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Abstract. The hypotenuses of all right triangles inscribed into a fixed conic C
with fixed right-angle vertex p are incident with the Frégier point f to p and C.
As p varies on the conic, the locus of the Frégier point is, in general, a conic as
well. We study conics C whose Frégier locus is singular in Euclidean, elliptic and
hyperbolic geometry. The richest variety of conics with this property is obtained
in hyperbolic plane while in elliptic geometry only three families of conics have a
singular Frégier locus.
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1. Introduction

Many theorems of Euclidean elementary geometry have their counterparts in elliptic or hy-
perbolic geometry, possibly after a suitable re-formulation. An example of this is a version of
Pythagoras’ Theorem [2, 3]. By contrast, we know of no convincing non-Euclidean version for
Thales’ Theorem or its converse (compare [4]). This paper will not provide one either but we
will present some interesting geometric configurations that are at least reminiscent of Thales’
classical theorem.

Thales Theorem talks about right triangles with the same hypotenuse and implies that
the hypotenuses of all right triangles inscribed into a circle C contain the circle center. In
particular, the hypotenuses of all right triangles with right angle vertex p fixed on that circle
all pass through one fixed point f . This statement remains true if the circle is replaced by an
arbitrary regular conic (Frégier’s Theorem). In this situation, the point f is called the Frégier
point to C and p. It is not difficult to prove Frégier’s Theorem by means of basic projective
geometry. We present two well-known proofs: One has the benefit to clearly demonstrate the
relation between Thales’ and Frégier’s theorems. The other employs the theory of projective
transformations on conics and immediately implies the validity of Frégier’s Theorem in elliptic
and hyperbolic geometry.
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The Frégier point f depends on C and p but the locus F of all Frégier points for varying
p only depends on C. This locus turns out to be a conic which, by construction, shares the
symmetry group with C. In Euclidean geometry, C and F are even similar. We are interested
in regular conics C whose Frégier conic F is singular. In Euclidean geometry, these are circles
and right hyperbolas. In the former case, F degenerates to the circle center, in the latter, it
is the line at infinity. The same question in elliptic and hyperbolic geometry calls for a more
involved answer and gives rise to a number of interesting geometric configurations, even when
viewed with the eyes of a Euclidean observer.

2. Frégier conics in Euclidean geometry

We begin by recalling a few well-known results and proofs on Frégier points and conics in the
Euclidean plane. They introduce some basic concepts and set standards that later will be
compared with the non-Euclidean situation.

Theorem 1 (Frégier). Given a regular conic C in the Euclidean plane and a point p ∈ C,
the hypotenuses of all right triangles inscribed into C and with right angle at p intersect in a

common point f .

Definition 1. The point f of Theorem 1 is called the Frégier point of C and p.

We present two proofs of Theorem 1, both having their own merits. The first proof shows
how to derive Frégier’s Theorem from Thales’ Theorem by means of a homology to a circle
(Figure 1).
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Figure 1: Proof of Theorem 1 by homology to circle

First proof of Theorem 1. Take an arbitrary circle D, tangent to C at p. There exist a ho-
mology η with center p that maps D to C. (Its axis A is the Desargues axis of two triangles
that correspond in η and are inscribed into D and C, respectively.) By Thales’ Theorem, the
Frégier point is then f = η(m) where m is the circle center.

Second proof of Theorem 1. For a right triangle inscribed into C and with right angle at p,
denote the other vertices by q and r. The map ϕ : C → C, q 7→ r (with appropriate conventions
if p coincides with q or r) projects to the orthogonal involution in the line bundle around p.
Hence, it is an involution in C and there exists a point, the Frégier point f , which is collinear
with all pairs of corresponding points [1, Theorem 8.2.8].
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Figure 2: Construction of the Frégier point via the isotropic lines through p
(pseudo-Euclidean and hyperbolic geometry)

This second proof appeals to a more profound knowledge of projective geometry but has
the benefit of retaining its validity in non-Euclidean geometries:

Corollary 1. Frégier’s Theorem is true in the elliptic and hyperbolic plane.

