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Abstract. The main aim of this paper is to show an application of dual quater-
nions related to a rational spline motion. The interpolation by rational spline
motions is an important part of technical practice, e.g., in robotics. Therefore, we
will focus on most simple examples of piecewise rational motions with first and
second order geometric continuity, in particular, a cubic G2 Hermite interpolation.
Consequently, it is shown that the new approach to rational spline motion design
based on dual quaternions is an elegant mathematical method.
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1. Introduction

In computer graphics and animation, the rotational and translational motions have several
important applications. In this paper we discuss the following interpolating problem: For
given poses of a moving object in the three-dimensional space a continuous motion inter-
polating these positions shall be found. The solution of this problem is required, e.g., in
robotics for the path planning. Techniques for solving this problem often deal separately
with the translational and rotational components, i.e., with positions and orientations. As an
innovation, we try to combine these two parts in one step.

Recently used algorithms solving this interpolation problem were based, e.g., on Euler
angles, but then the trajectory of the moving object is a non-rational curve. Another approach
is to interpolate rotations using normalized quaternion curves (see [11] or [9]). Hermite
interpolation is often used to introduce an effective method for a smooth interpolation of
given orientations of a rigid body motion. In this respect we can also refer, e.g., to [4] and
[7].

This paper introduces dual quaternions as a tool for representing three-dimensional trans-
formations of a rigid body. Such a transformation can uniquely be specified by a continuous
path qd(t). Dual quaternions were invented to represent rigid transformations. Therefore,
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dual quaternions prove to be a very useful tool in computer graphics. Recently, the problem
of a rational spline motion has been solved by Hermite interpolation based on quaternions
(see [4]). This approach seems to be very interesting and efficient, and therefore we modify
it by dual quaternions because of their unifying properties.

The remainder of the paper is organized as follows: Section 2 recalls some basic notions
and facts about the rational spline motions based on quaternions. We introduce the definition
of dual numbers and dual quaternions. Subsequently, the new approach using dual quaternion
is introduced. The following part is devoted to a practical application of dual quaternions,
i.e., to G2 Hermite interpolation. Finally, we conclude the paper.

2. Preliminaries

In this section we present a brief tutorial on rational spline motions and dual quaternions.
Dual quaternions can be considered as standard quaternions whose elements are dual numbers.
This structure is mainly convenient for describing rigid motions, which are compositions of
rotations and translations (see [10] or [6]). For a detailed description of dual quaternions we
refer the reader, e.g., to [3]. This section provides a brief introduction to the theory of dual
numbers and dual quaternions. First, we quickly review the basics of this algebra. More
details can be found in [1], [2] or [12].

2.1. Rational spline motions

Rational spline motions are defined by the property that the trajectories of the points of the
moving object are rational spline curves. A rigid body motion is described by the trajectory
c(t) = (c1(t), c2(t), c3(t)) of the origin of the moving system and by the 3× 3 rotation matrix
R. The trajectory of any other point P with position vector p in the moving system is then
described by

p̂(t) = c(t) +R(t)p. (1)

It is possible to use quaternions to describe rational spline motions. Then the rotation matrix
R needs to be expressed with quaternion terms as

R =
1

‖Q‖




q21 + q20 − q22 − q23 2q0q2 − 2q0q3 2q1q3 + 2q0q2
2q0q3 + 2q1q2 q20 − q21 + q22 − q23 −2q0q1 + 2q2q3
−2q0q2 + 2q1q3 2q0q1 + 2q2q3 q20 − q21 − q22 + q23


 , (2)

where Q = (q0, q1, q2, q3) is a point of R4. The trajectory of the point can be expressed as a
quaternion curve (see, e.g., [8] for more details).

