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Abstract. Embeddings of combinatorial closed simplicial surfaces in Euclidean
3-space with all triangles congruent to one control triangle are investigated, where
the control triangle may vary. Definitions and general methods for construction
and classification are outlined. For one infinite family of combinatorial surfaces
its dihedral symmetry is used to construct all embeddings and to characterize the
possible congruence classes of the control triangle. The investigation is motivated
by problems in rigid origami.
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1. Introduction

The problem treated in this paper originated from a question raised by the group around Prof.
M. Trautz [2], an architect at the Rheinisch-Westfälische Technische Hochschule Aachen
(RWTH), asking to approximate surfaces by triangular surfaces with very few congruence
classes of triangles. Discretizations of surfaces in differential geometry usually lead to many
congruence types of triangles (cf. [1]). On the other hand one has the theory of tesselations,
which however starts from a given geometric surface.

This paper suggests an approach different from both, namely constructing the surface and
the tesselation simultaneously by asking: What do triangular surfaces look like, in case all
triangles are congruent? More specifically, we give some examples of the following situation:
start with a closed simplicial surface in Euclidean 3-space whose faces are all congruent
triangles. How do the other simplicial surfaces look like which are obtained from the given
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surface by keeping the combinatorial structure of the underlying simplicial surface fixed but
modifying the congruence class of the triangles? What sort of modifications are possible in
the first place?

To make the problem more manageable we not only keep the combinatorial structure of
the simplicial surface fixed, but prescribe what sort of Euclidean motions take each triangle to
each of its three neighbouring triangles. Roughly speaking two motions are possible, if one
does not want to be restricted to isosceles triangles: either a rotation around the common
edge or a rotation by an angle of π around an axis perpendicular to the common edge through
the midpoint of this edge. The first kind is called m-neighbouring, because locally we have a
mirror; the second kind is called r-neighbouring, because locally we have a rotation through π
around the midpoint of the common edge. Then the edges are called of type m resp. r. We
insist that these operations carry the type of edges over to the neighbouring triangles so that
all triangles have the same neighbouring structure, i.e., mmm or mmr etc., so that we have a
control triangle.

In this paper we outline a general method how to construct all embeddings of a given
combinatorial structure into Euclidean 3-space. Definitions and this outline are contained
in Sections 2 and 3. We then treat interesting examples, namely the octahedron and the
double hexagon with mmm-structure and mmr -structure resp., in Section 4. These examples
turn out to be the first instances of infinite families of examples, namely double 2n-gons
with mmm-structure, respectively mmr -structure. They are also treated in this section. The
main result is a linearization result lifting the combinatorial symmetry of the structured
combinatorial simplicial surface to an Euclidean symmetry of the embedding. Because of
transitivity properties of the automorphism group actions in the example treated, the system
of quadratic equations, defining the embedding, is reduced to a system of linear equations,
thus allowing to enumerate all embeddings in a uniform way. The remaining question concerns
the possible congruence classes of the control triangles, which is solved in Section 5.

2. Definitions

For the purposes of this paper the following definition of simplicial surfaces will suffice.

Definition 2.1. A simplicial surface S is a finite set V := V (S) (of vertices), together with a
subset F := F (S) ⊆ Pot3(V ) of three-subsets of V which is called the set of faces, triangles,
or two-simplices. We require V =

⋃
x∈F x and call

E := E(S) := {{A,B} ⊂ x |x ∈ F, A 6= B}

the set of edges of S. The following conditions must be satisfied:

1.) Any edge e ∈ E of S belongs to at most two triangles.

2.) For any vertex A ∈ V the set of all faces of S containing A can be arranged in a sequence
(f1, . . . , fn) such that fi and fi+1 have an edge in common.

Triangles with a common edge are called neighboured. The simplicial surface is called closed if
any edge belongs to exactly two triangles.

