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Abstract. Rational trigonometry is a purely algebraic approach to trigonome-
try which uses quadrance and spread instead of distance and angle for metrical
measurements. In this paper we introduce a variant called vector trigonometry,
which is useful for planar applied engineering problems where vector quantities
are involved. We derive basic trigonometric laws involving rotor coordinates of
length and half-slope.

Key Words: rational trigonometry, vector trigonometry, rotor coordinates, half-
slope

MSC 2010: 51N20, 70A05, 97G60

1. Introduction

Rational trigonometry, introduced in 2005 in [8], see also [9], is a purely algebraic approach
to trigonometry which uses quadrance and spread instead of distance and angle for metrical
measurements. This approach has now led to a range of new developments in planar Euclidean
geometry [5], [6], chromogeometry [10], [11], and non-Euclidean geometries [12], [13], [14], [15],
[1], and [2].

In this paper we introduce a variant of rational trigonometry called vector trigonometry,

which is useful for planar applied engineering problems where vector quantities are involved.
This is an applications oriented framework which replaces the usual polar coordinates r and
θ of a vector v with rotor coordinates r and h, and we write v = | r, h〉. The quantity r
is the usual length, so this trigonometry does have an approximate aspect, in that approxi-
mate square roots will be needed. The half-slope h may be defined in terms of the rational
parametrization of the unit circle cU with equation x2 + y2 = 1, given by

e(h) ≡
(

1− h2

1 + h2
,

2h

1 + h2

)

≡ (C(h), S(h)) . (1)

We say that h is the half-slope of the vector v = e(h), or any positive multiple of v. It turns
out that h = tan (θ/2); but the actual definition is independent of both angles and circular
functions. Figure 1 shows a vector v and its half-slope h, viewed geometrically.
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Figure 1: Rotor coordinates | r, h〉
for v = (x, y)
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Figure 2: Rational parametrization
of the unit circle

Aspects of this theory will be familiar to readers, coming from stereographic projection and
the projective rational parametrization of a conic, and connecting to the Cayley transform of
linear algebra, and also to well-known trigonometric formulas. The half-slope as the quantity
tan (θ/2) is implicit in the Weierstrass substitution when integrating circular functions, and
has also historically played an important role in kinematics. In fact the kinematic mapping

developed by W. Blaschke and J. Grünwald (1911) maps the point (x, y, z) of Euclidean
3-space onto the rotation in the plane z = 0 with center (x, y) and angle θ such that z =
cot (θ/2) = 1/h (see [4, p. 399ff], [3]). The present paper attempts to frame the corresponding
trigonometry, avoiding transcendental functions, and hence allowing a wider range of practical
examples and computations with vectors, even by hand.

1.1. A quick review of RT

We now give a brief overview of the principal notions of Euclidean rational trigonometry
([8], [9]) and then introduce the corresponding ideas for vector trigonometry. Given a vector
v ≡ (x, y), its quadrance is the number Q(v) ≡ x2 + y2. Length is then regarded as a
secondary concept, namely the square root of the quadrance. Given two vectors v1 ≡ (x1, y1)
and v2 ≡ (x2, y2), the spread between them is the number

s (v1,v2) ≡
(x1y2 − x2y1)

2

(x2
1 + y21) (x

2
2 + y22)

. (2)

The spread s(v1,v2) is the square of the usual sine of an angle between v1 and v2, but
pleasantly requires no prior definitions of angular measure or circular functions. The purely
algebraic aspect means that quadrance and spread are valid concepts over a general field F ,
and in fact they can be framed in more general geometries built from other bilinear forms.

If lines l1 and l2 have direction vectors v1 and v2, then we define s (l1, l2) ≡ s (v1,v2).
Note that this quantity is independent of order or orientation, and of re-scaling; the spread
is really defined between lines, not rays. There are some closely related secondary concepts.
The cross between the two lines is

c (l1, l2) ≡
(x1x2 + y1y2)

2

(x2
1 + y21) (x

2
2 + y22)

= 1− s (l1, l2)

while the twist is

t (l1, l2) ≡
s (l1, l2)

c (l1, l2)
=

(x1y2 − x2y1)
2

(x1x2 + y1y2)
2
.
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Since the twist is always a square, we define also the turn

u (l1, l2) ≡
x1y2 − x2y1
x1x2 + y1y2

which is an oriented quantity; in fact u (l2, l1) = −u (l1, l2). These concepts were introduced
and applied in [8].

In this paper we introduce a directed version of these ideas, allowing us to define a
trigonometry on the (oriented) vectors themselves. This is well-suited for practical engineer-
ing and scientific applications in which direction plays a role. We will develop some basic
trigonometry with this new technology, and see that the associated algebra itself is quite
symmetrical and pleasant.

