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Abstract. The article describes eleven “new” unique geometric properties of an
equilateral triangle, which are apparently not recognized to the most how engaged
Euclidean Geometry. Mathematical proofs were given to all of the properties,
using various mathematical tools. Other research directions were proposed that
allow for additional properties discovery.
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1. Introduction

The equilateral triangle is the most elaborate triangle among other triangles, since all three
angles are of 60◦ and the lengths of the all sides are equal. The equilateral triangle appears
to be quite simple when compared to other types of triangles: scalene triangles, isosceles
triangles, right-angled triangles, acute-angled triangles and obtuse-angled triangles. It turns
out this is not the case. Basic properties of an equilateral triangle are well known, such as:

• All the angle bisectors, the medians, the altitudes and the perpendicular bisectors of
the triangle intersect at a single point.

• This point of intersection is both the center of the circle circumscribing the triangle and
the center of the circle inscribed in the triangle. It is also the center of gravity of the
triangle, and the Fermat point of the triangle.
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• The three medians of the triangle divide it into six congruent triangles (this property
also holds for the other lines: angle bisectors, altitudes etc.). It is important to note
that in an arbitrary triangle we would obtain six triangles of equal area, which in general
are not congruent.

These properties appear in the textbooks of Euclidean geometry. New unique properties are
surprising and appear in few resources [1, 2, 3, 5]. Therefore we believe that our “new”
properties that appear in the article are original at least to us.

The properties were discovered by presenting ideas and testing their correctness by com-
bining different mathematical tools and using known theorems.

The more one considers the equilateral triangle and thinks multi-directionally, the more
one can find additional properties and relations. The process of investigation and discovery
contributes to know hidden properties in the equilateral triangle and to see the beauty of
mathematics.

2. Eleven Properties

Property 1. Given is an equilateral triangle 4ABC. If D is a point on BC (see Figure 1)
then there holds

AD > BD,DC and AD < AB.

Figure 1: Inequality between triangle sides Figure 2: Building a triangle with 120◦ angle

Proof. ∠ADB > ∠C, therefore ∠ADB > ∠B = 60◦. Hence AB > AD, since in the triangle
4ABD the larger side lies opposite the larger angle.
Each of the angles, ∠BAD and ∠DAC , is smaller than 60◦. Therefore in the triangle 4ABC
we have BD < AD since ∠B > ∠BAD and in the triangle 4ADC we have DC < AD since
∠C > ∠DAC .

Property 2. Given an equilateral triangle 4ABC and some point D on the side BC (see
Figure 2), then from the segments AD, BD and DC one can build a triangle, one of whose
angles is equal to 120◦.

Proof. We draw a line DE parallel to AC with E ∈ AB. It is clear that the triangle 4BED
is equilateral. Therefore BD = DE. The trapezoid DEAC is an isosceles trapezoid, and
therefore DC = EA. Hence it follows that the sides of the triangle 4AED are equal to the
segments AD, BD and CD. In the triangle 4AED we have ∠AED = 120◦ (supplementary
angle to an angle of 60◦). Thus the property has been proven.
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Figure 3: Triangle inequality
of segment lengths

Figure 4: AQ+BN + CP =
3

2
a

Property 3. Given is an equilateral triangle 4ABC. The points D, E and F are located
somewhere on the sides BC, AC and AB, respectively (see Figure 3).
Then the lengths of the segments CF , BE and AD satisfy the triangle inequality, and the
triangle that can be constructed from them is acute-angled.

Proof. It is enough to show, without loss of generality, that AD2 +CF 2 > BE2, since if this
holds, then clearly AD + CF > BE.
We denote by a the side length of the triangle 4ABC and by h the altitude (h =

a

2

√
3).

From Property 1 we have:

a2 > AD2 ≥ h2 =
3a2

4
, a2 > CF 2 ≥ h2 =

3a2

4
, a2 > BE2 ≥ h2 =

3a2

4
.

