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Abstract. This article is devoted to the problem of describing similarity types
of geometric objects. We give a solution of this problem for the case of four
points in plane. The general case is subdivided into several subcases depending on
configurations of points in maximum distance. Similarity types are parametrized
by a point or a pair of points in the plane.
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1. Introduction

The problem of defining normal forms in Euclidean geometry up to similarity and a solution
of this problem for triangles was described in [2].

A next step is to solve this problem for quadrangles or, more generally, for 4-multisets
of points in a plane. This means to describe a set S of mutually non-similar 4-multisets
of a plane with a fixed Cartesian system such that any 4-multiset in this plane would be
similar to a unique element of S. In Section 3.2 we describe uniquely defined representatives
of similarity classes of plane 4-multisets. These representatives can be considered normal
forms of 4-multisets. Furthermore, in Section 3.3 we deal with similarity classes of plane
quadrangles. Thus we obtain a classification of quadrangles up to similarity.

We assume that fixed Cartesian coordinates are introduced in the plane, S is designed
using the Cartesian coordinates. These normal forms may be useful in solving geometry
problems involving similarity and teaching geometry.

2. Notations and review

2.1. Sets and multisets

In this article we use multisets to take into account cases of coinciding points. We denote
multisets using \mathbf letters and double curly brackets, e.g. M = {{a,a,b,c}}. Sets are
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denoted using blackboard bold letters (\mathbb). The set corresponding to the multiset M
is denoted by Set(M). If Set(M) C A where A is a set, we also use the notation M C A. If
a multiset happens to be a set, we may also think of and denote it as a set. We use normal
letters to denote fixed objects and calligraphic letters (\mathcal) to denote objects as variable
elements of some ambient set.

2.2. Graphs

In this article we use undirected graphs I' = (V| E) defined by a vertex set or a multiset V'
and an edge set . We denote adjacency of vertices a and b as a — b.

2.2.1. Geometry

Consider R? with a fixed Cartesian system of coordinates (z,y) with origin O. Our objects
of study are multisets of points in R? having 4 elements (4-multisets, 4-submultisets of R?).
Additionally we require that no point has multiplicity 4: |Set(M)| > 2.

It is known that affine transformations generate the dilation group of R?, denoted by some
authors as IG(2) (see HAZEWINKEL [3]). Two multisets M; and M, are similar (denoted as
M, ~ M,) if there exists an affine transformation g € IG(2), such that g(M;) = M, (as
multisets). In this article by mappings we mean affine transformations applied to the plane
containing the given multiset. The convex hull of the multiset M is denoted as Conv(M) (see
AUDIN [1| and VENEMA [4] for comprehensive modern expositions of Euclidean geometry).

Let M C R". Let d be the maximal distance between two points in M. Recall that the
undirected graph Ay = (M, E(Awm)) such that {u,v} € E(An) iff dist(u,v) = d, is called
the diameter graph of M.

2.3. Review of a normal form of triangles

We review one of our previous results given in [2|, the Theorems 2.2 and 2.3: Each triangle
is similar to a unique triangle AABC such that A = (0,0), B =(1,0),C € S¢ = {(z,y) |y >
0, z >3, 2% +y* < 1} (see Figure 1). We will use the symbol Sc¢ in this article.
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Figure 1: The domain S¢.
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3. Main results

3.1. Diameter graph of a planar 4-multiset

We note that affine transformations preserve the isomorphism type of the diameter graph.
Proposition 1. M C R? |M| =4, |Set(M)| > 2.

1. 1<|E(Am)| <5.

2. All isomorphism types for An, subject to 1., are possible.
Proof. 1. We have to exclude the case |[E(Am)| = 6. Let M = {{X, Y, Z,T}}. If |[E(Am)| =

6 then using M we construct two equivilateral triangles AXY Z and AY ZT. Clearly | XT| #
| XY|, thus we get a contradiction.