2. The unit circle and the Cayley transform

Polar coordinates arise from the transcendental parametrization of the unit circle cU with
equation x2 + y2 = 1 given by ϕ(θ) ≡ (cos θ, sin θ). In practice this generates vectors which
are only approximately of unit length. There is a much older, and more exact, rational

parametrization:

e(h) ≡ (C(h), S(h)) (3)

where

C(h) ≡ 1− h2

1 + h2
and S(h) ≡ 2h

1 + h2
(4)

are the capital C and capital S functions respectively.
This implicitly goes back to Euclid’s construction of Pythagorean triples. Geometrically

e(h) is the point where the line l through [−1, 0] and [0, h] meets cU . If h is rational, then l
will have rational coordinates, and since one of its meets with cU is rational, the other will be
also. The converse also holds; any rational point on cU is of the form e(h), provided we also
allow h to take on the extended value ∞, so that e(∞) = (−1, 0). Other common examples
are e(0) = (1, 0), e(1) = (0, 1) and e(−1) = (0,−1).

The rational parametrization has a modern formulation in terms of linear algebra. If X
is a skew-symmetric matrix for which I +X is invertible, then the Cayley transform of X
may be defined to be the orthogonal matrix

c (X) ≡ I −X

I +X
.

In the 2× 2 case, if

X =

(

0 −h
h 0

)

then c(X) =

(

C(h) S(h)
−S(h) C(h)

)

≡ σh. (5)

If we also define

σ∞ ≡
(

−1 0
0 −1

)

, (6)

which is consistent (in a limiting sense) with h = ∞, then the orthogonal matrices σh for h
an extended rational number (that is, including the value ∞) bijectively represent rational
rotations. This gives us an algebraic alternative to the usual complex exponential map between
the line and the group of rotations.
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3. The rational functions C, S, T and M

The capital C and S functions C(h) and S(h) given by (4) may be combined to define the
capital T function

T (h) ≡ S(h)

C(h)
=

2h

1− h2
.

These three functions have graphs, over the rational numbers, as shown in Figure 3.

T(h)

S(h)

C(h)

543210-1-2-3-4-5

2
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0

-1

-2

h

Figure 3: Graphs of C(h), S(h) and T (h)

They satisfy analogs of well-known properties of the transcendental circular functions
cos θ, sin θ and tan θ. The most obvious such relations are

C(h)2 + S(h)2 = 1 (7)

together with the symmetry conditions

C(−h) = C(h), S(−h) = −S(h) and T (−h) = −T (h).

Another important function is the capital M function

M(h) ≡ 2

1 + h2
= 1 + C(h) =

S(h)

h

whose main significance is that it describes the rotationally invariant measure on the circle.
It is also involved in the following formulas.

Theorem 1 (C and S derivative). The derivatives of C and S are

dC

dh
(h) = −S(h)M(h) and

dS

dh
(h) = C(h)M(h).

Proof. This is a first-year calculus computation.

Theorem 2 (C and S second order derivative). Both C(h) and S(h) satisfy the second order

differential equation
1

M(h)

d

dh

(

1

M(h)

df

dh

)

+ f = 0.

Proof. This follows by combining both formulas of the previous theorem.
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4. Rotor coordinates

If h is a rational number, then e(h) ≡ (C(h), S(h)) is a rational vector of unit length. For
any rational number r > 0, the vector v = re(h) is then also a rational vector, and the usual
Cartesian coordinates for v are

x = r

(

1− h2

1 + h2

)

and y = r

(

2h

1 + h2

)

. (8)

The number

r = r (v) ≡
√

x2 + y2 (9)

is the length of v, and

h = h (v)

is the half-slope of v. In the special case of w ≡ (0,−1), we define h(rw) = ∞ for any
r > 0.

The quantities r and h determine v, and will be called rotor coordinates for v, written

v = | r, h〉 .

The above formulas extend to more general vectors v = (x, y), but in this case r will typically
exist in a quadratic extension of the field containing x and y, which also contains h because
of the following important result. We give two proofs.

Theorem 3 (Half-slope formula). If v ≡ (x, y) has length r ≡
√

x2 + y2 and y 6= 0, then

h(v) =
r − x

y
. (10)

Proof. To find h ≡ h (v), normalize to obtain the unit vector

v

r
=

(

x

r
,
y

r

)

which is collinear with the vectors (−1, 0) and (0, h) as in Figure 1. It follows from similar
triangles that

h

1
=

y/r

1 + x/r
=

y

r + x
=

r − x

y
,

the last equality since y2 = r2 − x2. Alternatively, use (8) to see that

r − x

y
=

1 + h2

2h
− 1− h2

2h
= h.

In the special case when y = 0, the half-slope h is either 0 or ∞, depending on whether
x is positive or negative. In a diagram we represent the half-slope h of a vector v as shown
in Figure 1.
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5. Examples of half-slopes for unit vectors

Rotor coordinates describe rational vectors in the plane without prior set-up of the full real
number system. They provide a useful, simpler and often more powerful alternative to polar
coordinates.

