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Abstract. On a sheet of paper we consider a curve c∗(s). ‘Curved paper folding’
(or ‘curved Origami’) along c∗(s) folded from the planar sheet yields a (spatial)
curve c(s) and two developable strips f1,2 through that curve. We examine the
very special case of a configuration where the two surfaces f1,2 are cylinders with
generators given by direction vectors e1,2. Such a triple (e1, e2, c(s)) will be termed
triple for curved folding with cylinders (CFC-triple).

In this paper we prove the following properties and statements on CFC-triples:
(a) The spherical image c′(s) of the tangent vectors of c(s) is, in general, contained
in a spherical conic with two of its foci in the directions of e1 and e2.
(b) Any curve c(s) of this triplet is affinely related to a curve of constant slope.

The results are also transferred to the discrete case where c(s) is replaced by a
spatial polygon while the cylinders turn into prisms.
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1. Introduction

We consider a planar curve c∗(s) ∈ C2 parametrized by its arc-length s ∈ I ⊂ R. ‘Curved paper
folding’ (or ‘curved Origami’) along c∗(s) yields a (spatial) curve c(s) and two developable
strips f1,2 through that curve which, in turn, forms a sharp crease on this object. Curved
Origami was studied by several authors in the last few years — see [2, 3, 4, 5, 8, 9] and the
literature cited there. We study the special case where the two surfaces f1,2 are cylinders. The
generators of the two cylinders through c(s) are given by the two different direction vectors
e1,2 6= o.

In terms of differential geometry this procedure can be interpreted as follows: Whenever
we roll out the two cylinders f1,2 into a plane π we think of two isometries γi of fi into
π. Additionally, we get two direction vectors e∗1,2 = γ1,2(e1,2) parallel to π and two curves
c∗1,2(s) = γ1,2(c(s)) ⊂ π which are related in a direct isometry β including the parameterizations:
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β(c∗2(s)) = c∗1(s)∀s ∈ I. In order to facilitate that, the spatial curve c(s) must have the same
geodesic curvature κg,1(s) = ±κg,2(s) on the two cylinders f1 and f2.

In this paper we characterize triples (e1, e2, c(s)) each consisting of two direction vectors
e1, e2 and a spatial curve c(s) such that c(s) has the same geodesic curvature κg,1(s) = ±κg,2(s)
with respect to the two cylinders f1,2 with generators parallel to e1,2. Such a triple will be
termed triple for curved folding with cylinders (CFC-triple). In Chapter 2 we determine the
geodesic curvature of c(s) with respect to a cylinder, Chapter 3 contains the characterisation
of CFC-triples. In Chapter 4 we study the possibility of the existence of a continous motion
describing the Origami folding of the spatial situation of the two cylinders to the planar
configuration. Chapter 5 is devoted to the discrete version of these results.

2. Spatial curves on cylinders

We start with a spatial curve c(s) ∈ C3 parametrized by its arc length s ∈ I ⊂ R.1 The
corresponding Frenet-frame is denoted by {t,h,b}. Additionally we are given two different unit
vectors e1,2 which, together with c, define two cylinders f1,2(s, v) := c(s) + v e1,2, (s, v) ∈ I ×
J ⊂ R2. We assume that {ei, c

′} are linearly independent for general s ∈ I.
We determine the geodesic curvature κg,i of the curve c with respect to the cylinder fi

(i = 1, 2). The unit vector ni := c′ × ei/ ‖c′ × ei‖ is orthogonal to the tangent plane of
fi. Together with the unit side vector si := c′ × ni we have defined an orthonormal frame
{c′,ni, si} associated with the curve and the corresponding cylinder. In order to determine
the geodesic curvature κg,i of c with respect to the cylinder fi we split the vector c′′ into a
tangential component c′′t,i parallel to [c′, si] and a normal component c′′n,i parallel to ni (see [1]
or [6]). We get

c′′t,i = si 〈si, c′′〉 = −si 〈c′′, ei〉 / ‖c′ × ei‖ and c′′n,i = 〈ni, c
′′〉 ni. (1)

Therefore the geodesic curvature κg,i with respect to the cylinder fi is given by

κg,i = − 〈c′′, ei〉 / ‖c′ × ei‖ . (2)

We put φi(s) := ∠(c′(s), ei) and get cosφi = 〈c′, ei〉 and sinφi = ‖c′ × ei‖. In the case of
cylinders differentiation yields 〈c′′, ei〉 = −φ′i sinφi and therefore

κg,i(s) = φ′i(s). (3)

3. Curves with the same geodesic curvature on two cylinders

In this section we will characterize space curves c(s) having the same geodesic curvature κg,i(s)
with respect to the two cylinders f1, and f2 in each of their points.

