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Abstract. In this paper we propose a synthetic way (ensuing from Euclid's Ele-
ments) to geometrize the method of coordinates and thus to reformulate analytic
geometry using a synthetic, axiomatic approach. In the theory that we will de-
velop, the segment arithmetic (Streckenrechnung) introduced by David Hilbert in
his Grundlagen der Geometrie plays a crucial role. Analytic geometry has funda-
mental scienti�c and mathematical signi�cance since, e.g., it is essential for the
application of mathematics to physical and natural sciences. Our synthetic ap-
proach is certainly useful for a theoretical understanding of hierarchical structures
of axiomatic theories, it can stimulate problem solving in the spirit of undergrad-
uate mathematics, and it can even help to enhance classroom learning, all this
being very important in modern times.
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1. Introduction

The �rst step of the transition process from synthetic to analytic geometry was taken with
the birth of the coordinate method. Around 1630, Pierre de Fermat and René Descartes
independently discovered the advantages of using numbers in geometry as coordinates.
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Descartes was the �rst who published a detailed account in his book La géométrie from
1637. This program, carried out with the help of coordinates, is called the arithmetization of
geometry, but according to [6]

the truth is that Descartes had no intention of arithmetizing geometry. In fact, the
purpose of �La géométrie� might, with equal validity, be described as the translation of
algebraic operations into the language of geometry.

When David Hilbert gave in 1891 his �rst course on geometry, he proposed a division of
geometry into three di�erent branches: intuitive geometry, axiomatic geometry, and analytic
geometry. And he decided to take a purely synthetic approach (ensuing from Euclid's
Elements). Recently, based on a set of unpublished notes used by Hilbert for courses on
geometry, the author of [14] gives an interpretation of internal arithmetization of geometry
in [15], i.e., in Hilbert's Grundlagen der Geometrie (Foundations of Geometry):

A central concern that motivated Hilbert's axiomatic investigations from very early
on was the aim of providing an independent basis for geometry. Accordingly, these
concerns about an independent grounding for elementary geometry determined very clear
methodological constraints in the process of embedding it into a formal axiomatic system.

Still in [14] it is said that Hilbert did not only try to show that geometry could be considered
as a pure mathematical theory, when presented as a formal axiomatic system; he also aimed
to show that in the construction of such an axiomatic system one could proceed purely
geometrically, avoiding concepts borrowed from other mathematical disciplines like arithmetic
or analysis.

In his Elements, Euclid interrupted his geometrical expositions after the �rst four books
in order to expound a theory of proportion; the application to plane �gures then follows
in Book VI. With segment arithmetic (Streckenrechnung), de�ned in his Grundlagen der
Geometrie on a purely synthetic basis, Hilbert developed a suitable proportion theory and
accomplished a uni�cation of two theories that, from the time of Euclid, had always stood
on separate foundations (cf. [17]). What none saw before Hilbert was, however, the full
scope of possibilities for arithmetizing geometry from inside. This was meant in the sense of
building new bridges from purely synthetic, axiomatic geometry to analytic geometry that
operate over various number �elds (see again [17]). In [20] J. Stillwell wrote that

Hilbert transformed our view of the Pappus and Desargues theorems by showing that they
express the underlying algebraic structure of projective geometry [. . . ]. Hilbert's treat-
ments of projective and hyperbolic geometry have another important common element:
construction of real numbers. To achieve this, Hilbert has to add an axiom of continuity
to the geometry axioms, but he evidently wants to show that the real numbers can be put
on a geometric foundation.

As it was noted by Vailati (see [21]), it seems that already Euclid wanted to look
for alternate demonstrations demanding the use of the theory of proportions, for example
as if he supplies also a demonstration based on the `equivalence theory' of the Pythagorean
theorem. Moreover, he highlighted that during the Renaissance there was a new interest
in the geometric speculations as well as the tendency to replace the theory of proportions
exposed in Euclid's Elements by one that was `more' geometric, and he also described this
theoretical way of the Italian and the German school until the beginning of the 19th century
citing V. Giordano, H. Grassmann, L. Rajola-Pescarini, R. Hoppe, and G. Biagi.
In the development of a theory of proportions that is not depending on the equivalence theory,
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the theorems of Pappus and Desargues play an essential role. This strict connection was also
highlighted more recently in [5]. Using a synthetic, axiom based approach, we will reformulate
analytic geometry on a purely synthetic basis. In the theory that we will develop a crucial
role is played by the segment arithmetic of Hilbert (see also [1]).