The table below gives some examples of unit vectors v = (x, y), so that r = 1, together
with their half-slopes h ≡ h (v), and their corresponding angles θ, where we write θ ≈ h. We
restrict to the cases for which h is positive, so that y ≥ 0, with corresponding angles θ in the
range 0 ≤ θ ≤ 180◦. If we negate a half-slope, then the corresponding angle is also negated.

Unit vector v Half-slope h Angle θ

(

1/
√
2, 1/

√
2
) 1− 1/

√
2

1/
√
2

=
√
2− 1 45◦

(

−1/
√
2, 1/

√
2
) 1 + 1/

√
2

1/
√
2

=
√
2 + 1 135◦

(√
3/2, 1/2

) 1−
√
3/2

1/2
= 2−

√
3 30◦

(

−
√
3/2, 1/2

) 1 +
√
3/2

1/2
= 2 +

√
3 150◦

(

1/2,
√
3/2

) 1− 1/2√
3/2

= 1/
√
3 60◦

(

−1/2,
√
3/2

) 1 + 1/2√
3/2

=
√
3 120◦

(√
5− 1

4
,

√

10 + 2
√
5

4

)

√

5− 2
√
5 72◦

(

−
√
5− 1

4
,

√

10− 2
√
5

4

)

√

5 + 2
√
5 144◦

6. Projective formulation and the circle sum

While the half-slope h is very convenient for applications, having to treat the special case
h = ∞ separately becomes an inconvenience for theoretical work. This may be overcome
by moving to the more natural projective parametrization of the unit circle, which we now
explain.

The projective line over the rationals consists of proportions

α ≡ [t : u]

where t and u are rational numbers, not both zero. By scaling these may be taken to be
integers. The rational half-slope h = h(v) = t/u of a vector v corresponds to the projective

half-slope

α(v) = [h : 1] = [t : u]

while the extended rational half-slope h = h (w) = ∞ of the vector w ≡ (−1, 0) corresponds
to the projective half-slope

α (w) = [1 : 0].
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In this way both cases can be dealt with uniformly. The bijection between projective half-
slopes and the unit circle is

e ([t : u]) ≡
[

u2 − t2

u2 + t2
,

2ut

u2 + t2

]

.

In parallel with (5), for a proportion α ≡ [t : u] define the rotation matrix

σα ≡ 1

(u2 + t2)

(

u2 − t2 2ut
−2ut u2 − t2

)

acting on a (row) vector v = (x, y) on the right by v → vσα . Here is a key theorem.

Theorem 4 (Circle sum). If α1 ≡ [t1 : u1] and α2 ≡ [t2 : u2] then

σα1
σα2

= σα

where

α ≡ [u1t2 + u2t1 : u1u2 − t1t2] ≡ α1 ⊕ α2

defines the circle sum of the two proportions α1 and α2.

Proof. Note first that the circle sum α ≡ α1⊕α2 is well-defined, in that if we scale the entries
in either α1 or α2, the proportion α is unchanged, and because Fibonacci’s identity

(u1t2 + u2t1)
2 + (t1t2 − u1u2)

2 = (t21 + u2

1)(t
2

2 + u2

2) (11)

ensures that the entries of α are not both zero. The latter also ensures that we need only
check that

(

u2
1 − t21 2u1t1

−2u1t1 u2
1 − t21

)(

u2
2 − t22 2u2t2

−2u2t2 u2
2 − t22

)

=

(

(u1u2 − t1t2)
2 − (u1t2 + u2t1)

2 2(u1u2 − t1t2)(u1t2 + u2t1)
−2(u1u2 − t1t2)(u1t2 + u2t1) (u1u2 − t1t2)

2 − (u1t2 + u2t1)
2

)

.

This in turns rests on the identities

(

u2

1 − t21
) (

u2

2 − t22
)

− (2u1t1) (2u2t2) = (u1u2 − t1t2)
2 − (u1t2 + u2t1)

2 (12)
(

u2

1 − t21
)

(2u2t2) + (2u1t1)
(

u2

2 − t22
)

= 2 (u1u2 − t1t2) (u1t2 + u2t1) . (13)

The circle sum is associative (since it corresponds, by the theorem, to matrix multiplica-
tion), commutative, and has identity [0 : 1]. The inverse of [t : u] is [−t : u]. The map α → σα

defines a homomorphism between the group of projective half-slopes under circle sum, and
the multiplicative group of rational rotation matrices.

