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Abstract. The geometry of equiangular spirals, i.e., discretized logarithmic
spirals, never ceases to attract interest in the broad mathematical world where
professionals and amateurs belong to [1]. Voronoi and general hexagonal spiral
systems have the unique attraction of offering opportunities for research with
interesting results in geometry as well as in botany. The aim of the present work
is to study the geometrical characteristics of such systems using synthetic and
analytic methods.
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1. Introduction

In the sequel the term spiral stands for the orbit A0A1A2 . . . of a point under iterations of a
stretch-rotation, which is the commutative product of a dilatation with factor κ ≤ 1 and a
rotation with the same center S through the signed angle φ̂, where 0 < |φ̂| < π. If we apply a

second stretch-rotation with the same center, but different factor λ ≤ 1 and signed angle θ̂
with 0 < |φ̂| < π we obtain a spiral system A0,0A1,0A2,0 . . . , A0,1A1,1A2,1 . . . , A0,2A2,1 . . . . The
orbits of the two defining stretch-rotations are called branches of the system or, more precisely,
κ-branches and λ-branches.

In botany, such systems are known as spiral phyllotaxis. Relevant mathematical models
for Voronoi spirals (or tilings) are presented in [7]. In [2] a series of synthetic and analytic
properties in the phyllotaxis context is provided. In the present work, the synthetic and
analytical approach of [3] is extended to Voronoi and other hexagonal spirals.

We can generate a spiral system also by applying the stretch-rotations to the quadrangle
A0,0A1,0A1,1A1,1, called a defining quadrangle. Thus we obtain a quadrangular net consisting
of similar quadrangles. It is called a quadrangular spiral system. In Figures 1, 2, 3, 4, and 5
typical examples of quadrangular spiral systems are shown. Our notation of parameters and
the numbering follows [3]. This means

κ = Ai,1S/Ai,0S = Ai,2S/Ai,1 = · · · , φ̂ = ̂Ai,0SAi,1 = ̂Ai,1SAi,2 = · · · for i = 0, 1, 2, . . .
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Figure 1: Quadrangular spiral system and Voronoi hexagonal spiral system

and

λ = A1,jS/A0,jS = A2,jS/A1,j = · · · , φ̂ = ̂A0,jSA1,j = ̂A1,jSA2,j = · · · for j = 0, 1, 2, . . .

It is a well-known property of orientation-preserving similarities that the angles also show up
as angles between corresponding directed line segments:

∠
−−−−→
Ai,0Ai,1

−−−−→
Ai,1Ai,2 = ∠

−−−−→
Ai,1Ai,2

−−−−→
Ai,2Ai,3 = · · · = φ̂ and

∠
−−−−−→
A0,jA1,j

−−−−−→
A1,jA2,j = ∠

−−−−−→
A1,jA2,j

−−−−−→
A2,jA3,j = · · · = θ̂

(1)

(see also [3]). In Figures 1 and 2 φ̂ is positive, i.e., the corresponding stretch-rotation Ai,0 7→ Ai,1
anti-clockwise, and θ̂ negative, the stretch-rotation A0,j 7→ A1,j clockwise.

A quadrangular spiral system is called closed if there are m,n ∈ N such that

n|θ̂| ∓m|φ̂| = 2π and (2)

λn = κm. (3)
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Figure 2: Typical cyclic Voronoi hexagon and its V-line

If the sign in (2) is negative the branches co-rotate; otherwise they contra-rotate. We say

(φ̂, κ, θ̂, λ, n,m) are the parameters of this system.

A hexagonal Voronoi spiral system can be produced from a quadrangular spiral system
by applying the Delaunay triangulation to the quadrangles, as seen in Figure 2. We insert
the diagonal which connects vertices whose sum of interior angles is ≥ π. For example, in
Figure 2 the diagonal A0,0A1,1 is a Delaunay edge (see [7]). This diagonal separates the defining
quadrangle into the triangles 4A0,0A0,1A1,1 and 4A0,0A1,0A1,1. Now we define point B0,0 as
circumcenter of the first triangle and C0,0 as circumcenter of second.

After applying iteratively the given stretch-rotations, we obtain centers Bi,j of triangles
similar to 4A0,0A0,1A1,1 and centers Ci,j of triangles similar to 4A0,0A1,0A1,1. For this
triangulation, the circumcenters of all triangles sharing the vertex A1,1 define the hexagon
B0,0C0,0B1,0C1,1B1,1C0,1 whose sides are respectively the orthogonal bisectors of the edges
through A1,1. This hexagon bounds the Voronoi cell of A1,1 with respect to our spiral system.
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As shown in Figure 1, the transformed hexagons form a hexagonal net.
In Sections 2 and 3, the properties of hexagonal spirals (Voronoi or not) are presented.