Usually our simplicial surfaces are closed. If S is a closed simplicial surface the degree map

d : V (S) 7→ N : P 7→ |{f ∈ F (S) | P ∈ f}|
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counts the neighbouring vertices. Quite often S is determined uniquely up to isomorphism by
the symbolic product ∏

i∈{1,..., |F (S)|}

i |{P∈V (S) | d(P )=i}|

So, for instance, 34 denotes a tetrahedron, 46 an octahedron and 46 · 62 a double hexagon,
which can best be described by using permutation groups as follows:

Definition 2.2. Let V be a finite set and G ≤ SV be a subgroup of the symmetric group
SV on V . For any three-subset x ∈ Pot3(V ) of V let Gx be the orbit of x under the
induced action of G on Pot3(V ). If for x1, . . . , xk ∈ Pot3(V ) the disjoint union F of the
Gxi satisfies conditions 1.) and 2.) of Definition 2.1, then the resulting simplicial surface
is denoted by S := S(G, x1, . . . , xk). (Note, S(G, x1, . . . , xk) = (G, y1, . . . , yk) if and only if
{Gx1, . . . , Gxk} = {Gy1, . . . , Gyk}.)

Example 2.3. 1.) The permutation group C2 × Cn := 〈a, b〉 with a := (1, 2n + 2) and
b := (2, 3, . . . , n+ 1)(n+ 2, n+ 3, . . . , 2n+ 1) yields the double 2n-gon

S (C2 × Cn, {1, 2, n+ 2}, {1, 2, 2n+ 1}) ,

of which the octahedron (n = 2) and the double hexagon (n = 3) are the first examples.

2.) The same simplicial surfaces can also be obtained as S(C2 × D2n, {1, 2, 2n + 1}) with
C2 ×D2n = 〈a, b, c〉 where c := (3, n + 1)(4, n) . . . (n + 2, 2n + 1)(n + 3, 2n) . . . inverts b by
conjugation.

Up to now only the combinatorial side of simplicial surfaces has been considered. Now
we come to their actual realization in Euclidean 3-space, where vertices become points, edges
become line segments, and faces become faces of flat triangles.

Definition 2.4. Let S be a simplicial surface and λ : E(S) 7→ R>0 a map called edge-valuation.
A realization of (S, λ) in Euclidean 3-space (R3, | |) is a map ρ : V (S) 7→ R3 such that

|A−B| = λ({A,B}) for all {A,B} ∈ E(S).

ρ induces a map from E(S) mapping {A,B} ∈ E(S) to the convex hull of {ρ(A), ρ(B)} and a
map from F (S) mapping {A,B,C} ∈ F (S) to the convex hull of {ρ(A), ρ(B), ρ(C)}. These
two maps are also denoted by ρ.

The realization is called vertex-faithful if ρ is injective. It is called edge-faithful if it is vertex-
faithful and ρ(e)∩ ρ(f) = ρ(e∩ f) for all e, f ∈ E(S). It is called faithful or an embedding if it
is edge-faithful and ρ(x) ∩ ρ(y) = ρ(x ∩ y) for all x, y ∈ F (S).

In realizations where all triangles are congruent, the edge-valuation λ takes at most three
values. More precisely, we have the following setup.

Definition 2.5. A (neighbouring) structure Σ on a simplicial surface S is a surjective map
τ : E(S) 7→ {1, 2, 3} such that τ takes three different values on the set of edges of any face.
The fibre of w ∈ {1, 2, 3} under τ is called an m-class (for mirror) resp. an r-class (for rotation),
if and only if for any edge {A,B} with τ({A,B}) = w and being edge to two different triangles
{A,B,C}, {A,B,D} ∈ F (S) of S, then τ({A,C}) = τ({A,D}) resp. τ({A,C}) = τ({B,D}).
The structure Σ is called an s1s2s3-structure for si ∈ {m, r}, if τ−1({i}) is an si-class.
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Example 2.6. 1.) The tetrahedron S(S4, {1, 2, 3}) allows an rrr-structure.