7. Rational circle sums and half-slope functions

When we restate the Circle sum theorem in terms of rational half-slopes h, we find that

σh1
σh2

= σh
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where

h =
h1 + h2

1− h1h2

≡ h1 ⊕ h2. (14)

This rational circle sum extends to values of ∞ by limiting arguments, or by going back
to the projective formulation. The identity is h = 0, and the inverse of h is −h, so that

(−h1)⊕ (−h2) = − (h1 ⊕ h2) . (15)

Example 1. The half-slope that corresponds to an angle of 45◦ + 30◦ = 75◦ is

h =
(√

2− 1
)

⊕
(

2−
√
3
)

=

(√
2− 1

)

+
(

2−
√
3
)

1−
(√

2− 1
) (

2−
√
3
) =

√
3 +

√
6−

√
2− 2.

The addition formulas for C and S are

C (h1 ⊕ h2) = C (h1)C (h2)− S (h1)S (h2) (16)

S (h1 ⊕ h2) = C (h1)S (h2) + C (h2)S (h1) (17)

which are essentially contained in the identities (12) and (13). The addition formula for T
relates directly to the circle sum:

T (h1 ⊕ h2) =
T (h1) + T (h2)

1− T (h1)T (h2)
= T (h1)⊕ T (h2)

and is a consequence of the identity

2
(

h1 + h2

1− h1h2

)

1−
(

h1 + h2

1− h1h2

)2
=

(

2h1

1− h2
1

)

+

(

2h2

1− h́2
2

)

1−
(

2h1

1− h2
1

)(

2h2

1− h́2
2

) .

The circle sum operation is commutative and also associative, so that

(h1 ⊕ h2)⊕ h3 = h1 ⊕ (h2 ⊕ h3) =
h1 + h2 + h3 − h1h2h3

1− (h1h2 + h2h3 + h1h3)
(18)

and similarly

h1 ⊕ h2 ⊕ h3 ⊕ h4 =
h1 + h2 + h3 + h4 − (h1h2h3 + h1h2h4 + h1h3h4 + h2h3h4)

1− (h1h3 + h1h4 + h2h3 + h2h4 + h3h4 + h1h2) + h1h2h3h4

. (19)

Theorem 5 (Multiple circle sums). For any natural number n, any rational numbers

h1, h2, . . . , hn, and any natural number k in the range 1 ≤ k ≤ n, let

sk ≡ sk (h1, h2, . . . , hn) ≡
∑

{i1,i2,...,ik}⊆{1,2,··· ,n}
hi1hi2 . . . hik .

If n = 2m is even then

h1 ⊕ h2 ⊕ · · · ⊕ hn =
s1 − s3 + · · ·+ (−1)m−1 s2m−1

1− s2 + s4 − · · ·+ (−1)m s2m

while if n = 2m+ 1 is odd then

h1 ⊕ h2 ⊕ · · · ⊕ hn =
s1 − s3 + · · ·+ (−1)ms2m+1

1− s2 + s4 − · · ·+ (−1)ms2m
.
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Proof. We proceed by induction. We may check that for n = 1 and n = 2 the formulas are
correct. Assume they are true for n, and now to prove the corresponding formulas for n+ 1,
for k in the range 1 ≤ k ≤ n+ 1 set

µk ≡ µk (h1, h2, . . . , hn, hn+1) ≡
∑

{i1,i2,...,ik}⊆{1,2,...,n+1}
hi1hi2 . . . hik .

If n = 2m then

(h1 ⊕ h2 ⊕ · · · ⊕ hn)⊕ hn+1 =

(

s1 − s3 + · · ·+ (−1)m−1s2m−1

1− s2 + · · ·+ (−1)ms2m

)

+ hn+1

1−
(

s1 − s3 + · · ·+ (−1)m−1s2m−1

1− s2 + · · ·+ (−1)ms2m

)

× hn+1

while if n = 2m+ 1 then

(h1 ⊕ h2 ⊕ · · · ⊕ hn)⊕ hn+1 =

(

s1 − s3 + · · ·+ (−1)
m

s2m+1

1− s2 + s4 − · · ·+ (−1) s2m

)

+ hn+1

1−
(

s1 − s3 + · · ·+ (−1)
m

s2m+1

1− s2 + s4 − · · ·+ (−1)
m

s2m

)

× hn+1

.

The induction then rests on two identities, the first when n = 2m being
(

s1 − s3 + · · ·+ (−1)m−1 s2m−1

)

+ (1− s2 + · · ·+ (−1)m s2m) hn+1 = µ1 − µ3 + · · ·+ (−1)m µ2m+1

and the second when n = 2m+ 1 being

(s1 − s3 + · · ·+ (−1)m s2m+1) + (1− s2 + s4 − · · ·+ (−1) s2m)hn+1 = µ1 − µ3 + · · ·+ (−1)m µ2m+1.

Taking the circle sum of h with itself yields a rational function of h which we call U2(h),
namely

h⊕ h =
2h

1− h2
≡ U2(h).

Continuing, we get a sequence Un(h) of rational functions, which we call the half-slope

functions:

h⊕ h⊕ h =
3h− h3

1− 3h2
≡ U3(h)

h⊕ h⊕ h⊕ h =
4h− 4h3

1− 6h2 + h4
≡ U4(h)

h⊕ h⊕ h⊕ h⊕ h =
5u− 10u3 + u5

1 − 10u2 + 5u4
≡ U5(h).