Remark. Our special case has also the following interpretation: If we roll out the two cylinders
into one plane π the corresponding isometries γ1,2 : f1,2 → π map the curve c(s) to curves γ1,2(c)
that are congruent by a planar isometry β. The geodesic curvature κg,i = φ′i is the curvature of
the planar curves γ1,2(c). Parts of our spatial configuration thus can be viewed as generated by
curved folding of a planar piece of paper (‘curved Origami’) with γ1(c(s)) = γ2(c(s)) := c∗(s)
as the common curve. This special case is characterized by2 κg,1(s) ≡ ±κg,2(s) ∀s ∈ I. The

1Derivatives with respect to arc length s of c will be denoted by primes.
2As the two planar parts can be arranged in two different ways we have to admit the negative sign too.
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Figure 1: The spherical conic k containing c′(s) with real foci e1,2 and two vertices v1,2 .

curve c(s) together with the generators e1,2 of the two cylinders is called triple for curved
folding with cylinders (CFC-triple) exactly in the cases κg,1(s) ≡ ±κg,2(s) ∀s ∈ I.

According to (3) the characterizing condition κg,1(s) ≡ ±κg,2(s) ∀s ∈ I is equivalent to

|φ1(s)± φ2(s)| = 2ω = const. ∀s ∈ I (4)

with some constant angle ω which can be restricted to [0, π/2]. The sign in (4) is determined
by the orientation of the vectors ei. This orientation can be chosen such that we can use the
sum in (4). The spherical image c′(s) of the tangents of the curve c then has to be part of a
spherical conic k with two of its foci determined by the direction vectors ei. The angle 2ω
determines the spherical length of one axis of this spherical conic. The corresponding vertices
will be denoted by vi. The angle between e1 and e2 shall be denoted by 2α with 0 ≤ α < ω
(see Figure 1).

Then we have

cosφ1(s) = cosφ2(s) cos 2ω ∓ sinφ2(s) sin 2ω (5)

for all s ∈ I. This yields the following condition on the tangent vectors c′

(〈c′, e1〉 − 〈c′, e2〉 cos 2ω)
2

=
(

1− 〈c′, e2〉2
)

sin2 2ω. (6)

With the help of 〈c′, c′〉 = 1 ∀s ∈ I (6) can be rewritten as

〈c′, e1〉2 − 2 〈c′, e1〉 〈c′, e2〉 cos 2ω + 〈c′, e2〉2 = 〈c′, c′〉 sin2 2ω. (7)

This is a homogeneous quadratic equation for the unit tangent vectors c′ to our curve. The
tangents of the given space curve c(s) have to be parallel to the generators of a quadratic
cone3 Γ. According to (4) the direction vectors e1,2 of the two cylinders f1,2 define the real
focal lines of the quadratic cone Γ.

3That cone has the vertex O and contains the spherical conic k.
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Figure 2: The spherical conic k of the tangent vectors c′(s) of an affinely transformed helix
c(s) and the two cylinders f1,2 given by the corresponding CFC-triple (e1, e2, c(s)).

Remarks. a) Spatial curves c(s) with tangents parallel to a quadratic cone Γ (but no cone of
rotation) determine a spherical conic k containing the spherical image of the tangent vectors
c′(s). This spherical conic k, in general, has six foci - exactly two of them are real, if the
conic is no circle. They determine the directions e1,2 of the generators of the two cylinders f1,2
through c. Through any curve c of that type there exist two different cylinders f1,2 such that
c(s) has the same geodesic curvature with respect to these two cylinders.

b) Any regular affine mapping α transforming Γ into a cone of revolution transforms k into
a circle on the unit sphere. The tangents of α(c) then are parallel to the cone of revolution
α(Γ); α(c) is a curve of constant slope. Thus the original curve c by α−1 is affinely equivalent
to a curve of constant slope. If this quadratic cone was a cone of revolution, the space curve
would be a curve of constant slope. Therefore the curves with tangents parallel to a general
quadratic cone are affinely equivalent to so-called curves of constant slope. Each curve affinely
equivalent to a curve of constant slope admits a representation equivalent to (7) and therefore
has the desired property.

c) If the curve c really is a curve of constant slope the spherical image of its tangents covers a
part of a circle — the real foci of this special spherical conic collapse. In this special case the
two cylinders f1,2 through c coincide. So we will have to exclude this trivial case in further
considerations.

A very special and exceptional case occours for ω = k π/2, k ∈ {1, 2, 3}: Then we have
cos 2ω = cos(k π) = (−1)k for ω = k π/2 and equation (7) yields

〈c′, e1〉 ∓ 〈c′, e2〉 = 0. (8)

This is a homogenous linear equation for the coordinates of the tangent vectors c′(s); the
corresponding curves c(s) are planar. The two cylinders are gained by reflection in the plane
of c(s).