The introduction of coordinates in a�ne space via geometric (but not synthetic) axioms
is presented in the book Projective and Polar Spaces by P. Cameron (see [7, Chap 3]), or
in the monograph Geometric Algebra by E. Artin (see [2, Chap 2]). Artin wrote:

We are all familiar with analytic geometry where a point in a plane is described by a
pair (x, y) of real numbers, a straight line by a linear equation [. . . ]. A much more
fascinating problem is, however, the converse. Given a plane geometry [. . . ] assume
that certain axioms of geometric nature are true. Is it possible to �nd a �eld K such
that the points of our geometry can be described by coordinates from K and the lines by
linear equations ?

It is known that analytic geometry has a scienti�c and mathematical signi�cance since it
is essential for the application of mathematics to physical and natural sciences. A synthetic
approach to analytic geometry could be useful also to remove the evident gap that exists
between the manner in which vector calculus is usually taught by mathematicians and the
way in which it is used by other scientists, in particular physicists (cf. [12]).

Moreover, a synthetic approach is justi�ed by the fact that nowadays geometry, as it
is represented in Euclid's Elements, is somehow recovered and takes into account also de-
velopments in contemporary mathematics (see [1] and several references given there). One
interesting consequence is that recent representations of geometric �elds tend to recover the
contribution of diagrammatic reasoning, also and in particular within axiomatics (see [3] and
[16]). We think that this approach could be useful to stimulate problem solving, also in the
framework of undergraduate mathematics, and even to enhance classroom learning.

In this work, renouncing the minimality of the classical Euclidean axioms of the plane
E2 and the space E3, we will add as axioms the con�gurations of Pappus and Desargues
(see Figure 2). This will allow us to develop in Section 2 a �uently and natural theory of
proportions in E3 just based on geometric objects, that overcome the problems that we have
mentioned above. Using this theory in Sections 3 and 4, we identify the natural structure
of normed vector spaces in Euclidean space and, within this, the parametric equations of
straight lines, planes, circles, and spheres. Moreover, we will introduce the fundamental
notions of scalar product and vector product from a synthetic point of view. In Section 5
the transition from synthetic geometry to analytic geometry is completed by introducing the
notion of Cartesian coordinate system, which allows the usual identi�cation of the Euclidean
plane with R2, and of the Euclidean space with R3.

2. Geometric proportions in E3

The theory of proportion is not easy to follow in Euclid's book, and it represents also a
critical aspect in teaching. The mathematician and philosopher H. Freudenthal states
that Hilbert, with his Proportion Theory based on `Streckenrechnung', has been able to
make something that can be considered as an ideal for classical Greek thought: an integrated
geometric treatment of mathematics [13]. In this section we will introduce a notion of geo-
metric proportion in Euclidean space E3, that extends the notion of geometric proportion in
the Euclidean plane E2 given in [1].
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Figure 1: Geometric proportions

In the spirit of synthetic geometry, we will say that two segments (resp. angles) are equal if
they can be transported one into the other by means of the classical constructions in Euclidean
space.

In a Euclidean space E3 with �xed point O, we consider two points A and A′, distinct
from O and such that the rays OA and OA′ with apex O do not coincide. Let B ∈ OA and
B′ ∈ OA′. We shall write A : B =O A′ : B′, or more brie�y A : B = A′ : B′, if and only if
AA′‖BB′ (meaning parallelity; see Figure 1 on the left).

Obviously, if A = B, then A′ = B′, and if A and A′ belong to the same circle with center
O, the same applies for B and B′. The de�nition and properties also can be given when the
rays OA and OA′ coincide. In this case

A : B = A′ : B′

means that A : B = A′′ : B′′, with A′′ not belonging to the straight line OA, and belonging
to the sphere with center O through A′, and B′′ is the intersection between the ray OA′′ and
the sphere with center O through B′ (see Figure 1 on the right). The formula A : B = A′ : B′

gets the name of a (geometric) proportion.
As in [1] we assume the following statements I and II as axioms.

I (Pappus): If H,C belong to the ray OB and K,L belong to the ray OA, then

(A : L = B : H, K : A = H : C) =⇒ K : L = B : C .

II (Desargues): If A′ belongs to the ray OA, B′ belongs to the ray OB, and C ′ belongs to
ray OC, then the following implication holds:

(A : A′ = B : B′, B : B′ = C : C ′) =⇒ A : A′ = C : C ′.

With the obvious changes in the formulation, all the classical properties of numerical
proportions remain valid.