The defining property of the Frégier point also allows its computation. However, the
arbitrariness of the inscribed right triangle is somewhat awkward. We therefore look for
alternatives. A useful observation, yet insufficient to nail down f , is the fact that it is located
on the conic normal at p. As suggested in [1, Exercise 10.12], we are led to consider the
fix points of the involution ϕ in our second proof of Theorem 1. They are the intersection
points i, i different from p of C and the isotropic lines through p. Their tangents intersect
in f . These arguments equally apply to Euclidean and non-Euclidean geometries. Figure 2
displays this construction in the pseudo-Euclidean plane with absolute points I, I and in the
hyperbolic plane with absolute conic N .

Proposition 1. The Frégier point f to a conic C and a point p ∈ C in Euclidean, elliptic or

hyperbolic geometry is the pole of the line i ∨ i where i and i are the projections of p onto C
via the isotropic lines through p.

Remark 1. At this point, a remark on our view on hyperbolic geometry seems appropriate. In
the sense of Wildberger’s universal hyperbolic geometry [7, 5, 6], we treat points in- and
outside the absolute conic N equally. This leads to simplified statements and computations.
Arguably, the resulting theory is richer and more comprehensive. It also allows a “real”
Figure 2 to illustrate Proposition 1. Note however that universal hyperbolic geometry fails
to be a model for the axiomatic geometry obtained by replacing Euclid’s parallel postulate
with its hyperbolic counterpart.

Denoting the Frégier point to conic C and point p by f(C, p), we call the set

F := {f(C, p) | p ∈ C}
the Frégier locus of C. In general, it is a regular conic section but exceptions may occur.

Theorem 2. Generically, the Frégier locus of a conic C is a conic F .

It is our aim in this paper to characterize regular conics C whose Frégier locus F is not
a regular conic. In doing so, we will derive the algebraic equation of the Frégier locus for
different relative positions of N and C and thus prove Theorem 2. This discussion also makes
the word “generically” precise. If the Frégier locus is a conic, we call it the Frégier conic to C.
Otherwise, we speak of the singular Frégier locus.
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3. Singular Frégier loci

Now we have a closer look at conics in the Euclidean, elliptic and hyperbolic plane whose
Frégier locus is singular. The Euclidean discussion is straightforward and yields known results.
The non-Euclidean discussion requires the distinction between relative position of N and C,
that is, different types of pencils of conics. We shall see that singular Frégier loci are of greater
variety in a non-Euclidean setting.

3.1. Frégier conics in the Euclidean Plane

Using homogeneous coordinates [x0, x1, x2], an ellipse or hyperbola in the Euclidean plane can
always be described by an equation of the shape

C : bx2

1
+ ax2

2
= x2

0

with non-zero real numbers a, b that are not both negative. The Frégier conic, computed via
Proposition 1, has equation

F : b(a+ b)2x1 + a(a + b)2x2 = ab(a− b)2x0.

We see that, in general, F is obtained from C by a scaling with factor (a−b)/(a+b) about the
common center of C and F . This statement is not true if the conic C is a circle (a2 − b2 = 0)
or a right hyperbola (a2 + b2 = 0). In the former case, the Frégier conic consists of a single
point, in the latter, the Frégier conics degenerates to the line at infinity. It is noteworthy that
in this case the map p ∈ C → f ∈ F is a double cover of the line at infinity but only the
ideal points on normals of C arise as real Frégier points. Thus, the Frégier locus is a projective

line segment.
A parabola in the Euclidean plane may be described by the equation C : x0x2 = ax2

1
with

a ∈ R \ {0}. Its Frégier conic F : x0x2 = ax2

1
+

1

a

x2

0
is just a translate of C and we can

summarize:

Proposition 2. If the Frégier locus in the Euclidean plane is not a regular conic then either

C is a circle and F is its center or C is a right hyperbola and F consists of those ideal points

that belong to normal directions of C.