Rational spline motions are obtained by rational spline functions qi(t) and ci(t) for i =
0, . . . 4 , where the qi(t) represent the coordinates of the quaternion and the ci(t) represent the
trajectory of the moving frame’s origin. Rational splines can be classified by the degree of
their trajectories. If quadratic polynomials qi(t) are used then the rational spherical motion
is of degree four or higher (see [5]). In order to obtain a rational spline motion (1) of degree
four or higher, the functions ci(t) should be chosen as

ci(t) =
di(t)

‖Q‖
, i = 1, 2, 3, (3)

where di are polynomials of degree four or higher.
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2.2. Dual numbers and dual quaternions

Dual numbers were invented by Clifford in 1873 (see [1] for more details). They are similar
to complex numbers, because any dual number zd can be written as

zd = a+ εaε, (4)

where a is the non-dual part, aε the dual part and ε is a basis element called dual unit. The
defining condition for the dual unit is ε2 = 0. The dual conjugate is analogous to the complex
conjugate, i.e.,

zd = a− εaε. (5)

The multiplication of two dual numbers is given as

zdẑd = aâ + ε(aâε + aεâ). (6)

Finally, note that pure dual numbers, i.e., dual numbers with a = 0, do not have an inverse.
This is a fundamental difference to complex numbers because every non-zero complex number
has an inverse.

A dual quaternion Qd can be written as the sum of two standard quaternions

Qd = Q+ εQε, (7)

where
Q = q0 + q1 i+ q2 j + q3 k and Qε = q0ε + q1ε i+ q2ε j + q3ε k, (8)

are real quaternions and 1, i, j,k are the usual quaternion units. The dual unit ε commutes
with the quaternion units, for example i ε = εi. A dual quaternion can also be considered as
an 8-tuple of real numbers, or as

Qd = q0d + q1d i+ q2d j + q3d k

= (q0 + εq0ε) + (q1 + εq1ε)i+ (q2 + εq2ε)j+ (q3 + εq3ε)k, (9)

where q0d is the scalar part (a dual number) and (q1d, q2d, q3d) is the vector part (a dual vector)

(see [12]). The product of two dual quaternions Qd and Q̂d is defined as

QdQ̂d = Q̂Q+ ε(QQ̂ε +QεQ̂). (10)

The multiplication of dual quaternions is associative, distributive, but not commutative. The
conjugation of a dual quaternion is defined using the classical quaternion conjugation

Qd
∗ = Q∗ + εQ∗

ε, (11)

where Q∗ denotes the conjugate quaternion. However, the dual number conjugation (5) can
be applied to dual quaternion conjugation and we get the dual conjugate dual quaternion

Q∗

d = Q∗ − εQ∗

ε. (12)

The norm of a dual quaternion is a dual scalar and defined as

‖Qd‖ =
√
Q∗

dQd. (13)
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A dual quaternion is called a unit dual quaternion if ‖Qd‖ = 1. Note that a dual quaternion
Qd is unit if and only if

‖Q‖ = 1 ∧ Q · Qε = 0, (14)

where · denotes the standard dot product. If we have a vector pT = (p1, p2, p3) ∈ R
3, we

define the associated unit dual quaternion as

Pd = 1 + ε(p1 i+ p2 j+ p3 k), (15)

which satisfies the previous statement.

A new method to represent rigid transformations is based on using dual quaternions. Dual
quaternions capture in their inner structure the basic information about this transformations
— namely, the axis of rotation, the rotation angle about the axis and the translation along it.
A composition of these transformations corresponds to the multiplication of dual quaternions.

Suppose that pT = (p1, p2, p3) is the position vector of a point P , tT = (t1, t2, t3) is a
translation vector and Q the unit quaternion representing a rotation. Then we can express
the image of the point P after this translation and rotation as

P̂d = QdPd Q∗

d, (16)

where Qd is the unit dual quaternion

Qd = Q+ ε
T Q

2
with T = t1 i+ t2 j + t3 k. (17)

To sum up, unit dual quaternions naturally represent rotations when the dual part Qε = 0.

3. Hermite interpolation by rational G2 motions

This part of the paper is devoted to the cubic G2 Hermite interpolation. The cubic geometric
interpolation is chosen to show the advantages of various applications of dual quaternions
considering their properties. Notice, that the main emphasis is laid on the Hermite interpo-
lation by rational Bézier curves in space. Further, the method based on quaternions studied
in [4] will be extended using dual quaternions. It is easily shown that they are excellent tools
to describe the G2 rational spline motions.