3. The natural structure of a vector space in E2 and E3

By proportion theory introduced in the above section, following [1], we have that it is possible
to de�ne a structure of a (complete ordered) �eld over a straight line OU .

We denote this structure as ROU . The elements of ROU are called scalars and denoted
by Latin lowercase letters. Obviously, the same �eld ROU is de�ned in each plane of the
Euclidean space to which O and U belong.
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Figure 2: Con�gurations of Pappus (on the left) and Deasargues (on the right) in E3

E2 and E3 can be structured as vector spaces with the following operations:

Sum of points.
P + Q = K, where K is the point such that the ray PK is parallel and with the same
orientation of the ray OQ, and the segment PK is equal to OQ. The point K can be obtained
via construction, by moving the angle and of the segment, and it is uniquely determined (see
Figure 3).

If O, P and Q are aligned, P + Q is on the straight line passing through them, and the
sum is reduced to the sum of lengths of segments of ordinary Euclidean geometry. If the
points O, P and Q are not aligned, the point P +Q that is obtained can be seen as the vertex
opposite to O in the parallelogram whose ordered vertices are P , O, Q, P+Q, and the triangle
4(UOQ) is translated in the triangle with vertices U ′, P and P +Q. The construction does
not lose its meaning if P = O; in fact, in this case it is P +O = P and O + P = P.

Figure 3: Sum of two points

Multiplication of a scalar of ROU by a point of E2 [resp. of E3].
Let t ∈ ROU and P ∈ E2 [resp. of E3]. We set: t · P = tP = O if either t = O or P = O, and
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if t 6= O and P 6= O, then t · P = tP = K, where K is the point satisfying the proportion

U : t = P : K when t belongs to the ray OU,

−U : t = −P : K when t belongs to the ray O(−U).

Remark 1. In Euclidean space, consider the two scalar �elds ROU and ROU ′, with U and U ′

belonging to the same sphere of center O. Let t ∈ ROU , t
′ ∈ ROU ′ and t′ belong to the sphere

with center O and passing through t. If t′ belongs to the ray OU ′ and t belongs to the ray OU ,
or if t′ belongs to the ray O(−U ′) and t belongs to the ray O(−U), then t′A = tA. If t′ belongs
to the plane AOB, then t′(A + B) = t′A + t′B, and hence we have t(A + B) = tA + tB for
each t (by t′(A+B) = t(A+B) and t′A+ t′B = tA+ tB).

Using the notion of geometric proportion and replacing the Theorem of Thales (intercept
theorem) by axioms I and II, one can easily check that the argument that Stillwell used in
[19], to highlight the intrinsic algebraic structure on a straight line, also shows that the set of
points of the Euclidean plane and, by Remark 1, the set of the points of the Euclidean space
can be seen as a vector space over the scalar �eld ROU .

We call these structures the Euclidean plane OU , denoted by E2OU [resp. the Euclidean
space OU , denoted by E3OU ]. Here the points of the straight line OU can play indi�erently the
role of scalars or vectors.

Remark 2. Let Q 6= O. Then we have:
1. For each t ∈ ROU , P = tQ belongs to the straight line OQ. Conversely, for each P

belonging to the straight line OQ there exists a unique scalar t such that P = tQ. Then
P = tQ is an equation of the straight line OQ.

2. Let P0 be a point of the E3OU . For each t ∈ ROU , the points P = P0+tQ, t ∈ ROU , belong
to the straight line r passing through P0 and being parallel to OQ. Conversely, for each
point P of r there exists a unique scalar t such that P = P0 + tQ. Then P = P0 + tQ
is an equation of the straight line r.

Remark 3. Let Q1, Q2 be non-collinear with O. Then we have:
1. For each ordered pair (r, s) ∈ R2

OU , P = rQ1 + sQ2 belongs to the plane OQ1Q2.
Conversely, for each P belonging to the plane OQ1Q2 there exists a unique ordered pair
(r, s) ∈ R2

OU such that P = rQ1+sQ2. Then P = rQ1+sQ2 is an equation of the plane
OQ1Q2.

2. Let P0 be a point of the E3OU . For each pair (r, s) ∈ R2
OU , P = P0 + rQ1 + sQ2 belongs

to the plane π passing through P0 and being parallel to the plane OQ1Q2. Conversely,
for each P belonging to the plane π there exists a unique ordered pair (r, s) ∈ R2

OU such
that P = P0 + rQ1 + sQ2. Then P = P0 + rQ1 + sQ2 is an equation of the plane π.

