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Abstract. In liquid simulation, splashing is a phenomenon where small particles
scatter in the movement of liquids. Fine liquid simulation on the high-resolution
grid is indispensable for obtaining detailed splashing effects. However, simulation
costs increase and become too high to bear with increasing resolution. Various
data-driven methods based on the idea of reusing pre-computed data have been
attempted to shorten simulation time, but cannot be easily applied to liquid sim-
ulation directly.
In this paper, we propose a data-driven method for enhancing visual effects such
as splashing in liquid simulation. Our method successfully applies the data-driven
approach to the FLIP method which is suitable for liquid simulation. Moreover,
velocity fields can be up-sampled directly in run-time simulation. This enables en-
hancement of the splashing effect with the change in the topology of fluid surfaces.
Our method is able to apply liquid motions that are different from pre-computed
scenes. This realizes more flexible enhancements in run-time simulation. We also
discuss database creation and usage, especially whether multiple databases of vec-
tor fields improve the quality of enhancement or not.
Key Words: Data-driven method, Liquid simulation, Splashing, FLIP, SVD
MSC 2010: 68U05, 65D15

1. Introduction

Due to the growing demands for entertainment and scientific visualization, high-resolution
fluid simulation is playing an increasingly significant role in computer graphics research and
development. Among different fluid simulation approaches, liquid simulation such as water
simulation is a challenging area because of its diversity and complexity. Here we focus on
splashing effects in such liquid simulations.

Splashing means the scattering of small particles in the collision of liquids. It usually
occurs when a liquid moving at a high speed collides into a solid or another liquid. This
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effect can be seen in water scenery like waterfall, dam breaking, and ocean waves. Fine liquid
simulation on the high-resolution grid is indispensable for obtaining detailed splashing effects.
However, simulation costs increase and become too high to bear with increasing resolution.

For this reason, various data-driven methods based on the idea of reusing pre-computed
data have been attempted to shorten the simulation time. However, previously proposed data-
driven methods such as the addition of pre-computed turbulence to the fluid surface [7, 6, 10]
and model reduction methods [16, 5] are difficult to apply to liquid simulation directly.

In this paper, we propose a data-driven method for enhancing visual effects such as
splashing in liquid simulation. Our method successfully applies the data-driven approach to
the FLIP method which is suitable for liquid simulation. Moreover, velocity fields can be
directly up-sampled in run-time simulation. This enables enhancement of the splashing effect
with the change in the topology of fluid surfaces. Our method is able to apply liquid motions
that are different from pre-computed scenes. Moreover, our database is constructed from a
sequence of small blocks subdivided from the whole simulation region, whereas the whole
simulation region itself is required in the case of conventional approaches such as [5]. This
realizes more flexible and quicker enhancements in run-time simulation.

Section 2 briefly introduces past studies related to our method, Section 3 discusses details
of our proposed method, and Section 4 presents some of the results obtained by our method
and a discussion focusing on database creation and usage. Finally, Section 5 outlines the
conclusions of our method and prospects for future work.

2. Related work

This section specifically discusses splashing liquids and data-driven methods as related work
amid the large number of researches which have been conducted on fluid simulation.

Splashing liquids
There are very few researches focusing on the splashing effects of liquid simulation. Raveen-
dran et al. [12] associated coarse grid with SPH to enforce a divergence free velocity field, al-
lowing their approach to simulate scenarios with significant pressure gradients such as splash-
ing liquids. Thürey et al. [15] and Ueda and Fujishiro [17] focused on the simulation of
surface tension in splashing fluids. Yang et al. [19] simulated the spray phenomena of fluids
such as fountain and waterfall as well as adopted a hybrid solver of Eulerian grid and La-
grangian particles. Gerszewski and Bargteil [4] conducted the first trial on the simulation
of the splashing effect of liquids in a large-scale scenario.

As far as we are concerned, splashing effects are still not fully applied today, especially
in large-scale cases. We will thus attempt to develop a novel method focusing on large-scale
simulation of splashing phenomena in this paper.

Data-driven fluid simulation
Since fluid simulation is considerably time-consuming, adaptive methods have been proposed
for accelerating fluid simulations [9, 3, 1, 2]. However, it is also true that adaptive methods
have certain limits in terms of acceleration.

