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Abstract. We give an algorithm for computing the different combinatorics of a
triangulated polyhedron with a fixed number of vertices.
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1. Introduction

In this paper, we consider compact triangulated polyhedra P of genus 0 (see [1] for the basic
definitions on polyhedra). As P is triangulated, its faces are triangles and two adjacent
faces can be coplanar. If we denote by F the number of triangles in such a polyhedron, by
V ≥ 4 the number of vertices and by E the number of edges, Euler-Poincaré’s formula implies
F − E + V = 2.

Since each face is a triangle we have 3F = 2E and so V = 2 + 1
2
F , implying F is even.

Conversely, for every integer F ≥ 4, there exists at least one triangulated polyhedron with F
faces, E = 3

2
F edges and V = 2 + 1

2
F vertices: just consider the diamond with a 1

2
F -gon as

basis.
We fix a (n + 3)-tuple Vn = (v0, . . . , vn+2) of the unit sphere S2 (n ≥ 1) and denote by

Tn = {T (1)
n , . . . } the set of triangulations of S2 whose vertices are the points of Vn. From a

combinatorial point of view, there is a one-to-one correspondence from compact triangulated
polyhedra of genus 0 with n+ 3 vertices and Tn.

A useful tool to display them is the so-called “Schlegel diagram” [3]: it can be considered
as the view of the triangulation throughout the triangle (v0, vn+1, vn+2).

Definition 1.
1. The combinatorics of a triangulation T (i)

n of Tn is the (n+ 3)−tuple

C(i)n = (deg(v0), . . . , deg(vn+2)).

2. Let C(i)n and C(j)n be the combinatorics of two triangulations T (i)
n and T (j)

n respectively.
We say that C(i)n and C(j)n are equivalent if there exists a one-to-one map ϕ : Vn → Vn
such that for all triangles T ∈ T (i)

n we have ϕ(T ) ∈ T (j)
n .
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By definition the sum of the degrees of a combinatorics of Vn is always equal to 2E.
It is immediate that V1 has a single triangulation T1 (and so a single combinatorics) and
that V2 has three triangulations T 3,1

2 , T 4,1
2 , T 4,2

2 with equivalent combinatorics (see Figure 1).
Likewise, four triangulations of V3 are represented in Figure 2 but clearly some of them are
equivalent.

Figure 1: Triangulations of V1 and V2

Figure 2: Some triangulations of V3

Figure 3: The standard triangulation ∆n of Vn

Since the works of K. Wagner [2], we know that we can transform any triangulation of Vn
to the standard triangulation ∆n (see Figure 3) via a well chosen sequence of flips. We recall
that a flip consists in exchanging two diagonal lines of a convex quadrilateral, the latter being
formed by two adjacent triangles of the triangulation. However, Wagner’s theorem does
not tell us how to find all the triangulations of Vn, neither their combinatorics. For instance
(cf. Figures 1 and 2), the combinatorics of V1 is (3, 3, 3, 3). These of V2 are (3, 4, 4, 4, 3) and
(4, 3, 4, 3, 4), and are equivalent because they are coming from two glued tetrahedra. Another
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example is the following combinatorics (3, 5, 5, 4, 4, 3), (4, 4, 5, 3, 5, 3), (4, 3, 5, 4, 5, 3) of V3.
There are equivalent, but it is not that easy to see.

2. Triangulation algorithm

For a given n ≥ 1, we want to determine all the triangulations of Vn+1. This will be done by
induction on n : we will construct Tn+1 from Tn.

We have chosen to use an algorithmic approach. Let T d−1,k
n be a triangulation of Tn with

deg(v0) = d−1. We recall that the triangle (v0, vn+1, vn+2) always appears in T d−1,k
n . We then

denote by
vi0 = vn+1, vi1 , . . . , vid−3

, vid−2
= vn+2

the neighbors of v0. We remark that each edge [vik , vik+1
] is part of two triangles (v0, vik , vik+1

)
and (vl, vik , vik+1

) of T d−1,k
n .

Definition 2. An edge [vik , vik+1
] is called admissible if the quadrilateral (v0, vik , vl, vik+1

) can
be made convex by moving its vertices without changing the combinatorics.

Figure 4: Non-admissible edge vs admissible edge

The idea is to carry out a flip in this quadrilateral if possible, otherwise to move slightly
the vertices in order to make it convex (without changing the combinatorics).