We plug the sum of the first two inequalities into the third inequality:

AD2 + CF 2 ≥ 2h2 =
3

2
a2 > BE2.

In the same manner we obtain:

AD2 +BE2 > CF 2 and CF 2 +BE2 > AD2.

The proof that the triangle whose sides are the segments BE, CF and AD is acute-angled is
obtained by applying the Law of Cosines:

cosα =
b2 + c2 − a2

2bc
.

When b2 + c2 > a2, we have cosα > 0 and therefore α < 90◦, which also applies to the other
angles of the triangle.

Property 4. Given is an equilateral triangle4ABC. Let M be some point inside the triangle,
from which altitudes are drawn to the sides of the triangle (see Figure 4). We denote by N ,
P and Q the points of intersection of the altitudes with the sides of the triangle. Then there
holds

AQ+BN + CP =
3

2
a ,

in other words, independent of the location of the point M , the sum of these segments equals
half the perimeter of the triangle.
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Figure 5: Proof of Property 4 Figure 6: 2(MN+MP+QM) ≤ AM+BM+CM

Proof. From the Pythagorean Theorem in the triangles 4AQM and 4BQM we have

QM2 = AM2 − AQ2 = BM2 −BQ2 =⇒ AM2 −BM2 = AQ2 −BQ2.

In the same manner, for the other two pairs of triangles, we obtain

BM2 −MC2 = BN2 −NC2 and MC2 − AM2 = PC2 − AP 2.

Summing up the three equations, we obtain

AQ2 +BN2 + PC2 = BQ2 +NC2 + AP 2,

and by expressing the segments BQ, NC and AP using the side a of the triangle, we obtain

3a2 − 2a(AQ+BN + PC) = 0,

or, AQ+BN + PC =
3

2
a , which is half the perimeter of the triangle.

Note: This property is also maintained for points M in the regions AEC, CFB, and BDA,
outside the triangle, because then the verticals still reach all three sides of the triangle (see
Figure 5).

Property 5. Given is an equilateral triangle4ABC. Let M be some point inside the triangle,
from which altitudes are drawn to the sides of the triangle (see Figure 6). We denote by N ,
P and Q the points of intersection of the altitudes with the sides of the triangle. Then

2(MN +MP +MQ) ≤ AM +BM + CM,

and the equality holds when M is the orthocenter of the triangle.

Proof. It is clear that AM +MN ≥ AN ≥ h (h is the altitude of the triangle). In the same
manner, one obtains the relations CM + MQ ≥ h and BM + MP ≥ H. By summing up
these three relations, one obtains

(AM +BM + CM) + (MN +MQ+MP︸ ︷︷ ︸
h

≥ 3h .
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From the known property that the sum of the distances of any point in an equilateral triangle
from the sides of the triangle is a constant value that equals the altitude of the triangle, i.e.,
MN+MQ+MP = h, we obtain that AM+BM+CM ≥ 2h, and therefore AM+BM+CM ≥
2(MN +MP +MQ).

Note: There exists a theorem, which generalize this property to any arbitrary triangle (Erdös,
Mordell and Barrow, 1935 [2]). It must be emphasized that the proof of this theorem for
an arbitrary triangle is very difficult.

Property 6. Given the same data as in Property 5, there holds:
The values of CM ·MQ, BM ·MP and AM ·MN satisfy the triangle inequality.

Proof. At the first stage we prove the following trigonometric claim:

If the angles α, β and γ satisfy α, β, γ < 180◦ and also α + β + γ = 360◦, then the values of
sinα, sin β and sin γ satisfy the triangle inequality.

Proof of the trigonometric claim: If γ1, β1 and α1 are the angles of a triangle whose sides are
a, b and c, respectively, then from the Law of Sines we have

a = 2R sinα1, b = 2R sin β1, c = 2R sin γ1.