2.) S(C2 ×D2n, {1, 2, n + 2}), cf. Example 2.3, has an mmm-structure with τ(g{1, 2}) = 1,
τ(g{1, n+ 2}) = 2 and τ(g{2, n+ 2}) = 3 for all g ∈ C2 ×D2n.

3.) It further has an mmr -structure with τ(g{1, 2}) = g(1), τ(g{1, n + 2}) = g(2) and
τ(g{2, n+ 2}) = g(3) for all g ∈ C2 ×D2n, where : C2 ×D2n → S3 is the homomorphism
mapping the three generators a, b, c to (1, 2), (), ().

A realization of a structured simplicial surface (S,Σ) is selfexplanatory, if one assigns
a length to each class of edges. However, more can be done in the case where the abstract
simplicial surface is defined by a group as in the examples above. Whereas it is a difficult
problem to find all realizations since one has to solve a large system of quadratic equations (one
equation for each edge), there might be a type of realization constructable from a subgroup
G of the automorphism group which we will call G-equivariant. They have the advantage
that the number of quadratic equations is reduced to the number |E(S)/G| of orbits of G on
E(S) by solving certain linear equations. In the main examples of this paper all embeddings
will be equivariant for the full automorphism group and therefore easily computable because
|E(S)/G| = 3 is as small as possible.

Lemma 2.7. Let (S,Σ) be a structured simplicial surface, G ≤ Aut(S,Σ) a subgroup of the
automorphism group of S respecting Σ.

1.) If ∆ : G→ Isom(R3) is a representation of G then a ∆-linear realization of (S,Σ) is a
realization ρ : V (S)→ R3 satisfying

ρ(gP ) = ∆(g)ρ(P ) for all P ∈ V (S), g ∈ G.

For given ∆ these equations are linear equations for the tuple (ρ(P ))P∈V (S) ∈ (R3)|V (S)|.

2.) The relevant representations ∆ can be chosen to take values in the orthogonal group
O(R3) and are not neccessarily irreducible constituents of degree 3 of the linearized
permutation representation of G on V (S) (or in terms of modules an epimorphic image
of the permutation RG-module RV ). Note that an RG-homomorphism ρ from RV to R3

yields the condition above for G-equivariance automatically. The realization property is
satisfied if and only

|ρ(A)− ρ(B)| = di for all {A,B} ∈ τ−1(i) ⊆ E(S),

where d1, d2, d3 ∈ R>0 are the assigned λ-values for the three classes (cf. Definition 2.4).

Proof. 2.) Since G is finite it fixes a point in R3 so that G is conjugate to a linear group under
a translation. Note also, two finite subgroups of the orthogonal group are conjugate under
the full linear group if and only if they are conjugate under the orthogonal group. The rest is
clear.

As a special property of combinatorial simplicial surfaces relevant in this paper we define
G-linearizability, where G is a subgroup of the combinatorial automorphism group. It says,
that the elements of G can be realized as isometries of R3, mapping the embedded surfaces
into itself.

Definition 2.8. A structured simplicial surface (S,Σ) is called G-linearizable for a sub-
group G ≤ Aut(S,Σ), if for every embedding of (S,Σ) there is a faithful representation
∆ : G→ Isom(R3) of G, which is ∆-linear, as defined in Lemma 2.7, 1.) .
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3. Preliminaries

As a general reference for elementary geometric facts adjusted to the use of computer algebra
systems [3] is quite helpful. The following simple and well known lemma will be the key to
our uniqueness proofs.

Lemma 3.1. Let (P1, P2, P3) ∈ (R3)3 be three non collinear points in Euclidean 3-space and
r1, r2, r3 ∈ R>0. Then there are at most two points P ∈ R3 with |Pi − P | = ri for i = 1, 2, 3.
The point P is unique if and only if it lies in the plane spanned by P1, P2, P3. In the case of
two solutions the orthogonal reflection fixing this plane interchanges the two solutions.