On the other hand, data-driven approaches by integrating pre-computed noises to low-
resolution velocity fields to enhance the details at the post-processing stage have been pro-
posed [7, 6, 10]. Such approaches enjoy the advantage of not needing to solve Navier-Stokes
equations on high-resolution grid. These approaches successfully add small-scale details to an
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existing flow but fail to naturally add large-scale vortex noises. Moreover, those approaches
are not suitable for splashing as they actually do not change the topology of liquid surfaces.

Other types of data-driven approaches using pre-computed data have also been proposed
[16, 18, 14, 5]. These approaches are also well known as subspace methods. However, they
are more like play-back by adjusting parameters than simulation, and are unable to simulate
motions that do not appear in the training stage for learning data.

More recently, Ladický et al. [8] proposed a method for predicting liquid motions based
on machine learning approach. However, this method requires enormous volume of learn-
ing data for making predictions. Thus data size and computational costs required for pre-
compution are serious bottlenecks.

Unlike the above data-driven approaches, instead of applying SVD to the whole simulation
region, Sato et al. [13] first divided the simulation region into smaller blocks to gain flexibility
in the re-simulation phase. Our method is most inspired by their work and extends to liquid
simulation. Our results are thus different from other subspace methods which are not suitable
for liquid simulation.

3. Data-driven approach for enhancing splash effects

The following describes our data-driven approach for enhancing the splashing effects of FLIP-
based liquid simulation. The FLIP (FLuid-Implicit-Particle) method [20] is a hybrid method
of Eulerian and Lagrangian methods and is said to come with both advantages. Liquid surfaces
are calculated from Lagrangian particles, whereas liquid motions are mainly determined by the
vector field on Eulerian grid. Such a grid structure enables application of matrix operations
thanks to the structured distribution of velocities which can be easily re-arranged into a
matrix form. This prompted us to propose our data-driven approach based on FLIP-based
liquid simulation.

We first take a sequence of vector fields in low-resolution liquid simulation as input, and an
enhanced corresponding sequence of high-resolution vector fields as output. In our definition,

Pre-computation Phase:

Run-time Phase:

High-resolution 
FLIP simulator

…

total num. of blocks

SVD
databaseH

m bases

databaseL

Down-sampling

m bases(size of block)

(high-res database) (low-res database)

Low-resolution 
FLIP simulator

Up-sampling

Low-resolution grid High-resolution grid

Transfer 
&

Advection

Output

nb

3nb
3

Training Phase Database Construction  Phase

Figure 1: System overview.
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Algorithm 1: Training Phase
Input: None
Output: Blocked velocity fields
// Initialization
Initialize the MAC grid and insert particles to fluid cells;
// Simulation
for n = 0 to MAX_STEP do

Add external forces to particles;
Transfer particles’ velocities to a grid;
Save the grid velocities as vold ;
Enforce the Dirichlet boundary condition;
Mark the cells as FLUID, SOLID, or AIR;
Solve pressure on grid and calculate the new velocity vnew of grid;
Calculate vdelta = vnew − vold ;
Save vdelta by blocks to HDD;
Calculate velocities for particles;
Advect particles;

Algorithm 2: Database Construction Phase
Input: Blocked velocity fields
Output: Database databaseL and databaseH
Run out-of-core SVD on blocked velocities;
Select top k eigen-vectors as databaseH;
Down-sample databaseH to databaseL;
Write out databaseH and databaseL;

the number of cells per dimension on the high-resolution grid is twice that in the corresponding
low-resolution grid, thus eight times more in 3D cases. The conversion from low-resolution
grid to high-resolution grid is called up-sampling. In this case, the up-sampling per step
converts each cell to eight smaller cells. This opposite process is called down-sampling.

Figure 1 illustrates an overview of our method. Our method mainly comprises two phases;
the pre-computation phase and the run-time phase. In the pre-computation phase, a sequence
of high-resolution 3D velocity fields are first calculated from FLIP-based liquid simulation.
After compressing such vector fields to compute a set of eigen vectors, they are stored in a
database. In the run-time phase, a sequence of low-resolution 3D velocity fields are calculated
by liquid simulation. Each of these vector fields is up-sampled to its high-resolution vector
field by using a pre-computed database. Particles are then advected according to the resulting
high-resolution velocity field.