The pattern of binomial coefficients follows directly from the Multiple circle sums theorem.
These functions have been known for centuries (see [7, p. 155]), although our name for them
is new. They warrant more study.

Example 2. If we wish to bisect the sector created by two vectors v1 and v2 with h ≡ h (v1,v2),
then we need find a half-slope k satisfying

U2 (k) ≡ k ⊕ k =
2k

1− k2
= h.

This quadratic equation hk2 + 2k − h = 0 has discriminant 4(1 + h2), so that we require 1 + h2 to
be a square.
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Figure 4: Half-slope functions U2 (red), U3 (blue), and U4 (green)

Example 3. If we wish to trisect the sector created by two vectors v1 and v2 with h ≡ h (v1,v2),
then we need find a half-slope k satisfying

U3 (k) ≡ k ⊕ k ⊕ k =
3k − k3

1− 3k2
= h.

This yields the cubic equation k3 − 3hk2 − 3k + h = 0 which we may transform in the usual way by
setting k = y + h to get

y3 = py + q

where p = 3
(

1 + h2
)

and q = 2h
(

1 + h2
)

. The discriminant 4p2 − 27q2 is 108
(

1 + h2
)2
.

Example 4. Suppose we want to verify the half-slopes h associated to the fifth roots of unity. It
means solving U5(h) = 0, namely

5h− 10h3 + h5 = h
(

h4 − 10h2 + 5
)

= 0.

Besides the obvious solution h = 0, we also get h = ±
√

5− 2
√
5, ±

√

5 + 2
√
5, as in our earlier

table.

8. Half-slope transformations

Since this paper is oriented to applications, we will stick with the view of half-slopes as
extended rational numbers h, and refer to (14) as simply the circle sum. The reader should
have little difficulty in formulating projective versions if required.

Theorem 6 (Half-slope transformations). Suppose that the vector v has half-slope h. Then

the reflection of v in the x-axis has half-slope −h, the reflection of v in the y-axis has half-

slope h−1, the vector −v has half-slope −h−1, while the reflection of v in the line y = x and

the rotation of v by a one-quarter of the full circle in the positive direction have respective

half-slopes
1− h

1 + h
and

1 + h

1− h
.

Proof. These are easy calculations, such as

1⊕ (−h) =
1− h

1 + h
and 1⊕ h =

1 + h

1− h
.
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The theorem can also be used to relate angle transformations to half-slope transforma-
tions. Denote θ ≈ h the relation between an angle and a half-slope as before. Then −θ ≈ −h
and

180◦ − θ ≈ 1

h
and 180◦ + θ ≈ −1

h

90◦ − θ ≈ 1− h

1 + h
and 90◦ + θ ≈ 1 + h

1 + h
.

Figure 5 shows the effect of reflections in the coordinate axes and the lines y = ±x on the
half-slope h.

e(h)

e(-h)

e(1/h)

e(-1/h)

e((1-h)/(1+h))

e(-(1-h)/(1+h))

e((1+h)/(1-h))

e(-(1+h)/(1-h))

10

1

-1

-1

x

y

Figure 5: Reflections and half-slopes

One can also easily check that

1

h1

⊕ 1

h2

= − (h1 ⊕ h2) .

Example 5. Many unit vectors, of interest already to the Pythagoreans, have corresponding angles
which do not have tidy values in the radian or degree systems, and so are seldom used in high school
examples or tests, despite their simplicity and attractiveness. For example the vector (3/5, 4/5) has
half-slope h = 1/2, the vector (4/5, 3/5) has h = 1/3, the vector (5/13, 12/13) has h = 2/3 and the
vector (12/13, 5/13) has h = 1/5.

Example 6. To find the product of the rotations σα corresponding to the unit vectors (3/5, 4/5)
and (5/13, 12/13), compute

1

2
⊕ 2

3
=

1

2
+ 2

3

1− 1

2
× 2

3

=
7

4
,

so that

σ1/2σ2/3 = σ7/4 = c

((

0 −7/4
7/4 0

))

=
1

65

(

−33 56
−56 −33

)

.

Example 7. Here are a few rotor forms for non-unit vectors. If v ≡ (1, 2) then r =
√
5 and

h =

√
5− 1

2
≈ 0.618 03

is the Golden ratio. If v ≡ (2, 1) then

h =
√
5− 2 ≈ 0.236 07.

If v ≡ (1, 3) then r =
√
10 and

h =

√
10− 1

3
≈ 0.720 76.