In Section 4 it is proven that there is no spiral system with polygons with a number of sides
higher than six.

2. Voronoi hexagonal spirals and properties

A mathematical description based on complex numbers and properties for Voronoi spiral
systems can be found in [7]. In [2] it is shown that for a given set of points different spirals
can be defined. In the present work, we provide a study of the properties of any given set of
spiral points plus an enhanced list of properties of Voronoi systems, and we put emphasis on
how these spiral points affect the produced hexagonal spirals.

One of these properties is that the transition of the Voronoi hexagons into quadrangles
(Figure 3) is only possible when the branches of the defining quadrangles contra-rotate and the
defining quadrangles have a circumcircle, i.e., they are cyclic ([7], Appendix). The Figures 3,
4 and 5 show three possibilities of Voronoi quadrangles:

a) Figure 3: C1,1 ≡ B1,1 (= circumcentre of 2A1,1A1,2A2,2A2,1) and C0,0 ≡ B0,0, since the
branches of the given spiral system contra-rotate.

b) Figure 4: C0,1 ≡ B1,1 (= circumcentre of alternative 2A1,1A0,1A1,2A2,2) and C0,0 ≡ B1,0.
This condition can take place either when the branches of the given spiral system co-rotate if
|φ̂| < |θ̂|, or when they contra-rotate if |φ̂| > |θ̂|. If |φ̂| = |θ̂| and λ = 1 then C0,1 ≡ B1,1 and
C0,0 ≡ B1,0 for all κ.

c) Figure 5: C1,1 ≡ B1,0 (= circumcentre of alternative 2A1,1A1,0A2,1A2,2) and C0,1 ≡ B0,0. If

|φ̂| = |θ̂| and κ = 1 then C1,1 ≡ B1,0 and C0,1 ≡ B0,0 for all λ.

For given φ̂, θ̂ and 2A1,1A0,1A0,2A1,2, if A1,1 and A1,2 remain constant and A0,1 moves
along the ray SA0,1, then the points A0,2 and A2,2 move respectively along the rays SA0,2

and SA2,2 (note ̂A1,2SA0,2 = ̂A2,2SA1,2 = θ̂). So B1,1 and C0,1 converge until they coincide
(second possibility). Also, B1,1 and C1,1 can converge until they coincide (first possibility, if

the defining branches contra-rotate and |φ̂| < |θ̂|). Similarly we can get the third possibility.
By variation of one vertex the solution will always be bound by a combination of two of the
three possibilities.

Based on the possibilities b) and c), as given above, there is an alternative set of α-

branches A0,0A1,1A2,2 . . . , A1,0A2,1 . . . , etc. with dilation factor α and clockwise (|θ̂| > |φ̂|) or

anticlockwise (|θ̂| < |φ̂|) rotation. The combination with the λ-branches creates the alternative
spiral system of the possibility b) (Figure 4). When combined with the κ-branches, we obtain

the alternative spiral system of possibility c) (Figure 5). Since |θ̂| > |φ̂|, we get: in the
Figures 1, 2, 3, and 5, where the λ-branches rotate clockwise and the κ-branches anticlockwise,
we have α = κλ. In Figure 4, where λ- and κ-branches rotate anticlockwise, we have α = κ/λ.

As can be seen in Figure 4, 2A1,1A0,1A1,2A2,2 has a circumcircle only when the α- and
λ-branches contra-rotate. This is possible only when either the branches of the given spiral
system co-rotate and |φ̂| < |θ̂| (the α- and λ-branches contra-rotate), or, when the branches

of the given spiral system contra-rotate and |φ̂| > |θ̂| (the α- and λ-branches contra-rotate,
because they both change orientation), assuming in these two cases that the κ-branches keep

the same orientation. (There is a duality, φ̂↔ θ̂ and κ↔ λ, note Lemma 4.) The case, where
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Figure 3: Quadrangular spiral system with cyclic quadrangles and a Voronoi quadrangle

|φ̂| < |θ̂| and the branches of the given spiral system contra-rotate, is related to the third
possibility. As can be seen in Figure 5, 2A0,0A0,1A1,2A1,1 has a circumcircle only when the α-

and κ-branches contra-rotate. This is possible when |φ̂| < |θ̂| and either the branches of the
given spiral system co-rotate or contra-rotate, as long as the α- and κ-branches contra-rotate,
assuming that the κ-branches keep the same rotation.