Since the lengths a, b and c of the sides satisfy the triangle inequality, then sin γ1, sin β1
and sinα1 also satisfy the triangle inequality. Denoting γ = 180◦ − γ1, β = 180◦ − β1 and
α = 180◦ − α1, there holds

sin γ = sin γ1, sin β = sin β1, sinα = sinα1 and also α + β + γ = 360◦.

Hence, it is also clear that sinα, sin β and sin γ satisfy the triangle inequality.

Proof of Proposition 6: We multiply each of the products CM ·MQ, BM ·MP and AM ·MN
with

a

2
and obtain

AM ·MN · a
2

= AM · MN · a
2

= AM · S4BMC =
AM ·BM · CM

2
· sin∠BMC ,

BM ·MP · a
2

= BM · S4AMC =
AM ·BM · CM

2
· sin∠AMC ,

CM ·MQ · a
2

= CM · S4AMB =
AM ·BM · CM

2
· sin∠AMB .

In each of the last three products there is a common factor multiplied by the sine of an angle.
Since it was proven that sin∠AMB , sin∠AMC and sin∠BMC satisfy the triangle inequality,
it is also clear that the same holds for the products CM ·MQ, BM ·MP and AM ·MN .

Property 7. Given the same data as in Property 5, there holds
AM

QP
=

BM

QN
=

CM

PN
.

In other words, the triangle 4QNP is similar to the triangle that can be constructed from
segments with the lengths AM , BM and CM .

Proof. The quadrilateral AQMP can be inscribed in a circle in which AM is a diameter.
From the Law of Sines in the triangle , we obtain QP = AM · sin 60◦. We continue in the
same manner for the quadrilaterals BQMN and CPMN and get QN = BM · sin 60◦ and
PN = CM · sin 60◦. From the three relations follows

AM

QP
=

BM

QN
=

CM

PN
=

1

sin 60◦
.
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Figure 7: Inequality of areas Figure 8: One angle larger or smaller than 30◦

Property 8. Given the same data as in Property 5, there holds S4QPN ≤
1

4
S4ABC .

Proof. At the first stage we shall prove the following inequality:

(x+ y + z)2 ≥ 3xy + 3yz + 3xz for all x, y, z ∈ R. (1)

For this purpose we first prove that the following inequality always holds:

x2 + y2 + z2 ≥ xy + yz + xz. (2)

The proof relies on summing up the three known inequalities

x2 + y2 ≥ 2xy, y2 + z2 ≥ 2yz, x2 + z2 ≥ 2xz

(because (x− y)2 ≥ 0).

Proof of the inequality (1): We expand (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz.
Substituting the inequality (2), we obtain (x+ y + z)2 ≥ 3xy + 3yz + 3xz.

We denote the distances from the point M to the sides by MN = x, MP = y and QM = z
(see Figure 7). We already mentioned the property that the altitude of the triangle equals
h = x+ y + z, and hence

h2 = (x+ y + z)2 ≥ 3(xy + yz + xz) = 3

(
2S4QMN

sin 120◦
+

2S4MPN

sin 120◦
+

2S4QMP

sin 120◦

)
=

6S4QNP

sin 120◦
=

12√
3
S4QNP or S4QNP ≤

h2
√

3

2
.

It is known that the expression for the area of an equilateral triangle in terms of the altitude

h is S4ABC =
h2

√
3

, hence h2 =
√

3S4ABC , and therefore, by substituting in the obtained

inequality, we have S4QNP ≤
1

4
S4ABC . The maximum of the area of the triangle is obtained

when x = y = z, in other words, the point M is the center of the equilateral triangle.

Property 9. The vertices of an equilateral triangle cannot be the grid points of a Cartesian
system of coordinates. (Grid points are points, both of whose coordinates are integers).
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Proof. An indirect proof shall be given. If the side length of the triangle is a then its area is
a2
√

3

4
. If the points A and B are grid points, then it is clear that a2 is an integer, based on

the Pythagorean Theorem. However, if C is also a grid point, then the area of the triangle is
an integer or half of an integer, due to the formula for calculating the area of a triangle in a
system of coordinates as

S = ±1

2

∣∣∣∣∣∣
xA yA 1
xB yB 1
xC yC 1

∣∣∣∣∣∣ .
Hence, the expression for the area is rational. However, a contradiction is obtained because√

3 is irrational.