The way we proceed is based on this lemma and follows the tetrahedron philosophy:

Lemma 3.2. Let (P0, P1, P2, P3) ∈ (R3)4 be four non coplanar points in Euclidean 3-space
(R3,Φ) and

Γ :=
(

Φ
(−−→
P0Pi,

−−→
P0Pj

))
1≤i,j≤3

the Gram-Matrix of the scalar product Φ with respect to the vector space basis (
−−→
P0P1, . . . ,

−−→
P0P3)

of R3.

1.) Γ determines and is uniquely determined by the six values of |
−−→
PiPj| for 0 ≤ i < j ≤ 3.

2.) Any P ∈ R3 is determined by its “dual” coordinates Φ(
−−→
P0Pi,

−−→
PPi) for i = 1, 2, 3.

3.) Let P ∈ R3 be in the situation of Lemma 3.1, and let X := |
−−→
P0P |2. Then X satisfies the

quadratic equation

det

(
Γ ytr

y X

)
= 0 with yi :=

1

2

(
X + r2

i − Γii
)

for i = 1, 2, 3 .

The following remark, probably dating back to Archimedes (cf. [3]), is an alternative to
the usual characterization li + lj > lk for all {i, j, k} = {1, 2, 3} of the lengths triple (l1, l2, l3)
in the Euclidean space.

Remark 3.3. Let (L1, L2, L3) ∈ R3
>0. There exists a nondegenerate triangle in the Euclidean

plane with squared side lengths Li, if and only if

(L1 + L2 + L3)2 − 2(L2
1 + L2

2 + L2
3) > 0.

(In that case the left side of the inequality is sixteen times the square of the area of the
triangle.)

4. Embeddings for the double 2n-gons

In the following tables we summarize the central data for constructing all G-equivariant
embeddings into Euclidean 3-space where G is the combinatorial automorphism group of the
structured simplicial surface 2n-gons with mmm and mmr structure for n = 2 and n = 3.
We then proceed to prove that there are no further embeddings. Finally we treat the case of
general n.
In the sequel, instead of l1, l2, l3 we often use lr, lb, lg referring to the colours rather than the
labelling numbers of the edges.
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Octahedron 46 with mmm-structure:

mmm-structure for 46

Group of automorphisms:

C2 ×D4 := 〈a, b, c〉 ∼= C3
2 with

a := (1, 6), b := (2, 3)(4, 5),
c := (4, 5).

Representation:

a 7→ diag(−1, 1, 1),
b 7→ diag(1,−1, 1),
c 7→ diag(1, 1,−1),

orthogonal w.r.t. the Gram matrix I3.

Affine centralizer as linear matrix group:

{diag(α, β, γ)|α, β, γ ∈ R∗}.
Coordinates of control triangle:

1 7→

 0
0
z

, 2 7→

 0
y
0

, 5 7→

 x
0
0


with x, y, z ∈ R∗.

Edge lengths:

l2r = y2 + z2, l2b = x2 + z2,
l2g = x2 + y2.

Sample picture: (Note that all embeddings
are affinely equivalent.)

mmm-structure for 46 with triangle

of edge lengths 1, 131
100 ,

102
100

Octahedron 46 with mmr-structure:

mmr -structure for 46

Group of automorphisms:

D8 := 〈a, b, c〉 with
a := (1, 6)(2, 5)(4, 3),
b := (2, 3)(4, 5) , c := (4, 5).

Representation:

a 7→ diag(1,−1,−1),
b 7→ diag(−1,−1, 1),

c 7→ diag(
(
0 1
1 0

)
, 1),

orthogonal w.r.t. the Gram matrix I3.
Affine centralizer as linear matrix group:

{diag(α, α, β)|α, β ∈ R∗}.
Coordinates of control triangle:

1 7→

 0
0
z

, 2 7→

 x
x
y

, 5 7→

 x
−x
−y


with x, y, z ∈ R, x, z 6= 0.