All the above constitutes the proof of the following

Lemma 1. For any given spiral system, formed by the κ- and λ-branchesAi,0Ai,1Ai,2 . . . and
A0,jA1,jA2,j . . . , we can define an alternative set of α-branches A0,0A1,1A2,2 . . . , A1,0A2,1 . . . ,
etc. where the endpoints of the Delaunay edges (such as A0,1 7→ A1,2 in 2A0,1A0,2A1,2A1,1) are
corresponding under the related stretch-rotation.
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Figure 4: Cyclic alternative λ-spiral system and Voronoi quadrangles

Lemma 2. The combination of the alternative α-branches, as introduced in Lemma 1, with
the λ-branches A0,jA1,jA2,jA3,j . . . creates the ‘alternative λ-spiral system’ with defining quad-
rangles 2A0,0A1,0A2,1A1,1, etc.

Lemma 3. The combination of the alternative α-branches from Lemma 1 with the κ-
branches Ai,0Ai,1Ai,2Ai,3 . . . creates the ‘alternative κ-spiral system’ with defining quadrangles
2A0,0A0,1A1,2A1,1, etc.

Theorem 1. There are three cases of quadrangular spiral systems, where the Voronoi hexagons
become quadrangles:

a. the defining quadrangles of the given spiral system (see 2A1,1A0,1A0,2A1,2 in Figure 3)
are cyclic only, when the defining branches contra-rotate.

b. the defining quadrangles of the alternative λ-spiral system (see 2A1,1A0,1A1,2A2,2 in
Figure 4) are cyclic, when the α- and λ-branches contra-rotate and either the defining

branches co-rotate if |φ̂| < |θ̂| or contra-rotate if |φ̂| > |θ̂| (duality in φ̂↔ θ̂ and κ↔ λ).
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Figure 5: Cyclic alternative κ-spiral system and a Voronoi quadrangle

c. the defining quadrangles of the alternative κ-spiral system (see 2A0,0A0,1A1,2A1,1 in
Figure 5) are cyclic, when the α- and κ-branches contra-rotate and the defining branches
either contra-rotate or co-rotate.

It is known that, in the sense of graph theory, the Delaunay tessellation is dual to the
Voronoi tiling [7], and this can be further extended in spiral systems as follows:

Lemma 4. The alternative λ- and κ-spiral systems are duals of the defining spiral system,
since one system is derived from the other by inserting the Delaunay edges in every quadrangle
of the other system. For closed spiral systems the parameters φ̂, κ, m are duals of θ̂, λ, n
(Eqs. (2) and (3)).

Given φ̂, n, m, we can calculate θ̂ from Eq. (2). According to [3], following the notation
in Figures 2–5, we have

tan(ω̂ + σ̂) = λ sin |θ̂|/(1− λ cos θ̂), tan σ̂ = κ sin |φ̂|/(1− κ cos φ̂),

and solving for λ we obtain

λ =
sin |θ̂|+ tan ω̂ cos θ̂ − κ(sin(|θ̂| − |φ̂|) + tan ω̂ cos(|θ̂| − |φ̂|))

tan ω̂ − κ(tan ω̂ cos φ̂− sin |φ̂|)
.

Also from [3] and from Figure 2 we have τ̂1 = ̂A1,2A0,2A0,1 = ω̂ + |θ̂| − |φ̂|, and if the

condition Â1,2A1,1A0,1 + ̂A1,2A0,2A0,1 = π holds we obtain ω̂ = (π + |φ̂| − |θ̂|)/2, hence

tan ω̂ = 1/ tan
(|θ̂| − |φ̂|)

2
.

Since tan(x̂/2) = sin x̂/(1 + cos x̂), we derive from all the above

λ =
cos φ̂+ cos θ̂ − κ(1 + cos(|θ̂| − |φ̂|))
1 + cos(|θ̂| − |φ̂|)− κ(cos φ̂+ cos θ̂)

.
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The parameter κ is in inverse variation with respect to λ in the above equation. Also from
Eq. (2) we get that the parameter κ is in direct variation with respect to λ. So from these two
relations, since λ ∈ [0, 1] and κ ∈ [0, 1], we always get a solution with λ and κ satisfying (2)
and the above equation. We notice in the above equation that for κ = 0

λ = [cos φ̂+ cos θ̂]/[1 + cos(|θ̂| − |φ̂|)] < 1,

and for λ = 0
κ = [cos φ̂+ cos θ̂]/[1 + cos(|θ̂| − |φ̂|)] < 1.

This implies

Lemma 5. Given φ̂, n, m of a closed defining quadrangular spiral system, we can always
calculate θ̂, κ and λ in order to obtain cyclic defining quadrangles.