This can be summarized in the following characterisations of CFC-triples (e1, e2, c(s))
(see the example in Figure 2):
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Theorem 1. Let c(s) be a C3-curve with the same geodesic curvature with respect to two
different cylinders (generators with directions e1,2) at any of its points. Then the tangents
of c(s) have to be parallel to the generators of a cone Γ of degree 2 which is not a cone of
revolution. The directions e1,2 determine the two real focal lines of Γ.
The cone Γ can degenerate into a plane. In this case the curve c(s) is planar, and the two
directions e1,2 are symmetric with respect to that plane.

Theorem 2. Through any curve c(s), either planar or with tangents parallel to a cone Γ of
degree 2 (which is not a cone of revolution) there exist two different cylinders f1,2 such that
c(s) has the same geodesic curvature with respect to these two cylinders. The directions of
the generators of these two cylinders are determined by the real focal lines of Γ. If c(s) is
planar, any pair of cylinders through c symmetric with respect to the plane of c has the desired
property.
Exactly the curves c(s) of these two special classes and the directions e1,2 corresponding to the
real focal lines of the cone Γ form CFC-triples for curved Origami with pairs of cylinders.

4. From the spatial configuration to the planar Origami

We start with a spatial curve c(s) constructed according to Theorems 1 and 2. The corre-
sponding cylinders f1,2 have generators parallel to e1,2. The planar Origami configuration shall
be generated by two series of isometries γ1,2(t) of f1 and f2 into a common plane π. The real
t ∈ [0, 1] shall parametrize these two continous sets of transformations: t = 0 shall give the
identity map, t = 1 shall give the result in π. All these isometries shall be Minding isometries,
which keep the generators of the cylinders during these isometries. γ1,2(t) transform the curve
c(s) into two series c1,2(s, t). The generators e1,2 are mapped into e1(t) := γ1(t)(e1) and
e2(t) := γ2(t)(e2). If possible, we would like to choose the two series γ1,2(t) of isometries such
that c1(s, t) = c2(s, t) for all t ∈ [0, 1], s ∈ I.

If this is possible we will call γ1,2(t) two coupled Origami foldings for the spatial configu-
ration of the two cylinders. In this special case all intermediate stages c1(s, t) = c2(s, t) for
fixed t together with e1,2(t) again have to define a CFC-triple. Theorems 1 and 2 have to be
valid for all fixed t ∈ [0, t∗]. As an isometry does not change angles on the surface the constant
2ω in formula (4) is valid for all possible intermediate stages. The angle between e1(t) and
e2(t) has to change from 2α for the initial state to 2ω for the final planar arrangement (see
Figures 1 and 3a ).

Now we want to work out a necessary condition for this possible case: We use a Cartesian
coordinate frame, put e1,2(u(t)) := (0, ± sinu(t), cosu(t))t with u(t) = (1 − t)α + tω and
c′(s) := (x(s), y(s), z(s))t. Then (7) yields the equation of the corresponding cones of degree
two

Γ(u) . . . x2 sin2 ω cos2 ω + (sin2 ω − sin2 u)(y2 cos2 ω − z2 sin2 ω) = 0. (9)

The starting configuration relates to u(0) = α, the corresponding planar Origami is reached
for u(1) = ω. Equation (9) defines a pencil of cones of degree two, all with symmetry with
respect to the three coordinate planes and two real vertex generators in the directions

v1,2 = (0, ± sinω, cosω)t. (10)

The vectors e1,2(u) determine the two real focal lines of Γ(u). The generators of Γ(u) can be
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Figure 3: a) Parts of the intersections of the quadratic cones Γ(u) and the quartic cones Φ(v)
with the plane z = 1 for some values of u ∈ [α, ω] and v ∈ [ω − α, 2ω − α].
b) c′(s) (bold on Γ(α)) is running across v1 - the continous Origami folding has to split.

parametrized by
y sinu+ z cosu =

√
x2 + y2 + z2 cos v,

−y sinu+ z cosu =
√
x2 + y2 + z2 cos(2ω − v)

(11)

with the angle v ∈ [ω − α, 2ω − α] of e1,2(u) and c′(s, t). The values v = const. in (11) yield
the homogeneous equation of degree four for the corresponding cones Φ(v) of tangent vectors

(x2 + y2 + z2)[a(v)z2 + b(v)y2], −y2z2 = 0 with

a(v) := sin2 ω sin2(ω − v), b(v) := cos2 ω cos2(ω − v).
(12)

For coupled Origami foldings the tangent vectors of any stage t ∈ [0, 1] of the curve c(s, t)
have to be parallel to generators of the cone Γ(u(t)). These isometries keep the angles between
the generators e1,2(u(t)) and the tangents c′(s, u(t)). Thus, v = v(s) in (11) can be used to
parametrize the corresponding generators on the cones Γ(u(t)) during the Origami folding.
Figure 3a displays the intersections of the cones Γ(u) and Φ(v) for some values of u and v for
α = π/4 and ω = 3π/4.