Edge lengths:

l2r = 2x2 + (z − y)2, l2b = 2x2 + (z + y)2,
l2g = 4x2 + 4y2.

Sample pictures: (Note, all embeddings with
the same ζ := y

z
are affinely equivalent).

mmr -structure for 46 convex with triangle
of edge lengths 1, 184

100 ,
192
100

mmr -structure for 46 non convex with a
triangle of edge lengths 1, 67

100 ,
139
100
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Double hexagon 46 · 62 with
mmm-structure:

mmm-structure for 46 · 62

Group of automorphisms:

C2 ×D6 := 〈a, b, c〉 with a := (1, 8),
b := (2, 3, 4)(5, 6, 7), c := (3, 4)(5, 7)

Representation:

a 7→ diag(1, 1,−1), b 7→ diag(
(
0 −1
1 −1

)
, 1),

c 7→ diag(
(
1 −1
0 −1

)
, 1), orthogonal w.r.t.

the Gram matrix diag(
(

2 −1
−1 2

)
, 1).

Affine centralizer as linear matrix group:

{diag(α, α, β)|α, β ∈ R∗}.
Coordinates of control triangle:

1 7→
 0

0
z

, 2 7→
 x

0
0

, 7 7→
 0
−y
0


with x, y, z ∈ R∗, xy > 0

Edge lengths:

l2r = 2x2 + z2, l2b = 2y2 + z2,
l2g = 2(x2 − xy + y2).

Sample pictures: (All embeddings with the
same ζ := x

y
are affinely equivalent.)

mmm-structure for 46 · 62 convex with
triangle of edge lengths 1, 1, 15

16

mmm-structure for 46 · 62 non convex with
triangle of edge lengths 1, 7, 20

3

Double hexagon 46 · 62 with
mmr-structure:

mmr -structure for 46 · 62

Group of automorphisms:

D12 := 〈a, b, c〉 ∼= C2 ×D6 with
a := (1, 8)(2, 6)(3, 7)(4, 5),
b := (2, 3, 4)(5, 6, 7), c := (3, 4)(5, 7)

Representation:

a 7→ diag(−1,−1,−1),

b 7→ diag(
(
0 −1
1 −1

)
, 1), c 7→ diag(

(
1 −1
0 −1

)
, 1),

orthogonal w.r.t. the Gram matrix

diag(
(

2 −1
−1 2

)
, 1).

Affine centralizer as linear matrix group:
{diag(α, α, β)|α, β ∈ R∗}.
Coordinates of control triangle:

1 7→
 0

0
z

, 2 7→
 x

0
y

, 7 7→
 0
−x
−y


with x, y, z ∈ R, x, z 6= 0

Edge lengths:

l2r = 2x2 +(z−y)2, l2b = 2x2 +(z+y)2, l2g = 2x2 +4y2.

Sample pictures: (Note, all embeddings with
the same value ζ := y

z
are affinely equivalent.)

mmr -structure for 46 · 62 convex with
triangle of edge lengths 1, 1,

√
2

mmr -structure for 46 · 62 non convex with
triangle of edge lengths 1, 17

28 ,
195
56
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Comments. In case (46 · 62, (m,m,m)) the control triangle with xy < 0 leads to realizations
which are not embeddings. In case (46 · 62, (m,m, r)) a different representation is possible in
principle, however it leads again only to realizations that are not embeddings.

The embeddings treated in the tables above are equivariant embeddings for the combina-
torial automorphism group. We now prove that there are no other embeddings in the four
cases treated.

Theorem 4.1. The simplicial surfaces S := S(C2 ×D2n, {1, 2, 2n+ 1}) with mmm and mmr
structure (cf. 2.3 and 2.6) are G-linearizable, where G is the full automorphism group of the
structured simplicial surface.