As displayed in Figures 1 and 2, each vertex of the hexagon B0,0C0,0B1,0C1,1B1,1C0,1

is the circumcenter of a triangle in the triangulation. The stretch-rotation with factor

λ maps 2A0,1A1,1A1,2A0,2 onto 2A1,1A2,1A2,2A1,2. Therefore θ̂ = ̂C0,1SC1,1, and similarly

φ̂ = ̂C0,0SC0,1. Consequently we get ̂C0,0SC1,1 = θ̂ + φ̂, ̂B0,0SB1,0 = θ̂, ̂B1,0SB1,1 = φ̂ and
̂B0,0SB1,1 = θ̂ + φ̂ (note in Figures 1 and 2φ̂ > 0, θ̂ < 0 and |θ̂| > |φ̂|). From all the above, we

get the following:

Lemma 6. At the Voronoi hexagon B0,0C0,0B1,0C1,1B1,1C0,1 (see Figure 1) and similarly at
its images under the stretch-rotations we recognize:

a. Triangle 4C0,0C1,1C0,1: ̂C0,1SC1,1 = θ̂, C0,0SĈ0,1 = φ̂ and ̂C0,0SC1,1 = θ̂ + φ̂.

b. Triangle 4B0,0B1,0B1,1: ̂B0,0SB1,0 = θ̂, B1,0SB̂1,1 = φ̂ and ̂B0,0SB1,1 = θ̂ + φ̂.

c. The sides of these triangles define six spiral branches per hexagon (Figures 1, 2):
c1. C0,1C1,1C2,1 . . . and B0,0B1,0B2,0 . . . are two λ-branches .
c2. C0,0C0,1C0,2 . . . and B1,0B1,1B1,2 . . . are two κ-branches.
c3. C0,0C1,1C2,2 . . . and B0,0B1,1B2,2 . . . are α-branches.

d. From c1 and c2 we get two quadrangles, 2C0,1C1,1C1,2C0,2 and 2B1,1B2,1B2,2B1,2 which
define separate spiral system with quadrangles similar to the given 2A0,0A1,0A1,1A0,1.

The defining quadrangle 2A0,0A1,0A1,1A0,1 of our quadrangular spiral system is split by
the Delaunay edge into two triangles with respective circumcenters B0,0 and C0,0 (see Figure 2).
We connect these centers with the vertices of the corresponding triangles and obtain isosceles
subtriangles with congruent signed interior base angles, which we denote as given below:

Ô1 = ̂A0,0A1,1B0,0 = ̂B0,0A0,0A1,1, Ô2 = ̂A1,1A0,0C0,0 = ̂C0,0A1,1A0,0,

Ô3 = ̂A1,0A1,1C0,0 = ̂C0,0A1,0A1,1, Ô4 = ̂A0,0A1,0C0,0 = ̂C0,0A0,0A1,0,

Ô5 = ̂A1,1A0,1B0,0 = ̂B0,0A1,1A0,1, Ô6 = ̂A0,1A0,0B0,0 = ̂B0,0A0,1A0,0,

(4)

where −π

2
< Ôi <

π

2
. Of course,

Ô2 + Ô3 + Ô4 = Ô5 + Ô6 + Ô1 =
π

2
.

All angles remain the same when at each involved point the first subscript is increased by 1;
and this can be iterated. The same holds for the second subscripts.

With this observation we will be able to prove the following
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Theorem 2. Each Voronoi hexagon of a given quadrangular spiral system, as displayed in
Figures 1 and 2, has the following properties:

a. The three main diagonals meet at a point which is a quadrangle’s vertex inside the
hexagon.

b. The hexagon has a circumcircle.

c. For any spiral system with a cyclic defining quadrangle (2A1,1A0,1A0,2A1,2 in Figure 3)
the Voronoi hexagons become quadrangles, too (Theorem 1a). For each quadrangle of
the spiral system the intersection points of the two pairs of opposite sides are collinear
with S, the centre of the spiral system. This line (ESD in Figure 3) can be called cyclic
spiral line. Analogue results hold for the cases of Theorems 1b and 1c.

d. At each Voronoi hexagon the intersection points of the three pairs of opposite sides are
collinear with the center S of the spiral system. This line can be called V-line of the
hexagon (‘V’ stands for Voronoi). Also the pairs of opposite diagonals meet on this line
(see Figure 2). This line is polar with respect to the circumcircle to the quadrangle’s
vertex inside the hexagon. The center S is the pedal point of the V-line with respect to
this vertex.

Proof. a. Using the notation defined in Eq. (4), we calculate

̂B1,0A1,1C0,1 = ̂B1,0A1,1A1,0 + ̂A1,0A1,1A0,0 + ̂A0,0A1,1A0,1 + ̂A0,1A1,1C0,1

= Ô6 + (Ô3 + Ô2) + (Ô1 + Ô5) + Ô4 = π.