4. The natural norm in E3OU

In this section we will de�ne a natural norm in E3OU and then introduce the `scalar product'
and the `vector product'. If we consider a point P of E3OU distinct from O, we use the symbol
‖P‖ to denote the intersection point of the ray OU with the sphere having the center O and
passing through P (see Figure 4); ‖P‖ is called the modulus of P . We set ‖O‖ = O. This
de�nition is an extension of what was introduced for the plane (see [1]).
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Figure 4: Modulus of P

Given the segment AB, let K = ‖A − B‖. Then we have OK = AB. We note that
all distances are reproducible on the ray OU ; summing up, the distances between points or
multiplying them can be presented by summing or multiplying the corresponding points on
the ray OU . Therefore we can express Euclid's theorem in terms of relations between moduli,
and thus we get the Pythagorean theorem (see [1]).

Let A belong to the E3OU . Then, evidently, the following properties hold:

- ‖A‖ = O i� A = O;

- ‖A‖ = A i� A belongs to the ray OU ;

- ‖A‖ = −A i� A belongs to the ray O(−U);
- ‖kA‖ = k‖A‖ if k belongs to the ray OU ;

- ‖A‖ = ‖ − A‖;
- ‖A + B‖ ≤ ‖A‖ + ‖B‖, and equality holds if and only if A and B belong to the same

ray with initial point O (triangle inequality).

Remark 4. Let r0 be distinct from O and belong to the ray OU .

• The equality ‖P‖ = r0 is satis�ed in E2OU by points of the circle with center O and passing
through r0, and in E3OU by points of the sphere with center O and passing through r0.

• The equality ‖P −P0‖ = r0 is satis�ed in E2OU by points of the circle with center P0 and
radius r0, and in E3OU by points of the sphere with center P0 and passing through r0.

4.1. Scalar product in E3OU

In the language of linear algebra (see [18]), ‖A‖2 is a quadratic form, and its associated
bilinear form is

1

2

(
‖A+B‖2 − (‖A‖2 + ‖B‖2)

)
.

Following [1], we set

〈A,B〉 = 1

2

(
‖A+B‖2 − (‖A‖2 + ‖B‖2)

)
and call 〈A,B〉 the scalar product between A and B. We have

1

2

(
‖A+B‖2 − (‖A‖2 + ‖B‖2)

)
= ±‖A‖‖B′‖,
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where B′ is the perpendicular foot point of B on the straight line OA (see Figure 5), and we

have plus if the angle AÔB is acute, otherwise minus (see [1]).

Figure 5: Modulus of B′

The following properties can be easily and directly proved in the context of synthetic
geometry (for linearity see, e.g., [12]):

- 〈A,B〉 = 〈B,A〉;
- 〈kA,B〉 = k〈A,B〉, for all k belonging to the straight line OU ;

- −‖B‖‖A‖ ≤ 〈A,B〉 ≤ ‖B‖‖A‖, where equality holds on the left side if and only if the
rays OA and OB are opposite, and equality on the right side holds if and only if the
rays OA and OB are coincident (Cauchy-Schwarz inequality);

- 〈A+B,C〉 = 〈A,C〉+ 〈B,C〉 (linearity).
Moreover, we have 〈A,A〉 = ‖A‖2 and, by the Pythagorean theorem, that if A,B are distinct

from O, then 〈A,B〉 = O if and only if the angle AÔB is a right angle.
Now we set

cos(A,B) =
〈A,B〉
‖A‖‖B‖

and sin(A,B) =
√
U2 − cos(A,B)2 .

If the oriented (counter-clockwise) angle AÔB is convex, we set

cos(AÔB) = cos(A,B) and sin(AÔB) = sin(A,B) .

If the oriented angle AÔB is concave, we set

sin(AÔB) = − sin(A,B) and cos(AÔB) = cos(A,B).

Remark 5. Let Q 6= O. Then we have:

• For each P0 belonging to E2OU the equality

〈P − P0, Q〉 = O (1)

is satis�ed by P = P0 and by points P such that the angle (P − P0)ÔQ is right, i.e., by
the points of the straight line passing through P0 and being perpendicular to OQ.
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• For each P0 belonging to E3OU the equality (1) is satis�ed by P = P0 and by points P

such that the angle (P −P0)ÔQ is right, i.e., by the points of the plane passing through
P0 and being perpendicular to OQ.