Proposition 1. Let T d−1,k
n be a triangulation of Vn with deg(v0) = d − 1. We denote with

vi0 = vn+1, vi1, . . . , vid−3
, and vid−2

= vn+2 the neighbors of v0. Then the edge [vik , vik+1
]

is admissible if and only if l /∈ {i0, . . . , id−2} (we recall that vl 6= v0 is the vertex such that
(vl, vik , vik+1

) is a triangle of T d−1,k
n ).

2.1. Principle

Let T d,k
n be a triangulation of Tn for n ≥ 2.
• If d = deg(v0) = 3, then the induced triangulation of (v1, vn+1, vn+2) forms a triangula-

tion of Vn−1 = {v1, . . . , vn+2}. The converse is also true.
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• If d = deg(v0) ≥ 4, let vn+1, vi1 , . . . , vid−2
, vn+2 be the neighbor vertices of v0. Then we

see easily that we can flip one of the edges [v0, vi1 ], . . . , [v0, vid−2
] (see also the proof of

Wagner’s theorem in [5]). This allows us to decrease the degree of v0. Convervely,
the triangulations of Vn with deg(v0) = d come from the triangulations of Vn with
deg(v0) = d − 1 by means of flips around the admissible edges [vik , vik+1

] (possibly
[vn+1, vi1 ] and [vid−3

, vn+2] by noting i0 = n+ 1 and id−2 = n+ 2).

Figure 5: Principle of the iteration step

2.2. Algorithmic aspect

We obtain triangulations of degree 4 to n+ 2 by starting with those of degree 3. In the sequel
we will use the variables :

• I(n, d) : The number of triangulations of degree d of Vn (3 ≤ d ≤ n+ 2).

• In: The total number of triangulations of Vn.
• T d,i

n : The triangulations of degree d of Vn (1 ≤ i ≤ I(n, d)).

• Cd,i
n : The corresponding combinatorics.

We start with the following initialization (see Figure 1):

• I(1, 3) = I(1) = 1.

• T 3,1
1 = {(v0, v1, v2), (v0, v1, v3), (v1, v2, v3)}.

• C3,1
1 = (3, 3, 3, 3).

Iteration step: we assume that Tn is known.

– Triangulations of degree 3 of Tn+1: it suffices to triangulate V ′n = (v1, . . . , vn+3), so we will
glue the triangulations T d,i

n (3 ≤ d ≤ n+ 2, 1 ≤ i ≤ I(n, d)) of V ′n to v0.

– For 4 ≤ d ≤ n + 3: pass from the triangulations T d−1,i
n+1 (1 ≤ i ≤ I(n + 1, d − 1)) of degree

d− 1 of Vn+1 to those of degree d by means of flips.
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2.3. Details of the iteration step

To clarify the iteration step of our algortihm, we assume that the following basic functions
are known. In the same way, the vertex vk of Vn will be denoted by k.

• Function f(T ) where T is a triangulation of Vn :
transforms a triangulation T = [[0, n + 1, n + 2], [a1, b1, c1], . . . , [ak, bk, ck]] of Vn into the
triangulation [[0, n+ 2, n+ 3], [0, n+ 2, 1], [0, 1, n+ 3], [a1 + 1, b1 + 1, c1 + 1], . . . , [ak + 1, bk +
1, ck + 1]] of Vn+1 of degree 3.

Figure 6: Function f

• Function g(C, n) where C is a combinatorics of Vn:
transforms a combinatorics C = [d0, . . . , dn, dn+1, dn+2] of Vn into the combinatorics [3, d0+1,
. . . , dn, dn+1 + 1, dn+2 + 1] of f(T ).

• Function h(T, n, d) where T is a triangulation of Vn of degree d:
returns the list [i0 = n + 1, i1, . . . , id2 , id−1 = n + 2] of neighbors of 0 for a triangulation T
of degree d of Vn.

• Function flip(T, a, b, c, d) where T is a triangulation:
returns the new triangulation obtained after the flip of the two triangles [a, b, c] and [b, c, d]
of T , that is:
flip([[0, n + 1, n + 2], . . . , [a, b, c], [b, c, d], . . . ], a, b, c, d) = [[0, n + 1, n + 2], . . . , [a, b, d],
[a, d, c], . . . ].