So, the points B1,0, A1,1 and C0,1 are collinear. Similarly we can prove that also the points
C0,0, A1,1 and B1,1 are collinear as well as the points B0,0, A1,1 and C1,1. Thus, the main
diagonals share the vertex A1,1.

b. From Figure 2 we get ̂A1,1B1,0C0,0 = π
2
−Ô6, ̂A1,1B1,0C1,1 = π

2
−Ô5 and ̂C1,1B1,1A1,1 = π

2
−Ô1.

At the quadrangle 2C1,1B1,1C0,0B1,0 the sum of the opposite angles is

̂C1,1B1,1C0,0 + ̂C0,0B1,0C1,1 =
π

2
− Ô1 + π − (Ô5 + Ô6) =

3π

2
− Ô5 − Ô6 − Ô1 = π.

Therefore the quadrangle 2C1,1B1,1C0,0B1,0 is cyclic.
Similarly we can prove that the quadrangles 2C1,1B1,1C0,1B1,0, 2C1,1B1,1C0,1B0,0,
2B1,1C0,1B0,0C0,0, 2C0,1B0,0C0,0B1,0, and 2B0,0C0,0B1,0C1,1 are cyclic. So the Voronoi hexagon
B0,0C0,0B1,0C1,1B1,1C0,1 is cyclic.

c. Let E denote the point of intersection of A0,1A1,1 and A0,2A1,2, and D denote the
intersection of A0,1A0,2 and A1,1A1,2. In Figure 3 we notice that 2EA1,1A1,2S is cyclic

since ̂A1,1SA1,2 = ̂A1,1EA1,2 = φ̂ (see [3]). Similarly, 2SA1,2A0,2D is cyclic, because
̂A0,2SA1,2 = ̂A0,2DA1,2 = θ̂ (see [6]), and 2A1,1A0,1A0,2A1,2 is cyclic, because we have

the conditions of a Voronoi quadrangle, by virtue of Theorem 1a (Figure 3). There-

fore Â1,2SD + ̂DA0,2A1,2 = π, ÊSA1,2 + ̂A1,2A1,1E = π, furthermore ÊSA1,2 = π −
̂A1,2A1,1E = ̂A0,1A1,1A1,2 = ̂DA0,2A1,2, hence

Â1,2SD + ÊSA1,2 = π − ̂DA0,2A1,2 + ̂DA0,2A1,2 = π.

This means that E, D and S are collinear.
Similarly the case of Theorem 1b (Figure 4 with the cyclic quadrangle 2A0,0A1,1A2,1A1,0) can
be treated as well as that of Theorem 1c (Figure 5 with the cyclic 2A0,0A0,1A1,2A1,1).
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d. A standard result of Projective Geometry states that, due to item a, the pairs of opposite
points of the Voronoi hexagon define a perspective collineation which maps the circumcircle
onto itself. The common point of the main diagonals (A1,1 in Figure 2) is the center of this
collineation and its polar line with respect to the circumcircle is the axis, called V-line. Pairs
of corresponding lines like opposite sides or diagonals intersect on the axis.

It remains to show, that also the center S of the spiral system lies on the axis. We refer to
Figure 2 and denote with G1 the intersection of the sides C0,0B1,0 and C0,1B1,1. Point G2 is
the intersection of B1,0B1,1 and C0,0C0,1.

The quadrangle 2C0,0B1,0B1,1C0,1 in Figure 2 is cyclic, and ̂B1,0SB1,1 = ̂C0,0SC0,1 = φ̂ by

Lemma 6c2. By Eq. (1) we have φ̂ = ∠
−−−−−→
C0,0B1,0

−−−−−→
C0,1B1,1 and ̂C0,0SB1,0 = ̂C0,1SB1,1, as

shown in Figures 1 and 2. In Figure 1, we have the spiral branches of Lemmas 6c1, 6c2 and

6c3, therefore by (1) ̂C0,0SB1,0 = ∠
−−−−−→
B1,0B1,1

−−−−−→
C0,0C0,1 = ̂C0,1SB1,1. Taking into account that

2C0,0B1,0B1,1C0,1 of Figure 2 and 2A1,1A0,1A0,2A1,2 of Figure 3 are both cyclic plus all the
above, including the result that E, D and S are collinear, we concclude that G1, S, G2 are
collinear.