4.2. The vector product in E3OU

In the Euclidean space OU , let A,B be distinct from O. By the Cauchy-Schwarz inequality,
A and B are collinear with O if and only if ‖A‖2‖B‖2 − 〈A,B〉2 = O. Now let A and B be
non-collinear with O. Then there exists a unique point K such that the orientation of the
ordered triple (A,B,K) is right-handed, the ray OK is perpendicular to the plane AOB, and

〈A,B〉2 + ‖K‖2 = ‖A‖2‖B‖2 (Lagrange′s identity).

We call K the vector product between A and B.
From 〈A,B〉 = ‖A‖‖B‖ cos(A,B) we get

‖K‖ = ‖A‖‖B‖ sin(A,B).

The vector product between A and B is denoted by A ∧B. If A and B are collinear with O,
we set A ∧B = O.

If k ∈ ROU and R, S, T belong to E3OU , then the following properties of the vector product
can be proved in the context of synthetic geometry (for linearity see, e.g., [12] and [4]):

- k(R ∧ S) = (kR) ∧ S = R ∧ (kS);

- (R + S) ∧ T = R ∧ T + S ∧ T (linearity);

- R ∧ S = O if R ∈ OS or S ∈ OR.

5. The cartesian coordinate system

Now we introduce the notion of Cartesian coordinate system which allows identi�cation of
E2OU with R2

OU , and of E3OU with R3
OU .

In E2OU , let U1, U2 be distinct from O and non-collinear with O. For each P , we have
P = p1U1+p2U2, p1U1 being the projection of P onto the straight line OU1 in the direction of
OU2, and p2U2 being the projection of P onto the straight line OU2 in the direction of OU1.
The scalars p1, p2 are uniquely identi�ed and called the coordinates of P in the (coordinate)
system (U1, U2) (see Figure 6).

Figure 6: Coordinate system in E2OU



10 G. Anatriello, H. Martini, G. Vincenzi: A Synthetic Way to Geometrize Coordinates

5.1. The coordinate system in E2OU

Clearly, if P = p1U1+p2U2, Q = q1U1+q2U2 and t ∈ ROU , then P+Q = (p1+q1)U1+(p2+q2)U2

and tP = tp1U1 + tp2U2.
The structure of the vector space of E2OU yields R2

OU , with scalar �eld ROU , putting

t(a1, a2) = (ta1, ta2) and

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2) ,

for all t ∈ ROU , (a1, a2), (b1, b2) ∈ R2
OU .

In this context the equation of the straight line P = P0 + tQ, t ∈ ROU(see Remark 2) is
equivalent to the representation (x, y) = (x0 + tλ1, y0 + tλ2), t ∈ ROU , where (x, y) are the
coordinates of P , (x0, y0) the coordinates of P0, and (λ1, λ2) the coordinates of Q.

In E2OU , let Y belong to the circle with center O passing trough U such that the oriented

angle UÔY is right. We call the coordinate system (U, Y ) the standard Cartesian coordinate
system of E2OU .

Remark 6. In E2OU , let (U, Y ) be the standard Cartesian coordinate system. We have:

• If P = piU+, p2Y , then P = 〈P,U〉U + 〈P, Y 〉Y = ‖P‖ cos(P,U)U + ‖P‖ cos(P, Y )Y =

‖P‖ cos(PÔU)U + ‖P‖ sin(PÔU)Y .
• If A = a1U + a2Y , then ‖A‖ =

√
a21 + a22, and if B = b1U + b2Y , then 〈A,B〉 =

a1b1 + a2b2.

• If P0 = x0U + y0Y and Q = aU + bY , by (1) in Remark 5 the equality

ax+ by = x0a+ y0b

is satis�ed by the coordinates (x, y) of points of the straight line passing through P0 and
being perpendicular to OQ.

5.2. The coordinate system in E3OU

In E3OU , let U1, U2 and U3 be three points not coplanar with O. A point P that does not belong
to any of the planes OU1U2, OU1U3, OU2U3 is an extreme of the diagonal of a parallelepiped
with vertex O and with three faces, respectively on OU1U2, OU1U3, OU2U3, and three edges,
respectively on OU1, OU2, and OU3. The other faces are located on the planes parallel to the
planes OU1U2, OU1U3, OU2U3 passing through P . Then we have P = p1U1 + p2U2 + p3U3,
with (p1, p2, p3) ∈ R3

OU uniquely determined (see Figure 7).
In the planes OU1U2, OU1U3, OU2U3 we can consider the coordinate systems (U1, U2),

(U3, U1, ), (U2, U3), respectively. Hence, if P belongs to one of these planes, we also have

P = p1U1 + p2U2 + p3U3

with (p1, p2, p3) ∈ R3
OU uniquely determined.