Proof. Let ρ be an embedding of the mmm structured simplicial surface S. Clearly C2 ×D2n

is the full automorphism group of this structured surface. ρ restricts to an embedding
of the tetrahedron 1, 2, 2n+ 1, 2n+ 2 with edge lengths lr, lb, lg, d for some d > 0 where
d = |ρ(1) − ρ(2n + 2)| is the distance between the two points 1 and 2n + 2 which are not
connected by an edge of the surface. The tetrahedron {1, 2, 2n+ 1, 2n+ 2} shares a common
tetrahedron face {1, 2, 2n + 2} (which is not a face of the surface) with the tetrahedron
{1, 2, n+ 2, 2n+ 2}. By Lemma 3.1 ρ(n+ 2) can take two values, one of which is ρ(2n+ 1).
As ρ is an embedding, ρ(n+ 2) 6= ρ(2n+ 1) and hence uniquely determined by applying the
orthogonal reflection σ2 fixing ρ(1), ρ(2), ρ(2n+ 2).
Repeating the same argument, the orthogonal reflection σn+2 yields σn+2(ρ(2)) = ρ(3). Similary
σ3(ρ(n+2)) = ρ(n+3) etc. . Note that σ3 = σn+2σ2σn+2 etc. and σn+2σ2 is a rotation around the
edge ρ(1)ρ(2n+ 2). Therefore we get (σn+2σ2)n = Id, more precisely, σn+2σ2 is a rotation by an
angle 2π/n since ρ is an embedding and not just a realization. Let σ be the orthogonal reflection
fixing all ρ(i) for 1 < i < 2n+ 2, which is well defined because |ρ(1)− ρ(i)| = |ρ(2n+ 2)− ρ(i)|
for 1 < i < 2n+ 2. Then a 7→ σ, b 7→ σn+2σ2, c 7→ σ2 defines an orthogonal representation of
C2 ×D2n for which ρ is ∆-linearizable.

In the mmr case the full automorphism group is a dihedral group of order 4n generated by
f := (1, 2n + 2)(2, n + 2, 3, n + 3, . . . , n + 1, 2n + 1) together with b, c as in 2.3. Note that
f 2 = b. The construction and properties of σi for 1 < i < 2n+ 2 are the same as in the mmm
case so that we obtain a representation ∆ of U := 〈b, c〉 via b 7→ σn+2σ2, c 7→ σ2 as above.
To construct the image of f under the desired representation note that U has two orbits on the
set {2, 3, . . . , 2n+ 1} according to the corresponding cycles of b. One easily checks that each
of the two orbits lies in a plane orthogonal to ρ(1)ρ(2n+ 2) equidistant to its midpoint and
forms a regular n-gon. Their orthogonal projections in the central vertical M of ρ(1)ρ(2n+ 2)
yields a regular 2n-gon as convex hull. Hence one can map f onto the rotation by the angle of
π/n multiplied by the orthogonal reflection fixing M and interchanging ρ(1) and ρ(2n+ 2).
The rest is as above.

Though we have used a slightly different notation in the tables than in the proof, the
uniqueness of the orthogonal representations up to equivalence follows from the proof without
further calculations. Note also that in all cases considered the automorphism group is transitive
on each of the three types of edges. Therefore we get the following corollary.

Corollary 4.2. For the simplicial surfaces S := S(C2 ×D2n, {1, 2, 2n+ 1}) with mmm and
mmr structure, with C2 ×D2n = 〈a, b, c〉 as in 2.3, all embeddings in Euclidean 3-space can be
calculated from the full automorphism group by solving linear equations only.
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5. Controlling the control triangles

The question left over in the last section is to decide for a given triangle whether and how it
occurs as a control triangle for a structured simplicial surface (S, (s1, s2, s3)). In other words,
given the lengths (l1, l2, l3) of some triangle, find all embeddings of S with the edges of type si
of length li.

Proposition 5.1. Let (S, (mr,mb,mg)) denote the simplicial surface 46 with mmm-structure.
The following four statements for a triangle T are equivalent.