Finally we show that the line through S and orthogonal to the V-line passes through the
center R0,0 of the circumcircle and therefore also through the pole A1,1:

Since ̂B1,0SB1,1 = φ̂ and ∠
−−−−−→
C0,0B1,0

−−−−−→
C0,1B1,1 = ̂B1,0G1B1,1 = φ̂, the quadrangle G1B1,0B1,1S

is cyclic. At Figure 2, ̂B1,0G1B1,1 = M̂1G1M2, where M1 and M2 are the midpoints of the
segments C0,0B1,0 and C0,1B1,1. Since the triangles 4M1SB1,0 and 4M2SB1,1 are similar, we
have B1,0S/B1,1S = M1S/M2S and also B1,0S/B1,1S = B1,0C0,0/B1,1C0,1 = B1,0M1/B1,1M2.

Therefore 4B1,0SB1,1 and 4M1SM2 are similar and also ̂B1,0SB1,1 = M̂1SM2. So we get

M̂1SM2 = ̂B1,0SB1,1 = φ̂. From all the above follows that 2M1G1SM2 is cyclic and, since
̂G1M1R0,0 =

π

2
, also the pentagon M1G1SM2R0,0. G1R0,0 is a diameter of the circumcircle

and Ĝ1SR0,0 =
π

2
.

All Voronoi hexagons are cyclic. The numbering or their circumcenters R0,0, R1,0,
R1,1, . . . , as shown in Figure 1, is related to the hexagons: R0,0 belongs to the hexagon
B0,0C0,0B1,0C1,1B1,1C0,1 with the vertex B0,0, R1,0 to B1,0C1,0B2,0C2,1B2,1C1,1 with the vertex
B1,0, etc. The centres R0,0, R1,0, R1,1 and R0,1, form a quadrangle which is similar to the defin-
ing quadrangles. Furthermore, the segment R0,0R1,0 is parallel to A1,1A2,1, because R0,0R1,0 is
the perpendicular bisector of B1,0C1,1, which is the perpendicular bisector of A1,1A2,1. Similarly,
R1,0R1,1 ‖ A2,1A2,2, R1,1R0,1 ‖ A2,2A1,2 and R0,1R1,1 ‖ A1,2A1,1. The sides of 2R0,0R1,0R1,1R0,1

are perpendicular bisectors of the sides of the adjacent Voronoi hexagons; so it is the Voronoi
polygon of these hexagons and can be called VV-quadrangle (‘VV’ stands for Voronoi to
Voronoi).

As shown in Figure 1, 2R0,0R1,0R1,1R0,1 is the VV-quadrangle of the hexagons B0,0C0,0B1,0

C1,1B1,1C0,1, B1,0C1,0B2,0C2,1B2,1C1,1, B1,1C1,1B2,1C2,2B2,2C1,2, and B0,1C0,1B1,1C1,2B1,2C0,2.
Each one of these hexagons is the Voronoi polygon of the relevant four adjacent defin-
ing quadrangles, i.e., B0,0C0,0B1,0C1,1B1,1C0,1 is the Voronoi polygon of 2A0,0A1,0A1,1A0,1,

2A1,0A2,0A2,1A1,1, 2A1,1A2,1A2,2A1,2, and 2A0,1A1,1A1,2A0,2. By (1) we have ̂R0,0SR1,0 = θ̂

and R1,0S/R0,0S = λ. Since R0,0R1,0 ‖ A1,1A2,1 and ̂A1,1SA2,1 = θ̂, the points R0,0, A1,1 and
S are collinear as well as R1,0, A2,1 and S, in order to maintain the ratio λ of similarity of the
stretch-rotation with 2A1,1A2,1A2,2A1,2 7→ 2A2,1A3,1A3,2A2,2. Moreover, we notice that R0,0

is the circumcenter of the hexagon B0,0C0,0B1,0C1,1B1,1C0,1 which has the vertex A1,1 in its
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interior. So this is the relation between R0,0 and A1,1 which are collinear with S. Point S can
be considered as homothetic centre of the segments R0,0R1,0 and A1,1A2,1. We summarize:

Lemma 7. In a Voronoi spiral system, the circumcenters of the hexagons form quadrangles,
called VV-quadrangles, which are similar to the defining quadrangles. The VV-quadrangles
(like 2R0,0R1,0R1,1R0,1 in Figure 1) are the Voronoi polygons of the Voronoi hexagons.

Each vertex of a VV-quadrangle is related to a specific hexagon as both share in their iterior
exactly one vertex of the defining quadrangles. The circumcenter of the hexagon and this
unique vertex (e.g., R0,0 and A1,1 in Figure 1) are collinear with S.