3.1. Cubic G2 Hermite interpolation using quaternions

Assume that a curve is determined by two points, i.e., P0 and P1, and two associated velocities,
i.e., U0 and U1. The objective is to find a cubic Bézier curve r(t) which interpolates the given
data as

r(0) = P0, r′(0) = U0, (18)

r(1) = P1, r′(1) = U1. (19)

The sought curve can be represented as a cubic Bézier curve (see Figure 1)

r(t) =

3∑

i=0

RiB
3
i (t), (20)
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R1

R3 = P1R2

R0 = P0

U1

U0

Figure 1: Illustrative figure — Hermite interpolation using a cubic.

where R0, R1, R2, R3 are the control points which satisfy R0 = P0, R1 = P0+
U0

3
, R2 = P1−

U1

3
,

and R3 = P1, while B3
i (t) are the Bernstein polynomials of degree 3, i.e.,

B3
i (t) =

(
3

i

)
ti(1− t)3−i. (21)

A cubic Bézier quaternion curve can be used to define a Hermite quaternion curve which
interpolates two end unit quaternions. Let Qi be the unit quaternion, Ui = Q

(1)
i the velocity

quaternion and Vi = Q
(2)
i the acceleration quaternion at orientation Qi for i = 0, 1. Then the

cubic quaternion interpolation curve q : [0, 1] → H can be found as

q(t) =

3∑

j=0

BjB
3
j (t), (22)

where Bj are unknown control quaternions and B3
j (t) are the Bernstein polynomials of degree

3.
The quaternion curve is G2 continuous if the following conditions are satisfied:

q(j) = λjQj , (23)

q′(j) = λ
(1)
j Qj + λjφ

(1)
j Uj, (24)

q′′(j) = λ
(2)
j Qj + 2λ

(1)
j φ

(1)
j Uj + λjφ

(2)
j Uj + λj(φ

(1)
j )2U

(2)
j , (25)

λ0 = λ1 = 1, (26)

where j = 0, 1. The parameters λj and φj for j = 0, 1 correspond to the function λ and the

reparametrization φ, respectively. Their n-th derivatives, where n = 1, 2 , are denoted by λ
(n)
j

and φ
(n)
j . Moreover, the following conditions have to be satisfied:

φ
(1)
0 > 0 and φ

(1)
1 > 0, (27)

for guaranteeing that the reparametrization φ is regular. To obtain the following equations,
we have to use some basic properties of the Bézier curves mentioned at the beginning of this
section:

B0 = Q0, B3 = Q1, (28)

3∆B2i = λ
(1)
i Qi + φ

(1)
i Ui, i = 0, 1, (29)

6∆2Bi = λ
(2)
i Qi + (2λ

(1)
i φ

(1)
i + φ

(2)
i )Ui + (φ

(2)
i )2Vi, i = 0, 1. (30)
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The previous set of equations forms a system of 24 nonlinear equations for the unknown
control quaternions Bj for j = 0, 1, 2, 3 and unknown scalar parameters φ

(1)
i , φ

(2)
i , λ

(1)
i , λ

(2)
i

for i = 0, 1. The unknowns φ
(1)
0 , φ

(2)
0 have to be positive (see equation (27)). The set of 22

equations can be reduced to a system of 8 nonlinear equations (see [4])
(
2(−1)i

3
λ
(1)
i +

1

6
λ
(2)
i + 1

)
Qi +

(
(−1)i

3
λ
(1)
1−i − 1

)
Q1−i +

1

6
(φ

(1)
i )2Vi

+

(
2(−1)i

3
φ
(1)
i +

1

3
λ
(1)
i φ

(1)
i +

1

6
φ
(2)
i

)
Ui +

(−1)i

3
φ
(1)
1−iU1−i = 0 , (31)

where i = 0, 1. Let us denote

Di,j =
|A

(j)
i (U1−i)|

|Ai|
, for j = 1, . . . , 4, and i = 0, 1, (32)

where |Ai| denotes the determinant of the matrix Ai = (Qi,Q1−i,Ui,Vi) which is composed
from quaternions, and A(j) denotes the matrix A with the i-th column replaced by the
quaternion U1−i. Then we can mention that Q0,Q1,U0,U1,V0 and V1 are given quaternions
such that A0 and A1 are nonsingular and D0,4 < 0, D1,4 > 0. Then there exists a unique
cubic interpolating quaternion curve q(t) defined by equations (22), (28), (29) and (30) where