Clearly once we have found the length r, (10) makes it easy to compute the half-slope h.
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9. Relative half-slopes between vectors

Up to now we have defined the half-slope of a single vector, which depends on the choice of
positive x-axis. We now define the half-slope between two vectors v1 = | r1, h1〉 and
v2 = | r2, h2〉, or their relative half-slope, to be

h = h (v1, v2) ≡
h2 − h1

1 + h1h2

= h2 ⊕ (−h1).

It follows that
h1 ⊕ h = h2.

If v1 and v2 are in opposite directions, then h1h2 = −1, so that h ≡ h (v1, v2) is interpreted
as having the value ∞. The relative half-slope is an oriented quantity, in that

h (v2, v1) = −h (v1, v2) .

Example 8. If v1 ≡ (3, 2) and v2 = (2, 5) then

h (v1, v2) = h2 ⊕ (−h1) =

(√
29−2

5

)

−
(√

13−3

2

)

1 +
(√

29−2

5

)(√
13−3

2

) =
1

11

√
377 − 16

11
.

If we want an undirected quantity between v1 and v2, we may take the square H ≡ h2 of
the half-slope h ≡ h (v1, v2). Note that the spread s between v1 and v2 is

s =
4h2

(1 + h2)2
=

4H

(1 +H)2
.

While the half-slope between vectors is unchanged if either is multiplied by a positive number,
this is no longer true if we multiply by −1.

Example 9. For any vectors v1 and v2,

h (−v1, v2) = − 1

h (v1, v2)
.

This follows from the half-slope transformation theorem; for if h1 ≡ h (v1) and h2 ≡ h (−v1) then

h (−v1) =
1

h1
,

so that

h (−v1, v2) =
h2 − (−1/h1)

1 + (−1/h1) h2
=

1 + h1h2
h1 − h2

= − 1

h (v1, v2)
.

Example 10. Applying the previous example twice we see that for any vectors v1 and v2,

h(−v1,−v2) = h(v1, v2).

Theorem 7 (Relative half-slope formula). If v1 ≡ (x1, y1) and v2 ≡ (x2, y2) with r1 ≡ r(v1)
and r2 ≡ r(v2), then

h = h(v1, v2) =
y1(r2 − x2)− y2(r1 − x1)

y1y2 + (r1 − x1)(r2 − x2)
.
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Proof. From the half-slope formula

h1 ≡ h(v1) =
r1 − x1

y1
and h2 ≡ h(v2) =

r2 − x2

y2
,

so that

h = h (v1, v2) ≡
h2 − h1

1 + h1h2

=

(

r2 − x2

y2

)

−
(

r1 − x1

y1

)

1 +
(

r1 − x1

y1

)(

r2 − x2

y2

) =
y1 (r2 − x2)− y2 (r1 − x1)

y1y2 + (r1 − x1) (r2 − x2)
.

The next result shows that the relative half-slope is invariant under the rotations σh

introduced in (5) and (6).

Theorem 8 (Half-slope invariance). For vectors v1 and v2 and any half-slope h

h(v1, v2) = h (v1σh,v2σh) .

Proof. If h1 ≡ h (v1) and h2 ≡ h (v2) then

h (v1σh) = h1 ⊕ h and h (v2σh) = h2 ⊕ h.

Now use (15), and the group properties of the circle sum to get

h(v1σh, v2σh) = (h2 ⊕ h)⊕ (− (h1 ⊕ h)) = h2 ⊕ h⊕ (−h1)⊕ (−h)

= h2 ⊕ (−h1)⊕ h⊕ (−h) = h2 ⊕ (−h1)⊕ 0

= h2 ⊕ (−h1) = h (v1, v2) .

Theorem 9 (Triple C formula). If h1⊕h2 ≡ h3 and C1 ≡ C(h1), C2 ≡ C(h2) and C3 ≡ C(h3),
then

C2

1 + C2

2 + C2

3 = 1 + 2C1C2C3.

Proof. Combine (16) with (7) to obtain

(C3 − C1C2)
2 = (1− C2

1)(1− C2

2 ).

Now expand to get the result.

There is no such simple relation between the three values S1 ≡ S(h1), S2 ≡ S(h2) and
S3 ≡ S(h3). However their squares, the spreads s1 ≡ S2

1 , s2 ≡ S2
2 and s3 ≡ S2

3 , satisfy the
Triple spread formula

(s1 + s2 + s3)
2 = 2(s21 + s22 + s23) + 4s1s2s3, (20)

one of the main laws of rational trigonometry. This can be derived directly from the Triple
C formula by rewriting and squaring it to obtain

(2− (s1 + s2 + s3))
2 = 4 (1− s1) (1− s2) (1− s3) ,

and then rearranging.

Theorem 10 (Three half-slopes). If v1,v2 and v3 are three vectors with h12 ≡ h (v1,v2),
h23 ≡ h (v2,v3) and h13 ≡ h (v1,v3) then

h13 = h12 ⊕ h23.