3. General hexagonal spirals and properties

Figure 6: General convex hexagonal spiral system

In Figure 6 the hexagonal spiral system is based on Lemma 6, which is applicable in the
general case of hexagonal spiral systems under the following conditions of construction. Under
these conditions, we can control the design of any hexagonal system:

a) Given the angles φ̂ and θ̂, we can construct the first triangle 4B1,0B0,1B0,0 by placing its
vertices on the rays of angles as we want, as long as the two angles share a common vertex
and ray (see Figure 6, S and SB1,0, clockwise). The vertices define the similarity ratios as
B0,1S/B1,0S = λ clockwise, B1,0S/B0,0S = κ anticlockwise, and B1,1S/B0,0S = α clockwise. If
Eqs. (2) and (3) are valid, the spiral system is closed.
Giving names to the hexagon’s vertices is a process which follows Lemma 6 with the relevant
triangles and spiral branches. Specifically in the example of Figure 6 two hypotheses were
made:
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1. For the spiral branches passing through the vertices Bi,j and Ci,j the index i was chosen to be
related in the κ-rotation and similarity ratio (B0,0 7→ B1,0) and the index j to α (B0,0 7→ B0,1).
2. The names of the vertices of the starting hexagon B0,0C0,1B0,1C1,1B1,0C1,0 were given in
such a way that we do not have negative indices.
These hypotheses can change and another naming process can be applied.

b) Assuming that the hexagon is convex, we place C0,1, forming the angle ω̂ = ̂C0,1SB0,0 and
we get the ray SC0,1. Since each side of the triangle 4C0,1C1,0C1,1 cuts two sides of the first
triangle and according to Lemma 6c1, the sides C0,1C1,0 and B0,1B1,0 should not intersect and

should form an angle θ̂ with S, we define the angle θ̂ with one of its sides passing from vertex
C0,1 and point S, anticlockwise (in order to cut the other two sides of 4B1,0B0,1C0,0). As a
next step we define C1,0 on the other side of the angle, taking care that λ = C0,1S/C1,0S in
order to have the same ratio of similarity and the same orientation in the two spiral branches
(see [3]). We continue the next step by defining the angle (θ̂ − φ̂) with one of its sides passing
from vertex C1,0 and point S, defining also C1,1 on the other side of the angle, taking care
that α = C1,1S/C1,0S in order to have the same ratio of similarity and orientation in the two
spiral branches, so 4C0,1C1,0C1,1 is formed.
From these triangles, the rotation of spiral branches and ratios of similarity, we get

λ = B0,1S/B1,0S = C0,1S/C1,0S and ̂C0,1SC1,0 = ̂B0,1SB1,0 = θ̂. Therefore, from the similarity
of the relevant triangles, C0,1B0,1/C1,0B1,0 = λ. Similarly we can obtain C1,1B1,0/C0,1B0,0 = κ
and C1,1B0,1/C1,0B0,0 = α.
In order to construct the next hexagon B0,0C0,0B−1,0C−1,1B−1,1C0,1, the point C−1,1 is defined

by rotating the segment C0,1C1,1 anticlockwise by an angle π − θ̂ about the vertex C0,1 and

angle ̂C−1,1SC0,1 = θ̂; similarly point B−1,0 is defined. The point C0,0 is defined by the angles
̂B0,0B−1,0C0,0 = ̂B1,0B0,0C1,0 and ̂B−1,0B0,0C0,0 = ̂B0,0B1,0C1,0, and similarly point B−1,1. Any

other hexagon can be constructed in a similar way. So the spiral branches equivalent to
Lemmas 6c1, 6c2 and 6c3 are as shown in Figure 6:

a) C−1,2C0,1C1,0 . . . and B−1,2B0,1B1,0 . . . ; the vertices of each segment form θ̂ with S due to
the λ-stretch-rotation.
b) C0,0C0,1C0,2 . . . and B−1,0B−1,1B−1,2 . . . forming then angle θ̂ − φ̂ with S, due to the α-
stretch-rotation.
c) C−1,1C0,1C1,1 . . . and B−1,0B0,0B1,0 . . . , forming φ̂ with S, according to the κ-stretch-
rotation.

As in the case of Voronoi hexagons, the similarity ratios κ, λ, α are related to spiral branches
of which any two of them can co-rotate and the third contra-rotate or any two of them contra-
rotate and the third co-rotate or three of them co-rotate. Also in Figure 6 we have α = κλ,

since B0,1S/B0,0S = α, B0,1S/B1,0S = λ, B1,0S/B0,0S = κ and ̂B0,0SB0,1 = ̂C1,0SC1,1 = θ̂− φ̂.
Similar to Lemma 6d, the combination of vertices of general hexagons can form two types
of quadrangles (note 2C0,0C−1,1C0,1C1,0 and 2B0,0B−1,1B0,1B1,0 in Figure 6). Each type is a
defining quadrangle of a spiral system. The method of defining the hexagon is the same for
concave hexagons. We conclude:

Theorem 3. The construction of the starting hexagon B0,0C0,1B0,1C1,1B1,0C1,0 of a general

hexagonal spiral system (see Figure 6) is based on the position of S, on the angles φ̂ and θ̂,
one the vertices of 4B0,0B1,0B0,1 (similarity ratios and rotations of κ-, λ- and α-branches),

on ω̂ = ̂C0,1SB0,0 plus point C0,1. The other hexagons follow by Lemma 6.
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4. Spiral systems beyond hexagonal spirals

Let A0A1A2 . . . An−1 be a convex polygon with n sides and interior angles and let R be
a point in its interior. Each triangle, which is formed by two consecutive vertices and

point R, has the following angles: ̂RAiAi+1, ̂AiAi+1R and ̂Ai+1RAi (0 ≤ i ≤ n − 2 and
̂RAiAi+1 + ̂AiAi+1R + ̂Ai+1RAi = π). The sum of all interior angles of the polygon is

Sa = R̂A0A1 + Â0A1R + Â1RA0 + R̂A1A2 + Â1A2R + Â2RA1 + . . .

+ ̂RAn−1A0 + ̂An−1A0R + ̂A0RAn−1

= nπ − (Â1RA0 + Â2RA1 + · · ·+ ̂A0RAn−1) = (n− 2)π.

The same formula exists for non convex polygons, following the same proof. The average size
of each angle at the polygon must be Aa = Sa/n.
Each n-polygon spiral system has N polygons/N angles per vertex. So for all spiral systems
n = N.p, p ∈ N, plus the sum of angles at each vertex of the system must be 2π. Hence
average size of a polygon angle is Av = 2π/N , and we get:

Remark 1. Sa = (n− 2)π and n = N.p, p ∈ N .

Remark 2. Aa = Sa/n and Av = 2π/N .

For n = 8 and for N = 4, we get from Remark 2 that Aa = 3π
4

and Av = 2π
3

, so no
solution exists. If N increases, then Av becomes smaller, so again no solution. When n
increases, Aa increases too, since Aa = Sa/n = (n− 2)π/n = π − 2π/n, so no solution exists
for n > 6, since Av = 2π

3
for N = 3 and less for N > 3. For n = 6 and for N = 3, we get from

Remark 2 that Aa = 2π
3

and Av = 2π
3

, so no solution exists. For n = 5 there is no solution for
N ∈ [3, 4, 5] because of Remark 1 when N = 3 and N = 4, also Aa = 3π

5
and Av = 2π

5
when

N = 5. However, when n = 6, N = 3 and three consecutive vertices become collinear or three
consecutive vertices form a zero angle, we have a pentagon spiral system (with six vertices
per pentagon). Similarly, for n = 3 there is no solution for N ∈ [3, 4] because of Remarks 1
and 2, since 4 does not divide 3 in case of N = 4, also Aa = π

3
and Av = 2π

3
in case of N = 3.

However, when n = 4, N = 4 and three consecutive vertices become collinear, we have a
triangular spiral system (with four vertices per triangle), as seen in [3], [5] and [7]. Similarly,
there is no solution for n = 7 and N ∈ [3, 4, 5, 6, 7] for obvious reasons. From all the above,
we get

Theorem 4. Spiral systems can have either 4 or 6 vertices per polygon, forming triangles,
quadrangles (4 vertices), pentagons and hexagons (6 vertices).

5. Appendix

In Figure 4, by applying the Law of Sines, from 4A0,2A0,1E, we have

sin φ̂

A0,2A0,1

=
sin τ̂1
EA0,1

=
sin τ̂2
EA0,2

.

Similarly from 4A1,1A1,2E:

sin φ̂

A1,2A1,1

=
sin ω̂

EA1,2

=
sin τ̂3
EA1,1

,
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and, since the branches co-rotate,

κ =
A1,2A0,2

A1,1A0,1

< 1, λ =
A0,1A0,2

A1,1A1,2

< 1 =⇒ 1

A0,1A0,2

>
1

A1,1A1,2

.

From the above relation and from the two applications of the Law of Sines, we get

sin τ̂1
EA0,1

>
sin ω̂

EA1,2

, (i)

sin τ̂2
EA0,2

>
sin τ̂3
EA1,1

. (ii)

If we assume EA0,1 > EA1,2, then from (i) we get sin τ̂1 > sin ω̂, otherwise, if EA0,1 < EA1,2,
from (ii) we get sin τ̂2 > sin τ̂3. So it is impossible to have a cyclic 2A0,0A0,1A1,1A1,0, as this
would require sin τ̂1 = sin ω̂ and sin τ̂2 = sin τ̂3, provided that the branches co-rotate.
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