• Function cflip(C, a, b, c, d) where C is a combinatorics:
computes the new combinatorics of C after the flip of the two triangles [a, b, c] and [b, c, d], that
is: cflip([. . . , deg(a), . . . , deg(b), . . . , deg(c), . . . , deg(d), . . . ], a, b, c, d) = [. . . , deg(a) + 1,
. . . , deg(b)− 1, . . . , deg(c)− 1, . . . , deg(d) + 1, . . . ].

We are now ready for writing the iteration step (cf. 2.2) where the list T [n] of triangula-
tions of Vn is known, as well as the list C[n] of corresponding combinatorics and the list I[n]
of indices (I[n][0] = I[n][1] + · · · + I[n][n] and I[n][d − 2] is the number of triangulations of
degree d).

For j=1 to I[n][0]: #triangulations of degree 3 of Vn+1

T [n+ 1][3][j] = f(T [n][3][j])
C[n+ 1][3][j] = g(C[n][3][j], n)
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I[n+ 1][1] = I[n+ 1][1] + 1

For d = 4 to n+ 3: #triangulations of degree 4 to n+ 3 of Vn+1

For k = 1 to I[n+ 1][d− 3]: # from degree d− 1 to degree d for Vn+1

c = 0
u = h(T [n+ 1][d− 1][k], n+ 1, d− 1)
For l = 0 to d− 3:

For m = 1 to n+ 1:
If (m not in u) and ([u[l], u[l + 1],m] ∈ T [n+ 1][d− 1][k]):

c = c+ 1
T [n+ 1][d][c] = flip(T [n+ 1][d− 1][k], 0, u[l], u[l + 1],m)
C[n+ 1][d][c] = cflip(C[n+ 1][d− 1][k], 0, u[l], u[l + 1],m)

I[n+ 1][d− 2] = c
I[n+ 1][0] = I[n+ 1][0] + I[n+ 1][d− 2]

2.4. Numerical results and unicity

After translating the pseudo-code of the algorithm in the Python programming language
(thanks to my colleague Jean Fromentin [4] for his contribution), we have obtained the
following combinatorics ordered by the degree of v0.

V1: (3, 3, 3, 3).

V2: (3, 4, 3, 4, 4),
(4, 3, 4, 3, 4), (4, 3, 4, 4, 3).

V3: (3, 4, 4, 3, 5, 5), (3, 5, 3, 4, 5, 4), (3, 5, 3, 4, 4, 5),
(4, 3, 5, 3, 4, 5), (4, 3, 5, 3, 5, 4), (4, 4, 4, 4, 4, 4), (4, 4, 3, 5, 5, 3), (4, 4, 3, 5, 3, 5),
(5, 3, 4, 4, 3, 5), (5, 3, 4, 4, 5, 3), (5, 3, 3, 5, 4, 4), (5, 3, 4, 5, 4, 3), (5, 3, 4, 5, 3, 4).

The problem now is to recognize equivalent combinatorics. A necessary condition for two
combinatorics C and C ′ to be equivalent is the existence of a permutation σ ∈ Sn+3 such that
C ′ = σ(C). The converse is false, but can we expect that this is true for a permutation from
the algorithm? That is:

Conjecture. Let T and T ′ two triangulations of Vn such that there exists some flips f1, . . . , fk
verifying T ′ = fk ◦ · · · ◦ f1(T ), and σ ∈ Sn+3 (the symmetric group on n+ 3 letters) such that
C ′ = σ(C). Then C ′ is equivalent to C.

The conjecture is true for n = 1, 2, 3. Indeed all the combinatorics of V3, except
(4, 4, 4, 4, 4, 4), are equivalent because there are all coming from three glued tetrahedra. An-
other way to see that is to apply the relation deg(v0) + · · ·+ deg(v5) = 2E = 24.

This implies that all the degrees are equal to 4 or there exists at least one vertex of
degree 3, and it remains to triangulate the set obtained by removing this point. So, the
same object seen from different locations produces permuted combinatorics. But we don’t
know yet if the previous assumption remains true in the general case. Another problem is the
number of triangulations. It’s rising really rapidly; our program has given us several hundred
of combinatorics just for V5. Therefore, it would be interesting to further develop theoretical
tools for finding the different classes of equivalent combinatorics.
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Finally, I would like to thank the referee for pointing out to me that, for each triangulated
polyhedron, there is a polynomial with the polyhedron’s squared volume as a root, and the
polynomial only depends on the combinatorics of the polyhedron. In this sense, the problem
of enumerative combinatorics helps to count how many polynomials of Sabitov type exist
([6]).
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