3.2. Frégier conics in the hyperbolic plane

Our investigation of Frégier conics in the hyperbolic plane is based on a discussion of the
relative position of the absolute conic N and the conic C in the complex projective plane,
that is, pencils of conics in that plane. This is justified because the Frégier locus to a real
conic is always real, even if some elements in the construction of Figure 2 appear as conjugate
imaginary pairs. The line F and its pole f are always real.

The conics of a pencil share four different points (“base points”), some of which may
coincide and thus result in tangency or contact of higher order [1, Section 9.6]. Depending
on the number of coinciding points, one can distinguish five different cases (Figure 3):

1. General pencils with four different base points.

2. Simple contact pencils with a single pair of coinciding base points. In analogy to the
Euclidean situation, we call the corresponding conics parabolas.
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Figure 3: Pencils of conics, conics in the hyperbolic plane.

3. Bitangent pencils where precisely two pairs of base points coincide. We call the conics
in this case circles.

4. Double contact or osculating pencils where three of the four base points coincide. Here,
we speak of osculating parabolas.

5. Triple contact or hyperosculating pencils where all four base points coincide. The cor-
responding conics are called horocycles.

3.2.1. General conics

The equation of a general conic C may be written as

C : bx2

1
+ ax2

2
= x2

0
, a, b ∈ R \ {0}

with non-zero real numbers a, b that are not both negative and not both equal to 1. This
case also comprises circles for a = 1, b 6= 1 or b = 1, a 6= 1.

Its Frégier conic has the equation

F :
(a2b2 − a2 − b2)2

(a2b2 + a2 − b2)2a2
x2

1
+

(a2b2 − a2 − b2)2

(a2b2 − a2 + b2)2b2
x2

2
= x2

0
.

It is singular if and only if

b2 =
a2

a2 + 1
, b2 =

−a2

a2 − 1
, or b2 =

a2

a2 − 1
.

The Frégier locus is, in that order, a projective line segment on the first, the second or the
third axis of the underlying projective coordinate frame (Figure 4).

3.2.2. Parabolas

A parabola that is tangent to N at [1,−1, 0] admits an equation of the shape

C : λ(x2

1
+ x2

2
− x2

0
) + (x0 + x1)(µ(x0 + x1) + x1) = 0.

The parameters λ and µ range in R but λ = 0 and λ = −1

2
are prohibited in order to ensure

regular conics. The limiting case µ → ∞ yields a horocycle and will be treated later. The
Frégier conic has equation F : (x2

1
+ x2

2
− x2

0
)λ4 + (x0 + x1)Λ where

Λ = (x0 + x1)(5µλ
3 + 12µλ2 + 9µλ+ 2µ+ 1) + λ

(

4(λ+ 1)x0 + (5λ2 + 8λ+ 5)x1

)

.

It is singular precisely for λ = 0, λ = −1

2
, or λ = −1. Because only the last value is admissible,

we obtain a one-parametric family of hyperbolic parabolas with singular Frégier conic:

C : x2

0
− x2

1
− x2

2
+ (x0 + x1)(µ(x0 + x1) + x1) = 0

and µ ranges in R (Figure 5).
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Figure 4: Three conics with singular Frégier
locus (F3 is part of the line at infinity)
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3.2.3. Osculating parabolas

Writing the equation of an osculating parabola as

C : λ(x2

1
+ x2

2
− x2

0
) + (x0 + x1)x2 = 0,

with λ ∈ R \ {0}, the Frégier conic becomes

F : 2λ(x2

1
+ x2

2
− x2

0
) + (x0 + x1)(10x2λ+ 8(x0 + x1)) = 0.

It is never singular.

3.2.4. Circles

Circles in hyperbolic geometry are characterized by having double contact with N . The points
of contact may be both real or both conjugate complex. It is possibly to discuss these two
cases at once but it is probably easier to consider them separately. If the points of tangency
are real, we may write the circle equation as

C : λ(x2

1
+ x2

2
− x2

0
) + (x1 − x0)(x1 + x0) = 0, λ ∈ R \ {0, 1}.