Proof. If h1 ≡ h (v1), h2 ≡ h (v2) and h3 ≡ h (v3), then

h12 ⊕ h23 = (h2 ⊕ (−h1))⊕ (h3 ⊕ (−h2)) = h3 ⊕ h2 ⊕ (−h2)⊕ (−h1) = h3 ⊕ (−h1) = h13.
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10. The Cross law and vector trigonometry

In this section we establish formulas of vector trigonometry relating to an oriented tri-

angle
−−−−−→
A1A2A3 with respective side lengths r1, r2 and r3, and relative half-slopes h1 ≡

h
(−−−→
A1A2,

−−−→
A1A3

)

, h2 ≡ h
(−−−→
A2A3,

−−−→
A2A1

)

and h3 ≡ h
(−−−→
A3A1,

−−−→
A3A2

)

.

A

h

r
h

r
r

h

A

A

A

2

1

2

2

1

1

3

3

3

Figure 6: Lengths and relative half-slopes of an oriented triangle
−−−−−→
A1A2A3

Throughout we work in the realm of extended rational numbers and quadratic extensions.
We will state the main result in terms of two vectors and the half-slope between them.

Theorem 11 (Cross law–rotor form). If vectors v1 and v2 have respective lengths r1 and r2,
and half-slope h ≡ h (v1,v2), then v3 = v2 − v1 has length r3, where

r23 = r21 + r22 − 2r1r2C(h).

Proof. Suppose that v1 ≡ | r1, h1〉 and v2 ≡ | r1, h1〉 so that

v1 = (r1C(h1), r1S(h1)) and v2 = (r2C(h2), r2S(h2))

and

h ≡ h (v1,v2) =
h2 − h1

1 + h1h2

.

Then
v3 = v2 − v1 = (r2C (h2)− r1C(h1), r2S(h2)− r1S(h1)) .

Now compute that

r23 = (r2C (h2)− r1C (h1))
2 + (r2S (h2)− r1S (h1))

2

= r21
(

C (h1)
2 + S (h1)

2
)

+ r22
(

C (h2)
2 + S (h2)

2
)

− 2r1r2 (C (h1)C (h2) + S (h1)S (h2))

= r21 + r22 − 2r1r2C (h2 ⊕ (−h1)) = r21 + r22 − 2r1r2C(h)

where we have used (7) and the addition formula (16) for C(h).

Recall that the triangle inequalities for a triangle with side lengths r1, r2 and r3 are

(r1 − r2)
2 ≤ r23 ≤ (r1 + r2)

2 .

So r23 is a convex combination of (r1 − r2)
2 and (r1 + r2)

2, and the Cross law above makes
this explicit, as it may be rewritten in the form

r23 =
1

1 + h2
(r1 − r2)

2 +
h2

1 + h2
(r1 + r2)

2 =
1

1 +H
(r1 − r2)

2 +
H

1 +H
(r1 + r2)

2

where H ≡ h2. The next result provides an alternative to the Relative half-slope formula.
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Theorem 12 (Vectors half-slope). If v1 ≡ (x1, y1) and v2 ≡ (x2, y2) are vectors with respec-

tive lengths r1 and r2, and relative half-slope h ≡ h (v1,v2), then

h2 =
r1r2 − (x1x2 + y1y2)

r1r2 + (x1x2 + y1y2)
=

(x2
1 + y21) (x

2
2 + y22)− 2r1r2 (x1x2 + y1y2) + (x1x2 + y1y2)

2

(x1y2 − x2y1)
2

.

Proof. Apply the Cross law to the triangle formed from the vectors v1 and v2, with side
lengths r1, r2 and r3 ≡ (x2 − x1)

2 + (y2 − y1)
2, to get

C(h) =
1− h2

1 + h2
=

r21 + r22 − r23
2r1r2

=
x1x2 + y1y2

r1r2

and solve for h2 to get

h2 =
r1r2 − (x1x2 + y1y2)

r1r2 + (x1x2 + y1y2)
.

Now multiply numerator and denominator by the numerator, and use Fibonacci’s identity
(11).

Example 11. For v1 ≡ (3, 2) and v2 = (2, 5) we get

h2 =
r1r2 − (x1x2 + y1y2)

r1r2 + (x1x2 + y1y2)
=

√
13

√
29− 16√

13
√
29 + 16

=
633

121
− 32

121

√
377.

Comparing with Example 8, you may check that this is indeed
(

1

11

√
377− 16

11

)2
.

Theorem 13 (Triangle half-slope). If an oriented triangle
−−−−−→
A1A2A3 has respective side lengths

r1, r2 and r3 and half-slope h3 ≡ h
(−−−→
A3A1,

−−−→
A3A2

)

, then

h2

3 =
r23 − (r1 − r2)

2

(r1 + r2)
2 − r23

=
(r1 − r2 − r3) (r2 − r1 − r3)

(r1 + r2 + r3) (r1 + r2 − r3)
. (21)

Proof. We know from the Cross law that r23 = r21 + r22 − 2r1r2C (h3) so that

C(h3) =
r21 + r22 − r23

2r1r2
.