2. This statement is proved by giving examples for all cases.
e Case |E(Anm)| = 1 happens for

M= {00, 001 (5 2). (34}

e There are two possible isomorphism types of graphs with |F| = 2 — two disjoint edges or
two incident edges and a vertex of degree 0. Disjoint edges happen for vertex sets of squares,
incident edges happen for

M, = {(0,0), (1,0), <cos%, sin %) , p},

where p belongs to the interior of the convex hull of the first three points.

e There are three possible isomorphism types of graphs with |E| = 3 — the triangle and a
vertex of degree 0, the path of length 3 and the 4-vertex tree with a vertex of degree 3. The
triangle happens for

M;j;, = {(0,0), (1,0), (cosg, sin %) , (%, %)}

The path of length 3 happens for

T . 7 T . 7
M32 - {(0a0)7 (1a0)> (00867 S111 6) s (1 — COS 5 Sin 6)} .

The tree with a vertex of degree 3 happens for

Msj; = {(0,0), (1,0), <cos%, sin g) , <cos%, sin g)}

e There are two isomorphism types if |F| = 4: complements of 2 incident edges (the triangle
with another vertex attached) and 2 disjoint edges (the 4-cycle). The complement of two
incident edges happens for

T . T ™ . T
My = {(0,0), (1,0), (cos 3 sin 5) , (cos 5 sin E)} :
The 4-cycle happens for
My, = {(070>7 (070)7 (170)7 (170)}
or

M, = {(0,0), (0,0), (1,0), (Cos%, sin%)}.

e |E(Anm)| = 5 happens if three points of M are vertices of an equilateral triangle and the
fourth point coincides with one of these three points. O
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3.2. Normal forms of plane 4-multisets
3.2.1. General algorithm

We define A = (0,0), B = (1,0). Let M be a 4-multiset. Our general algorithm to find
similarity types and normal forms of plane 4-multisets has the following steps.

1. Do a mapping ¢ such that some two points with maximal distance are mapped to
{A, B}.
2. Find a point X € g(M) maximizing max(|X Al,| X B|). Map X to S¢, using the reflec-
1

tion in the line x = 5 and the y-axis, if necessary. Denote this third point by C. Find

the set of possible positions of C.

3. Having fixed the set {A, B,C}, find the set of possible positions of the fourth point,
denote it by D. By the previous step we have that |[AC| > |AD| and |AC| > |BD|. Use

transformations preserving {A, B,C}, if desirable. Find the set of possible positions of
D.

3.2.2. Diameter graphs containing a triangle

Proposition 2. Let M be a 4-multiset such that Anp contains a triangle. Then M is similar
to exactly one 4-multiset {{A, B,C,D}} such that

C = (cos%,sing), De]Dlz{(:c,y)‘xZ%, y > (tan%)x, x2+y2§1}.

(x—cosf)?+(y—sing)* =1

s

v

X
A B g
>+t =1 (z—1)22+y*>=1
22+ =1 (x—1)2+y2=1
Figure 2: The domain Dy. Figure 3: The domain Dy, with o = g

Proof. We have to show that any 4-multiset M, such that Ay contains a triangle, can be
mapped to a multiset in the described form. First we map any three points of M corresponding
to a Ap-triangle to {A, B,C'}. Then we map the fourth point to D; using reflections in
bisectors of AABC (Figure 2). Note that

1) it D = C then |E(Am)| = 5,
2) if D belongs to the unit circle then |E(An)| = 4,
3) otherwise |E(Anm)| = 3.
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Now we have to prove that two distinct multisets of the described normal form are not similar.
Let M; = {{A, B,C,D;}}, with D; € Dy, i € {1,2}. Any affine transformation must preserve

{A, B,C}, thus it can only be a rotation by :t%7T or a reflection in bisectors. If Dy # D,, then
g(Dy) # g(Ds) for any such affine transformation, thus M; # M. O

Remark 3. M is a proper multiset iff D = C.

3.2.3. Trianglefree diameter graphs containing paths of length 2

Proposition 4. Let M be a 4-multiset such that Ay contains a path of length 2, but does
not contain a triangle. Then M is similar to ezactly one 4-multiset {{A, B,Co,D}} such that

Co = (cosa, sina), 0 < a<n/3, De Dy, =Ds, UDy, UDs,

(see Figure 3), where
Ds, = {(m,y)}yz (tan%) r, (=172 +y> <1, 2+ < 1},
Dy, = {(:E,y)}x>0, 2?4+ y? =1, tan% S%Stama},
D5, = {(:E,y)}(x—l)2+y2:1, r—1<0, Ogﬁgtana}.

