Ex+Hy + J,

where F , E, H, and J are constants. So

cotω =
Mx2 +My2 +Nx+ Py +Q

Fx2 + Fy2 + Ex+Hy + J
.

Since cotω is constant, one can easily conclude, that the locus of the point V = (x, y) is a
circle.

Remark. It is easy to see that property 3 of the Brocard points mentioned above and related
to an equilateral triangle, is a corollary of Theorem 3.

If O is the circumcenter of 4ABC and G is the symmedian point, then the circle with
diameter OG is called the Brocard circle. It is known that the Brocard circle passes through
the two Brocard points of 4ABC , which are symmetric with respect to OG. The diameter
OG can be calculated by the formula

OG =
R
√

1− 4 sin2 ω

cos2 ω
,

where R is the circumradius and ω is the Brocard angle of 4ABC [8].

Theorem 4. For any given triangle ABC , all Miquel points of exterior Pappus triangles of
4ABC are located on the Brocard circle of 4ABC .
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Proof. According to Theorem 3, all Miquel points are on a circle because they all have the
same Brocard angle as 4ABC . In addition, the pedal triangles of the circumcenter O, of the
symmedian point G and of the two Brocard points of 4ABC have the same Brocard angle
as 4ABC . Then from Theorem 3 we conclude that all Miquel points, O, G, and the two
Brocard points are located on the same circle, which is the Brocard circle of 4ABC .

Corollary. The triangle inscribed in 4ABC , that has the same Brocard angle as 4ABC and
has minimal area, is a pedal triangle of the symmedian point G.

Indeed, on the Brocard circle of 4ABC , point G is most distant from O. Since

∆ =
R2 − d2

4R2
·∆ABC ,

the minimal area ∆ of the pedal triangles of the points on the Brocard circle is reached for
the maximal value of d, i.e., for the pedal triangle of point G. In this case

d2 = OG2 =
R2(1− 4 sin2 ω)

cos4 ω
and so ∆min =

3

4
tan2 ω ·∆ABC .
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