This is the parabola case for µ = −1

2
. The Frégier conic is

F : λ3(x2

1
+ x2

2
− x2

0
) + (5λ2 + 8λ+ 4)(x1 − x0)(x1 + x0) = 0. (1)

Unless λ = −2 (see below), it is again a circle. Obviously, it shares the symmetries of C.
Because the signs of λ + 1 and λ3/(5λ2 + 8λ + 4)−1 + 1 agree, it lies in the interior of N if
and only if C does. The conic (1) is singular if

λ3(λ+ 2)4(λ+ 1)2 = 0.
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Figure 6: Singular Frégier loci to hyperbolic circles

Because λ /∈ {0, 1}, the Frégier locus is singular precisely for λ = 2. It degenerates to the line
with equation x2 = 0, that is, the span of the two points of tangency. More precisely, only
interior point of N occur as real Frégier points (Figure 6a). The lines connecting any conic
point p ∈ C with the points of tangency are perpendicular.

Remark 2. The situation of Figure 6a may also be described by saying that “Thales Theorem
in the hyperbolic plane holds true for infinite line segments.”

Remark 3. Figure 6a is also remarkable from a Euclidean viewpoint. The ellipse C with semi-
axis ratio 1 : 1/

√
2 is inscribed into the Thales circle N over major axis in such a way that

for any point p ∈ C, the pole of the ellipse tangent in p with respect to N , the projection of
p onto the major axis and p itself are collinear.

If both points of tangency are conjugate complex, the circle equation becomes

C : λ(x2

1
+ x2

2
− x2

0
) + x2

1
+ x2

2
= 0, λ ∈ R \ {0,−1}

and the Frégier conic is

F : λ3(x2

1
+ x2

2
− x2

0
)− (5λ2 + 8λ+ 4)(x2

1
+ x2

2
) = 0.

Unless λ = −2, symmetry is shared between C and F and one lies in the interior of N if and
only if the other does. The Frégier conic is singular precisely for λ = −2 (Figure 6b) and it
is the span of the two points of tangency. Viewing Figure 6b with the eyes of a Euclidean
observer, the Frégier locus is a projective line segment on the line at infinity.

3.2.5. Horocycles

If the intersection points of C and N all coincide, C is called a horocycle. Its equation may
be written as

C : λ(x2

1
+ x2

2
− x2

0
) + (x2 − x0)

2 = 0, λ ∈ R \ {0}
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whence the the Frégier conic becomes

F : λ(x2

1
+ x2

2
− x2

0
) + 5(x2 − x0)

2 = 0.

We see that C and F are related by the map λ 7→ 1

5
λ. No singularities arise.

3.3. Frégier conics in the elliptic plane

The situation in elliptic geometry is algebraically equivalent to universal hyperbolic geometry.
Via a complex projective transformation, all results of the latter also hold in the projective
extension of the former. In order to make statements on Frégier conics in the elliptic plane
over the real numbers, we only need to discuss the reality of the involved geometric objects.
The only relevant case is that of a general conic and its specialization to a circle:

C : bx2

1
+ ax2

2
= x2

0
, a, b ∈ R \ {0}.

Keeping things short, we only mention the final result. In the elliptic plane, the Frégier conic
to C is singular if and only if a and b satisfy one of

b2 =
a2

a2 + 1
, b2 =

−a2

a2 − 1
, or b2 = − a2

a2 + 1
.

The last case is never real and none of these families contains real circles.

4. Conclusion

We recalled some well-known facts about Frégier conics in the Euclidean plane and transferred
them to elliptic and hyperbolic geometry. It turned out that the situation between Euclidean
and non-Euclidean geometry is different when it comes to singular Frégier loci. In particular,
we saw that the Frégier locus to a regular conic C can be singular if C is an ellipse, a hyperbola,
a parabola, or a circle but not if it is an osculating parabola or a horocycle. Another notable
difference is that a singular Frégier locus in non-Euclidean geometry is always a projective
line segment while it may be a single point in Euclidean geometry.
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