1.) The three side lengths li of T satisfy

l2i + l2j > l2k for {i, j, k} = {r, b, g}.

2.) All three angles of T are smaller than π/2.

3.) There exists an embedding of (S, (mr,mb,mg)) into Euclidean 3-space with the control
triangle T .

4.) Up to Euclidean motion there exists a unique embedding of (S, (mr,mb,mg)) into Eu-
clidean 3-space with control triangle T .

Proof. The equivalence of 1.) and 2.) is elementary. The implication 3.)⇒ 1.) is an immediate
consequence of the table for (46, (mmm)) in Section 4. It remains to show 1.)⇒ 4.). But this
follows by a simple linear elimination of x2, y2 and z2 from the equations for the l2i in the
table for (46, (mmm)).

For (46, (mr,mb, rg)) with mmr -structure the situation is slightly more complicated.

Proposition 5.2. Let (S, (mr,mb, rg)) denote the simplicial surface 46 with mmr-structure.
The following four statements for a triangle T are equivalent.

1.) The three side lengths li of T satisfy

lr 6= lb or l2r + l2b > l2g in case lr = lb.

2.) T is an arbitrary triangle with the restriction that in the iscosceles case lr = lb the apex
angle is smaller than π/2.

3.) There exists an embedding of (S, (mr,mb, rg)) into Euclidean three space with control
triangle T .

4.) Up to Euclidean motion there exists a unique embedding of (S, (mr,mb, rg)) into Euclidean
3-space with control triangle T .

Proof. The equivalence of 1.) and 2.) is elementary. The implication 3.)⇒ 1.) is an immediate
consequence of the table for (46, (mmr)) in Section 4. It remains to show 1.)⇒ 4.). Assume
first that lr 6= lb. Then from the equations for the l2i in the table for (46, (mmr)) we obtain
equations for x, y, z and we have to show that one has a unique solution with x > 0 and z > 0.

Substituting y = (l2b − l2r)/(4z) into the right hand side of
1

2
(l2g − l2r) = 3y2 − z2 + 2yz yields

the following biquadratic equations for z.

z4 +
1

2
(l2g − l2b − l2r)z2 − 1

16
(l2b − l2r)2 = 0,
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of which the discriminant with respect to z2 is

1

4

(
(l2g − l2r − l2b )2 + (l2r − l2b )2

)
.

This shows that there is excactly one positive solution for z. Going backwards one finds
y = (l2b − l2r)/(4z) and finally x. The final case lr = lb is left to the reader.

Theorem 5.3. For the structured simplicial surface (42n · (2n)2,mmm), i.e. the double 2n-gon
as defined in 2.3 with mmm-structure, a triangle T with side squared lengths (Lr, Lb, Lg) ∈ R3

>0,
i.e.,

(Lr + Lg + Lb)
2 − 2(L2

r + L2
g + L2

b) > 0,

is admissible for an embedding, if and only if the following conditions hold:

a.) w :=
Lb − Lr

Lg
satisfies w2 <

1

sin(π/n)2
.

b.) For w 6= 0 there is a solution of
ζ2 − 1

ζ2 − 2 cos(π/n)ζ + 1
− w = 0 with ζ > 0 satisfying

Lrζ
2 − Lb

ζ2 − 1
> 0,

Lb − Lr
ζ2 − 1

> 0,

and in case w = 0, i.e. Lr = Lb, one has Lg < 4 sin2
(
π

2n

)
Lr.

Proof. Assume there is an embedding of the structured simplicial surface for a triangle with
squared sidelengths (Lr, Lg, Lb). According to Theorem 4.1 the vertices of the triangle can be
chosen to be

1 7→ (0, 0, z),

2 7→ (x, 0, 0),

2n+ 1 7→ xζ ·
(

cos
(π
n

)
, sin

(π
n

)
, 0
)

for x, z, ζ > 0 in standard Cartesian coordinates so that the squared lengths can be written as

Lr = x2 + z2, Lb = (xζ)2 + z2, Lg = x2 + (xζ)2 − 2x2ζ cos
(π
n

)
.