We call p1, p2, p3 the coordinates of P in the (coordinate) system (U1, U2, U3). If P =
p1U1 + p2U2 + p3U3, Q = q1U1 + q2U2 + q3U3 and t ∈ ROU , evidently,

P +Q = (p1 + q1)U1 + (p2 + q2)U2 + (p3 + q3)U3 and tP = tp1U1 + tp2U2 + tp3U3.

Then the structure of the vector space with scalar �eld ROU identi�ed with the Euclidean
space can be carried over to R3

OU by putting for all t ∈ ROU , (a1, a2, a3), (b1, b2, b3) ∈ R3
OU

t(a1, a2, a3) = (ta1, ta2, ta3) and

(a1, a2.a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3).
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Figure 7: Coordinate system in E3OU

Hence, the equality P = P0 + tQ, t ∈ ROU , (see Remark 2) is equivalent to (x, y, z) =
(x0+ tλ1, y0+ tλ2, z0+ tλ3), t ∈ ROU , where (x, y, z) are the coordinates of P , (x0, y0, z0) the
coordinates of P0, and (λ1, λ2, λ3) the coordinates of Q.

Moreover, the equality P = P0 + rQ1 + sQ2, (r, s) ∈ R2
OU , (see Remark 3) is equivalent

to the equality (x, y, z) = (x0 + rλ1 + sµ1, y0 + rλ2 + sµ2, z0 + rλ3 + sµ3), (r, s) ∈ R2
OU ,

where (x, y, z) are the coordinates of P , (x0, y0, z0) the coordinates of P0 , (λ1, λ2, λ3) the
coordinates of Q1, and (µ1, µ2, µ3) the coordinates of Q2.

In E3OU the coordinate system (U, Y, Z) is called a standard Cartesian coordinate system
(of E3OU) if Y, Z belong to the sphere with center O and passing through U , and (U, Y ), (Y, Z)
and (Z,U) are the standard Cartesian coordinate systems in Euclidean planes OU containing
Y , OY containing Z, and OZ containing U , respectively.

Remark 7. In E3OU , let (U, Y, Z) be a standard Cartesian coordinate system.

• If P = piU + p2Y + p3Z, then P = 〈P,U〉U + 〈P, Y 〉Y + 〈P,Z〉Z and

P = (‖P‖ cosPÔU)U + (‖P‖ cosPÔY )Y + (‖P‖ cosPÔZ)Z.

• If A = a1U + a2Y + a3Z, then ‖A‖ =
√
a21 + a22 + a23, and if B = b1U + b2Y + b3Z, then

〈A,B〉 = a1b1 + a2b2 + a3b3.

• If in (1) P0 = x0U + y0Y + z0Z and Q = aU + bY + cZ holds, then (by Remark 5) the
equation

ax+ by + cz = x0a+ y0b+ z0c

is satis�ed by (x, y, z), the coordinates of points in the system (U, Y, Z) of the plane
through P0 and perpendicular to OQ.

• U ∧ Y = Z, Y ∧ Z = U,Z ∧ U = Y .

• If R = r1U + r2 + Y + r3Z and S = s1U + s2V + s3Z, then the coordinates of R ∧ S in
the system (U, Y, Z) are

(r2s3 − r3s2, r3s1 − r1s3, r1s2 − r2s1) .

The transition from synthetic geometry to analytic geometry is completed. The usual
identi�cation of the Euclidean plane with R2 and of the Euclidean space with R3 is made
possible.
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6. Conclusions

Our geometric approach to analytic geometry could also be useful for removing the evident
gap that exists between the way in which vector calculus is usually taught by mathematicians
and how it is used by other scientists (physicists, in particular). For the vector product, H.
Azad has said in [4] that

the geometric approach gives direct access to geometric problems and enhances geometric
and conceptual understanding.

Concerning the notions of scalar and vector product, T. Dray and C.E. Manogue asserted
in [11] that

it is easier to derive the algebraic formula from the geometric one than the other way
around and, as students tend to remember best �rst de�nitions, this should not be an alge-
braic formula devoid of context. The geometric de�nitions of scalar and vector products
are coordinates independent and therefore convey invariant properties of these products,
not just a formula for calculating them.

Moreover, we note that this approach takes into account the historical development of vector
analysis (see [10]).
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