Proof. The maximal angle between two intervals XY and XZ of maximal length having a
common vertex X is less than % Let this angle be equal to . We map X to A and {Y, Z} to
{B,C.}. If necessary we make the reflection in the line y = (tan ) x so that the fourth point
is mapped above this line, we denote its image by D. We check that D € D3, U Dy, U Ds,.
Note the following subcases.

1) D € Ds, correspond to cases of Ay having two incident edges and an isolated vertex;

2) D € Dy, correspond to Ay being the tree with a vertex of degree 3;

3) D € Dy, correspond to App being the path of length 3.
Cases with any C, and D = (0,0) correspond to Ay being a 4-cycle.

Let M, = {{A,B,Cai,pi}}, with Dz c ]D)2ai7 1€ {1,2}, Dl 7& DQ. If (&5} 7é (6%)] then M1 74
M, since affine transformations preserve the maximal angle between intervals of maximal
length. If a; = ay but D; and D, belong to different sets Dy o,, k € {3,4,5}, then M; ¢ M,
since affine transformations preserve the isomorphism type of maximal distance graph. If

a; = o and Dy and D, belong to the same set Dy, o, then any affine transformation must fix
{A, B,C,, } and D;, thus M; o M,. O

Remark 5. M is a proper multiset in the following cases: 1) C =D =C,, 2)C =C,, D = A,
3) C:COIB, DGDQ’O.
3.2.4. Diameter graph consisting of two disjoint edges

Proposition 6. Let M be a 4-multiset such that A has only two disjoint edges. Then M
is similar to exactly one 4-multiset {{A, B,C,D}} from the following list
1. (both longest intervals crossing in midpoints)

1 1 1 . 1 1 1 .
C:Ca:<§—§cosa,§sma>, D:Da:<§+§cosa,—§sma),

where 0 < a <

|
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2. (at least one longest interval crossed not in its midpoint)
C=Cuopy=(t—ucosa,usina), D=Dy, = (t+(1—u)cosa, —(1—u)sina),

2 +u?—1 1—12—(1—u)?

1 1
z - < < _
where 5 < t <1, 5 S u< t, T < cosa < 20— a) The set A of

possible values of (t,u), for which sets of C-values and D-values are nonempty, satisfies
an additional inequality t* — (u — £)* < 3 (see Figure /).

yh
ulk
1
5 X
3 1 t
22+t =1 (x—1)2+y? =1
Figure 4: The set A. Figure 5: C, and D, for a = %

Proof. First we note that the two intervals of largest distance must intersect in interior points.
We map M to {{A, B,C,D}} so that the following conditions and notations hold:

1) the intervals of maximal distance are mapped to AB and CD,
2) denote ABNCD := €,
3) |AE| =t > |EB,
4) |ICE|=u>|ED|, u <,
5) C is above the z-axis,
6) denote o := LAEC.
We describe possible positions of C and D.

)
)
)
)

1) Case t = u = l. In this case both intervals of maximal distance intersect in their mid-
2

points. Applying the reflection in the line z = %, if necessary, we get that C = C, and D = D,,
0 < a < 5 (see Figure 5). Note that this case covers all rectangles.

(2) Case t > % For all @ € [0, 7] we have |CB| < 1 and |DB| < 1. The parameters ¢, u and

|AC| < 1

|AD| < 1 which is equivalent to

« must satisfy the system {
2 + u? — 2tu cos <1
24+ (1 —u)?+2t(1 —u)cosa < 1
It follows that
2 +u?—1 1—t2— (1 —u)?

< < 2
2tu cos e 261 —u) 2)
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which gives the stated condition on «. In this construction we denote Cyy, := C and Dy, := D.
The inequality (2) has a solution with respect to « for the given values of ¢ and w, iff
2 —u?—1 - 11—t — (1 —u)?
2tu - 2t(1 —u) 7

which is equivalent to the hyperbole-type inequality

2 1 2

t (u 2>
Consider the two distinct 4-multisets, M; = ABC;D;, i € {1,2}. They must differ in at least
one of the parameters «, t or u. It implies My ¢ M. O

IN

3
3

Example 7. If t = 0.8 and u = 0.6, then « satisfies arccos(0.3125) < a < g (see Figure 6).