Property 10. Given is an equilateral triangle4ABC, and an internal point M in the triangle
which is not the point of intersection of the angle bisectors of the triangle. We denote the
angles formed at the three vertices as shown in Figure 8. Then the following property holds:
At least one of the angles ∠A1, ∠B1 and ∠C1 is smaller than 30◦, and, at least one of the
angles ∠A1, ∠B1 and ∠C1 is larger than 30◦.

Proof. To prove the property, we first prove the following claim, which is the trigonometric
representations of Ceva’s theorem:

sin∠A1 · sin∠B1 · sin∠C1 = sin∠A2 · sin∠B2 · sin∠C2 . (3)

By using the Law of Sines in each of the triangles formed by connecting the point M with
the vertices of the triangle, we obtain

in triangle 4AMB :
AM

MB
=

sin∠B1

sin∠A2
,

in triangle 4BMC :
BM

MC
=

sin∠C1

sin∠B2
,

in triangle 4CMA :
CM

MA
=

sin∠A1

sin∠C2
.

By multiplying these three relations, we obtain

sin∠A1 · sin∠B1 · sin∠C1

sin∠A1 · sin∠B1 · sin∠C1
= 1 .

Thus the claim (3) is proved.

Therefore, if each of the angles ∠A1, ∠B1 and ∠C1 is larger than 30◦, then each of the angles
∠A2, ∠B2 and ∠C2 will be smaller than 30◦, and the relation (3) does not hold. Conversely,
if all of the angles ∠A1, ∠B1 and ∠C1 are smaller than 30◦, then each of the angles ∠A2, ∠B2

and ∠C2 will be larger than 30◦, and again, relation (3) does not hold.

Property 11. Given is an equilateral triangle 4ABC, and some points D, E and F on the
sides BC, AC and AB, respectively. The points and the segments that connect them divide
the triangle into four triangles (see Figure 9). We use the notations π for the product of the
side lengths of the triangle, P for the sum of the side lengths, S for the area, and Σ2 for the
sum of the squares of the side lengths of the triangle. Then the following inequalities hold:

(a) P4DEF ≥ min {P4AFE, P4BDF , P4CED} ,
(b) π4DEF ≥ min {π4AFE, π4BDF , π4CED} ,
(c) Σ2

4DEF ≥ min
{

Σ2
4AFE, Σ2

4BDF , Σ2
4CED

}
,

(d) S4DEF ≥ min {S4AFE, S4BDF , S4CED} .
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Figure 9: Inequalities between areas, peri-
meters, multiples and squared triangle sides

Figure 10: Inequalities between areas, peri-
meters, multiples and squared triangle sides

This implies, for example, that when an equilateral triangle is divided into four trian-
gles, as shown in the figure, the probability that the middle triangle shall have the smallest
perimeter is zero.

As a preparation to the proof of Proposition 11 we provide the following

Lemma. In every triangle 4ABC with ∠A=60◦ (see Figure 10) the following relations hold:

2a2 ≥ b2 + c2, (4)

a2 > bc, (5)

2a ≥ b+ c. (6)

Proof. From the Law of Cosines follows

a2 = b2 + c2 − bc, hence b2 + c2 = a2 + bc ≤ a2 +
b2 + c2

2

(due to the inequality between the geometric average and average of the squares). By trans-
posing terms we obtain the relation (4).

From the inequality between averages, there holds b2 + c2 ≥ 2bc, and therefore from (4) we
obtain (5), a2 ≥ bc.

From (4) follows 4a2 ≥ 2b2 + 2c2 ≥ (b+ c)2, and by taking the square roots we obtain (6).