Hence ζ2Lr−Lb = (1− ζ2)z2 yielding the first condition in b.). Similarly Lb−Lr = (1− ζ2)x2

yields the second condition in b.) . Also the substitution of the squared lengths in the definition
of w leads to

w =
ζ2 − 1

ζ2 − 2 cos(π/n)ζ + 1
.

The right hand side is easily seen to be bounded by
∣∣∣ 1

sin(π/n)

∣∣∣. (Note that in principle there

might be two values ζ for a given w.) The case w = 0 corresponds to the isosceles triangle
with apex in vertex 1 which obviously satisfy the above condition.
Conversely if all the conditions are satisfied, the above analysis leads to unique expressions
for x, y, z > 0 which leads to a triangle with the squared side lengths Lr, Lb, Lg and the claim
follows by Theorem 4.1.
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Theorem 5.4. For the structured simplicial surface (42n · (2n)2, mmr), i.e., the double 2n-gon
as defined in 2.3 with mmr-structure, a triangle T with side squared lengths (Lr, Lb, Lg) ∈ R3

>0,
i.e.,

(Lr + Lg + Lb)
2 − 2(L2

r + L2
g + L2

b) > 0,

is admissible for an embedding if and only if the following conditions hold:

Lr 6= Lb or Lg < 4 sin2(
π

2n
)Lr in case Lr = Lb.

Proof. Assume there is an embedding of the structured simplicial surface for a triangle with
squared sidelengths (Lr, Lg, Lb). According to Theorem 4.1 the vertices of the triangle can be
chosen to be

1 7→ (0, 0, z),

2 7→ (x, 0, ζz),

2n+ 1 7→
(
x cos

(π
n

)
, x sin

(π
n

)
, −ζz

)
for x, z, ζ > 0 in standard Cartesian coordinates so that the squared lengths can be written as

Lr = x2 + z2(1− ζ)2, Lb = x2 + z2(1 + ζ)2, Lg = x2 − 2x2 cos
(π
n

)
+ 4ζ2z2.

Plugging z2 = (Lb − Lr)/(4ζ) into the right hand side of Lg − (2− 2 cos(π/n))Lr yields the
following quadratic equation for ζ:

ζ2 +
2((Lb + Lr)(1− cos(π

n
))− Lg))

(cos(π
n
) + 1)(Lb − Lr)

ζ +
(cos(π

n
)− 1)

(cos(π
n
) + 1)

= 0

which has excactly one positive solution. The rest including the isosceles case is completely
analogous to the previous proof.

Various questions can now be answered such as convexity, rigidity and so on. We finish
this paper with the following remark.

Remark 5.5. For the simplicial surface S := (42n · (2n)2), i.e. the double 2n-gon as defined in
2.3, with either structures Σ, an mmm-structure or an mmr -structure, the following holds:
The function T 7→ V 2

S,T,Σ/A
3
S,T,Σ with T ranging over all possible similarity classes of control

triangles for embeddings takes its unique maximum at the class of isosceles triangles with

apex at the vertex of degree 2n and apex angle 2 arcsin

(√
1

1 + cos(π/n)

)
. Here VS,T,Σ denotes

the enclosed volume and A3
S,T,Σ the area of the embedding of the structured surface (S,Σ).

6. Conclusions

Finding the embeddings of a structured simplicial surface into Euclidean 3-space leads to a
large system of quadratic equations. This system is simplified if one only looks for embeddings
with symmetry. For the case of double 2n-gons it turns out that all combinatorial symmetries
carry over to Euclidean symmetries of the embeddings. In other words, all embedings are
highly symmetric and can therefore already be found by solving linear equations only. The
admissable control triangles are characterized.
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