φ
(1)
i = 2(−1)i 3

√
D2

i,4D1−i,4, λ
(1)
i = −1(1−i)(3 + 2D1−i,2

3

√
D2

i,4D1−i,4) (33)

for i = 0, 1 (see [4] for more details).
This approach solves only the rotational part, but the construction of the rational spline

motion is the combination of rotations and translations (see equation (1)). Therefore, the
curve needs to be translated to get the final view of the motion (see Section 2.1 for more
details).

3.2. Improved method using dual quaternions

Dual quaternions will be used in this section in a similar way as for G2 Hermite interpolation
due to their amazing properties. All their advantages and suitability were introduced in
previous part. Therefore we will focus now on their application.

We can modify equations (22) according to the dual quaternion description (16). Then
we get the following dual quaternion curve

qd(t) = Qd0B
3
0(t) +Qd1B

3
1(t) +Qd2B

3
2(t) +Qd3B

3
3(t), (34)

where Qd0 , Qd1 , Qd2 , Qd3 are unit dual quaternions and B3
0 , B

3
1 , B

3
2 , B

3
3 are again Bernstein

polynomials. Of course, the equations (22), (28), (29) and (30) can be also used to find the
rotational part of the dual quaternion.

We solve the following interpolation problem: There are given several poses Pi, i =
0, . . . , m of a rigid body. The pose Pi is composed of the position of the moving frame’s origin
(c1i, c2i, c3i) and by the associated rotation matrix. The rotations can be represented by the
unit quaternions Qi . Since we usually have a non-unit quaternion describing the rotations,
this quaternion has to be normalized, i.e.,

Qi = ∓
Q̂i

‖Q̂i‖
, (35)
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where Q̂i is an arbitrary quaternion which is not unit, in general. The appropriate sign in
equation (35) is chosen to satisfy

Qi · Qi+1 > 0, i = 0, . . . , m, (36)

which provides that both quaternions lie on the same hemisphere. The translation can be
described by a pure quaternion. We use equation (17)

Ti = c1i i + c2i j+ c3i k. (37)

Algorithm 1 Rational spline motion with continuity G2 using dual quaternion

Input: The rotation motion defined by the quaternion curve q̂(t) and the trajectory c(t) of
the center, where ti = i for i = 0, . . . , m.

1: Normalize the rotational quaternions by equation (35) to get Qi.

2: Compute the velocity Ui as Ui = Q
(1)
i .

3: Compute the quaternion Vi as Vi = Q
(2)
i .

4: Compute the translation quaternion Ti using (37).
5: Determine the dual quaternion curve using (34).

Output: Dual quaternion curves qdi describing a rational spline motion.

Due to the dual quaternion description (16) we can combine both quaternions and we get
the unit dual quaternion

Qdi = Qi + ε
TiQi

2
, (38)

that will be used in equations (34), and so we get two dual quaternion curves containing the
translation and the rotational part. The interpolating algorithm based on the dual quaternion
curve can be computed in the following steps (see Algorithm 1). For an example and figures
please see [4], Section 8, especially Figures 2–4 and Table 1.

4. Conclusion

This paper is focused on one particular example of practical applications of dual quaternions.
Since the algebra of this structure is very popular and frequently used in various mathematical
fields nowadays, we try to show some of their applications. As we know, in computer graph-
ics, animation and robotics the rotational and translational motions have several important
applications. Therefore a simple algorithm for the interpolation by the rational spline motion
based on dual quaternions is presented in this paper. The construction of the algorithm was
motivated by [4] where a G2 Hermite interpolation based on quaternions was investigated. We
have modified an algorithm for rational spline motion using the dual quaternions approach.
The rational spline motions are composed of a rotational and a translational part, i.e., this
motion can be easily described by dual quaternions. The main advantage of this approach is
that the dual quaternions allow us to use these two transformations in only one operation,
which simplifies the original method.
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