" YA
C C
A ey B > A ehiB 2~
D D
22 +y? =1 (r—1)2+y2=1 22y’ =1 (r—1)2+y2=1
Figure 6: The admissible positions of C Figure 7: Some nonadmissible positions
and D fort =0.8, u=0.6. of C and D fort =0.9, u =0.6.

Example 8. If t = 0.9 and v = 0.6, then there are no admissible points C and D, since
|AC| > 1 or |AD| > 1 (see Figure 7).

3.2.5. Diameter graph having one edge

Proposition 9. Let M be a 4-multiset such that Ang has one edge. Then M is similar to
exactly one 4-multiset {{A, B,C,D}} from the following list (see Figures 8 and 9).

1. (C not on the line v = %) Cro = (rcosa, rsina), % <r<l1, 0<tana < v4r2 —1,
D e DGra = (]D’?r U DSra U ]D)Qroz) N DlOT’Of ’ where

D7 = {(z,y)|2* + > <%, (= 1)* + 9% <r?},
]D8ra = {(I‘,y)|.§(:2+y2 :T27 —tana < % < tana},

Doy = {(I,y) (=1 +y* =1’ —tana < 2= < tana},

Digra = {(z,y) | (x — rcosa)? + (y — rsina)? < 1}.

2. (C onlmex:%) Ch:(%,h), 0§h<§,

DE]D)Hh:{(x,y)}:cZ%, L T
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8
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1y2 2 _
(x —rcosa)?+ (y —rsina)? =1 (—3)+y—h)7=1

»
<

Y

1

s

8
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a? +yt =07 (@ —1)% +y* =1 (x—1)2+y? =1

Figure 8: The domain Dg,., with r = 0.9, a = g Figure 9: The domain Dy, with h = 0.6.

Proof. We apply an affine transformation so that the endpoints of the interval of M of longest
distance are mapped to {A, B}. Using reflections in the y-axis and the line 2 =  (thus fixing
{A, B}) the remaining two points are mapped to some points C,D so that the following
conditions are satisfied:

1) C € Sg,

2) |CA| = [DA],

3) ICA| = |DB,

4) if |CA| = |DA| then ZCAB > /DAB,

5) if |CA| = |DB| then ZCAB > /DBA.
In other words, we map to S¢ the point p in the image of M under previous mappings which
has the largest distance to A and the largest angle formed by the y-axis and the line through
A =(0,0) and p.
1. If C does not belong to the line # = 3, then any affine transformation fixing {A, B,C}
setwise must fix it pointwise. Two distinct 4-multisets of this type must differ in at least one

of the points C and D and therefore are nonsimilar.

2. Let C belong to the line = 3 and have coordinates (3, h). Then we do an additional

reflection in the line x = % (which fixes {A, B,C}) and map the fourth point to the half-plane
T > % Two distinct 4-multisets of this type are nonsimilar for the same reason asin 1. [

Remark 10. M is a proper multiset in the following cases: 1) D = C,o, 2) D = Cp,.

3.3. Normal forms of plane quadrangles

In this subsection we consider 4-multisets M which are 4-sets and such that Conv(M) is not
an interval.

Given such a 4-set, a quadrangle is associated with an undirected 4-cycle graph having
the given points as vertices. We distinguish three classes of quadrangles: convex, nonconvex
and self-intersecting. We call a 4-set M conver iff the boundary of Conv(M) is a quadrangle.

For a given 4-set a quadrangle can be constructed in three ways. A nonconvex 4-set gener-
ates three (nonconvex) quadrangles. These quadrangles are similar iff the vertices are vertices
of an equilateral triangle and its center. A convex 4-set generates one non self-intersecting
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quadrangle and two self-intersecting quadrangles. These self-intersecting quadrangles are
similar iff the vertices are vertices of a rhomboid.

Definition 11. Given two quadrangles Ry and R, constructed using a 4-set Ml we call them
similar (Ry ~ Ry) iff there is an affine transformation s: M; — M, such that for any a, b € M,
we have a — b iff s(a) — s(b).

Proposition 12. Rectangles corresponding to nonsimilar 4-multisets are not similar.

Proof. Rectangle similarity implies multiset similarity. The statement follows by contraposi-
tion. O

4. Possible uses of normal forms in education

Normal forms of 4-multisets and quadrangles can be used to represent their similarity types.
It may be useful to have an example for students showing that the similarity types of any
quadrangle can be parametrized by the coordinates of a pair of points.
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