It follows that

h2

3 =
1− r21 + r22 − r23

2r1r2

1 +
r21 + r22 − r23

2r1r2

=
r23 − (r1 − r2)

2

(r1 + r2)
2 − r23

.

Now rewrite this as

h2

3 =
(r1 − r2 − r3) (r2 − r1 − r3)

(r1 + r2 + r3) (r1 + r2 − r3)
. (22)

If the quadrances of the triangle A1A2A3 are denoted Q1 ≡ r21, Q2 ≡ r22, and Q3 ≡ r23,
then by a rational version of Heron’s formula, which we call Archimedes’ formula (see [8,
Theorem 29, page 70]), the quadrea of the triangle

A ≡ (Q1 +Q2 +Q3)
2 − 2

(

Q2

1 +Q2

2 +Q2

3

)

= (r1 + r2 + r3) (−r1 + r2 + r3) (r1 − r2 + r3) (r1 + r2 − r3)

is 16 times the square of the triangle’s area.
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Theorem 14 (Sine law–rotor form). If an oriented triangle
−−−−−→
A1A2A3 has respective side

lengths r1, r2 and r3, half-slopes h1 ≡ h
(−−−→
A1A2,

−−−→
A1A3

)

, h2 ≡ h
(−−−→
A2A3,

−−−→
A2A1

)

and h3 ≡

h
(−−−→
A3A1,

−−−→
A3A2

)

, and quadrea A, then

S(h1)

r1
=

S(h2)

r2
=

S(h3)

r3
=

√
A

2r1r2r3
.

Proof. Given h2
3 as in (21),

1 + h2

3 = 1 +
r23 − (r1 − r2)

2

(r1 + r2)
2 − r23

=
4r1r2

(r1 + r2 + r3) (r1 + r2 − r3)
.

Now combine this with (21) to get

s3 =
4h2

3

(1 + h2
3)

2
=

(r1 + r2 + r3) (−r1 + r2 + r3) (r1 − r2 + r3) (r1 + r2 − r3)

4r21r
2
2

.

So

(S (h3))
2

r23
=

4h2
3

(1 + h2
3)

2
r23

=
(r1 + r2 + r3) (−r1 + r2 + r3) (r1 − r2 + r3) (r1 + r2 − r3)

4r21r
2
2r

2
3

.

But this is symmetric in the three indices, so that

(S (h1))
2

r21
=

(S (h2))
2

r22
=

(S (h3))
2

r23
=

A
4r21r

2
2r

2
3

.

Now take square roots to get the result, since if one relative half-slope is positive, the others
are also.

Theorem 15 (Triple half-slope formula). For any three vectors v1, v2 and v3, suppose that

h12 ≡ h (v1,v2) , h23 ≡ h (v2,v3) and h31 ≡ h (v3,v1) .

Then

h12 + h23 + h31 = h12h23h31.

Proof. If h1 ≡ h (v1), h2 ≡ h (v2) and h3 ≡ h (v3) then the result follows from the identity

h3 − h2
1 + h2h3

+
h1 − h3
1 + h3h1

+
h2 − h1
1 + h1h2

=

(

h3 − h2

1 + h2h3

)(

h1 − h3

1 + h3h1

)(

h2 − h1

1 + h1h2

)

.

As a consequence, if two of the half-slopes h12, h23, h31 are known, we get a linear equation

for the third. The next result is the rotor analog of the fact that the angles of a triangle add
to π, using the notation of Figure 6.

Theorem 16 (Triangle half-slope formula). Suppose that
−−−−−→
A1A2A3 is an oriented triangle with

half-slopes

h1 ≡ h
(−−−→
A1A2,

−−−→
A1A3

)

, h2 ≡ h
(−−−→
A2A3,

−−−→
A2A1

)

and h3 ≡ h
(−−−→
A3A1,

−−−→
A3A2

)

.

Then

h1h2 + h1h3 + h2h3 = 1.
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Proof. Apply the previous result to the vectors v1 ≡ −−−→
A1A2, v2 ≡ −−−→

A2A3 and v3 ≡ −−−→
A3A1, so

that h12 = −1/h2, h23 = −1/h3 and h31 = −1/h1. Then

− 1

h2
− 1

h3
− 1

h1
= − 1

h1h2h3
.

After clearing denominators, this becomes

h1h2 + h1h3 + h2h3 = 1.

We may now analyze more general triangles more accurately, without relying either on the
usual 30◦, 45◦, 60◦ or 90◦ formulas, or approximate values obtained for the circular functions
by our calculators. In a future paper we will show how this technology clarifies considerably
aspects of the metrical geometry of quadrilaterals, and in another paper we will apply vector
trigonometry to explaining the Kepler-Newton resolution of the planetary motions as conic
sections.
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