The coupled Origami folding from the spatial to the planar configuration yields a continous
deformation of the spherical image c′(v(s), t) from t = 0 to t = 1. There the point v1 on the
starting configuration Γ(α = u(0)) has to move on the possible path on Φ(α) towards e1 (see
Figure 3). This can either be done on the ‘upper’ or the lower half of Φ(α). The same situation
comes up for v2 and e2. Thus, if c′(s) parametrizes a part of k ⊂ Γ(α) (see the bold parts in
Figure 3b ) running across one of the two vertices v1,2 the coupled Origami folding from space
to plane will split. Such a folding will not be possible without damaging the configuration.

This yields the following necessary condition for the existence of a coupled Origami folding
for pairs of cylinders.

Theorem 3. For a spatial C2-curve c(s) with tangents parallel to a cone Γ(α) of degree two
(but not a cone of revolution), the real focal lines of Γ determine direction vectors e1,2 which —
together with the curve c(s) — determine a CFC-triple. The two vertex generators in the plane
of the real foci e1,2 shall be denoted by v1,2. The coupled Origami folding of the corresponding
CFC-triple cannot be performed without damage if the spherical image c′(s) covers parts on
Γ(α) running over v1 or v2.
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Remark. This is only a necessary but not a sufficient condition for the existence of a coupled
Origami folding from the spatial to the planar arrangement with cylinders. The folding can
be physically impossible even if the configuration does not fall into the realm of Theorem 3.

5. The discrete version

The spatial C2-curve c(s) can be replaced by a spatial polygon p := {pj, j = 0, . . . , n} with
vertices pj . The cylinders f1,2 then are replaced by two prisms with generators parallel to unit
vectors e1,2. The problem of curved Origami with pairs of cylinders then turns into a problem
of polygonal Origami with pairs of prisms : If there are two isometries γi (i = 1, 2) of the two
prisms fi into a plane π such that the two planar polygons γ1(p) and γ2(p) are related in a
planar displacement we will speak of a discrete curved Origami folding with pairs of prisms.
In this special case the corresponding triple (e1, e2,p) consisting of two unit vectors e1,2 and
the spatial polygon p will be called triple for polygonal Origami folding with pairs of prisms
or for short PFP-triple.

In this case the angles φi,j (i = 1, 2; j = 0, . . . , n− 1) between the polygon’s segments on
the lines [pj,pj+1] and the generators of the prisms (parallel to ei) are kept under the two
isometries γi (i = 1, 2). The two isometries map the directions ei into e∗i := γi(ei). In the
plane π for a given PFP-triple (e1, e2, pi) we get

|φ1(j)± φ2(j)| = 2ω = const. (13)

for all j = 0, . . . , n − 1. This is the counterpart to (4) for the discrete case. Thus, our
considerations for the continous case can easily be transferred to the discrete case. Theorems 1
and 2 have the following discrete counterpart

Theorem 4. A polygon p and two direction vectors e1,2 for prisms through the polygon make
up a PFP-triple for discrete curved Origami with pairs of prims exactly in one of the following
two cases:
Either p is a planar polygon or the segments [pj,pj+1] of the polygon p are parallel to the
generators of a cone Γ of degree 2 which is not a cone of revolution. In the first case the
directions e1,2 are symmetric with respect to the plane of the polygon, in the second case they
determine the two real focal lines of Γ.

Theorem 3 can be transferred to the discrete case in the same way:

Theorem 5. We start with a polygon p and two direction vectors e1,2 forming a PFP-triple.
The segments [pj,pj+1] of the polygon p are parallel to the generators of a cone Γ(α) of degree
two which is not a cone of revolution. The two vertex generators in the plane of the real foci
e1,2 shall be denoted by v1,2.
The coupled Origami folding of the corresponding PFP-triplet cannot be performed without
damage if the spherical image of the polygon’s segments [pj,pj+1] covers parts on Γ(α) running
over v1 or v2.

6. Conclusions

We studied the problem of curved Origami folding with pairs of cylinders (generators parallel to
e1,2) meeting in curve c(s). We speak of a CFC-triple if the configuration can be isometrically
transformed into a planar Origami. We were able to characterize these curves as affine images
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of curves of constant slope. The spherical image c′(s) of their tangents must be contained in a
spherical conic (but not in a circle). The real foci of this spherical conic uniquely determine
the directions e1,2 of the generators of the two possible cylinders through such curves c(s).
We worked out a necessary condition for possible Origami folds from the spatial to the planar
arrangement. Fortunately, the results can be transferred to the discrete case without any
reservations.
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