Proof of Property 11, (a): From (6) one obtains

after adding EF to both sides: 2EF ≥ AF + AE,

after adding DF to both sides: 2DF ≥ BF +BD,

after adding DE to both sides: 2ED ≥ DC + EC.

The sum of the three relations yields

EF +DF +DE = P4DEF ≥
P4AEF + P4BDF + P4DCE

3
.

Thus property (a) has been proved.

Property (b): From (5) in the lemma, one obtains

after multiplying both sides with EF : AF · AE ≤ FE 2,

after multiplying both sides with FD: BF ·BD ≤ FD2,

after multiplying both sides with ED: DC · EC ≤ ED2.
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The product of the three inequalities yields

π3
4DEF ≥ π4AFE · π4CED · π4BDF .

Thus property (b) has been proved.

Property (c): From relation (4) one obtains

2FE2 ≥ AF 2 + AE2, 2FD2 ≥ BF 2 +BD2, 2ED2 ≥ CD2 + CE2.

The sum of the three inequalities gives

2(FE2 + FD2 + ED2) ≥ AF 2 + AE2 +BF 2 +BD2 + CD2 + CE2.

We add Σ2
4DEF = FE2 + FD2 + ED2 to both sides of this inequality and obtain

Σ2
4DEF ≥

Σ2
4AEF + Σ2

4BDF + Σ2
4CED

3
.

Thus we have proved property (c).

Property (d): In every triangle the largest angle is larger than or equal to 60◦. Let us assume
that the angle ∠FDE is the largest in 4DEF . We distinguish two cases:

Case I: 60◦ ≤ ∠FDE ≤ 120◦,
Case II: ∠FDE > 120◦.

Proof for Case I: As product of the three inequalities sin∠FDE ≥ sin 60◦, FD2 ≥ BF ·
BD and ED2 ≥ DC · DE we obtain S2

4DEF ≥ S4BDF · S4CED . Therefore S4DEF ≥
min {S4BDF , S4CED} and further ≥ min {S4AFE, S4BDF , S4CED}.

Figure 11: Proof of Case II, left: subcase a), right: subcase b)

Proof for Case II: Let point M extend the triangle FBD to the parallelogram FBDM . Then
∠BDM = 120◦ < ∠BDE . On the other hand, using the notation given in Figure 11, left, we
have ∠D1 + ∠D2 = ∠F1 + ∠E2.

a) In the case ∠D1 = ∠F1 the side EF passes through M and is parallel to BC. Hence
S4DEF > S4DMF = S4BDF .

b) Without loss of generality, the case ∠D1 6= ∠F1 can be reduced to ∠D1 < ∠F1. Then M
lies in the interior of 4DEF . Therefore again S4DEF > S4DMF = S4BDF , where the latter
is ≥ min {S4AFE, S4BDF , S4CED}.

Remark. Property (d) is valid for all triangles.
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3. Conclusions

In this study, we provided 11 essential properties that must be valid in all equilateral triangles.
It would be interesting to ask which properties are sufficient to characterize equilateral triangle
among all triangles. We found that Properties 2, 4, 6, and 7 are sufficient to characterize
equilateral triangle.

Directions for further investigation of special properties in an equilateral and arbitrary
triangle:

(a) Direction of investigation — adding data (“what if in addition?”)

(b) Direction of investigation — replacing data (“what if instead?”)

(c) Direction of investigation — generalization (“what if not?”)

(d) Direction of investigation — Is the property found in the equilateral triangle also valid
in an arbitrary triangle?

These questions are supported by Brown and Walter [1], who proposed the WIN method
and opened up courses for prospective teacher’s based upon this method. Polya [6] and
Brown & Walter [1] described in a similar way enquiry skills: changing data, reducing data,
adding data, analogy, looking for invariants, and checking extreme cases. The WIN method
includes all the skills mentioned by Polya as well as the essential elements of diagnostics and
creating an attributes list.
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