As an additional description of our proposed method outlined in Figure 1, we present the
algorithms of the training phase (Algorithm 1), the database construction phase (Algorithm 2)
and the run-time simulation phase (Algorithm 3). In Algorithm 1 and Algorithm 3, commands
colored in red denote additional processes from the original FLIP method.
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Algorithm 3: Run-time Simulation and Up-sampling Phase
Input: Database databaseL and databaseH
Output: Enhanced results
// Initialization
Initialize the MAC grid and insert particles to fluid cells;
// Simulation
for n = 0 to MAX_STEP do

Add external forces to particles;
Transfer particles’ velocities to a grid;
Save the grid velocities as vold ;
Enforce the Dirichlet boundary condition;
Mark the cells as FLUID, SOLID, or AIR;
Solve pressure on grid and calculate the new velocity vnew of grid;
Calculate vdelta = vnew − vold ;
Up-sample vdelta to high-resolution vh

delta;
Calculate velocities for particles;
Advect particles;

3.1. Training phase

Unlike Sato et al.’s method [13] in which only 2D simulation is performed in the training
phase, we conduct 3D FLIP simulation on a high-resolution grid.

Now there are three types of velocities to be stored in the database; vold, vnew and
vdelta ≡ vnew − vold . Among three vectors, we basically use vdelta for the database. If we use
vnew and vold , both two vectors have to be up-sampled in the run-time phase and more errors
are accumulated. Moreover, the PIC velocity calculated from vnew must not be up-sampled
because the PIC velocity denotes the viscosity of liquid, meaning that it does not contribute
to the splashing.

After vdelta is calculated at each time-step, a grid of vdelta is subdivided into blocks of size
nb × nb × nb, where nb is the number of cells in each dimension of a block. A set of blocks is
stored to HDD block by block for future computation in the database construction phase.

The size of the matrix written to HDD is m × n, where m = 3n3
b and n = Ts, T is the

number of frames, and s is the number of blocks on a grid in each frame.

3.2. Database construction phase

In the database construction phase, our method applies SVD to a matrix of block velocities
stored in the training phase. We then extract the top k principal components of such a matrix,
where k is a user-specified parameter but our experiments showed that k = 128 components is
a good choice. We call these principal components base velocity, or BV for short. Afterwards,
BVs are stored in the matrix form as the databaseH, which stands for high-resolution database.
We finally down-sample the databaseH to obtain databaseL, which stands for low-resolution
database.

Out-of-core SVD
With our method, a 3D velocity field is used to generate BVs. It is often the case that a matrix
of such a velocity field may be too large to fit into the main memory. A simple in-core SVD



120 Kanai et al.: Data-Driven Approach for Enhancing Splashing Effects of Liquid Simulations
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Figure 2: Illustration of down-sampling in case of 2D. All velocities
marked with same color are averaged.

is then not applicable when the principal components of a huge matrix are needed. Instead,
we use out-of-core SVD [11] in such cases.

Down-sampling
To obtain databaseL, we perform a down-sampling step for each BV. Figure 2 illustrates the
details of down-sampling operation in 2D cases.

In a down-sampling step, eight sub-blocks in each BV are integrated to a block. In this
case, an integrated velocity in each dimension is taken as the average of the corresponding
velocities of the eight sub-blocks.

3.3. Run-time phase

In the run-time phase, a FLIP-based low-resolution 3D liquid simulation is executed. At each
time-step of the simulation, a low-resolution velocity field is converted to a high-resolution
velocity field using the BVs stored in the database. Let us denote an input 3D velocity field
as vin(nx, ny, nz) where nx × ny × nz is the number of cells in a grid. Our purpose here is to
create a up-sampled 3D velocity field vout(2nx, 2ny, 2nz), meaning that the number of cells in
each dimension becomes double.

In the up-sampling process, each block of vin is separately converted to a high-resolution
block of vout. The convertion process is summarized as follows:
• An input block of velocities vl is first approximated by the weighted sum of the down-

sampled BVs in databaseL.
• The computed weights are then applied to the original BVs in databaseH.
• The output block of velocities vh is calculated by the weighted sum of the original BVs.
This process is illustrated in Figure 3.

Least-squares method
We accordingly apply the least-squares method to compute the weights w = {wi} using the
BVs in databaseL,

argmin
w

(∥∥vl −
m−1∑
i=0

wib
↓
i

∥∥2
2

)
, (1)

where vl is the input low-resolution block of velocities and b↓i the i-th column of databaseL.
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Figure 3: Illustration of up-sampling process in 2D case.

There are several methods to solve the least-squares problem. We adopt here a QR
decomposition based approach for the robust computation of optimal weights.

Adaptive up-sampling
With the weights w calculated above, it is possible to directly compute a high-resolution
block of velocities vh as follows,

vh =
m−1∑
i=0

wib
↑
i , (2)

where b↑i is the i-th column of databaseH.
However, several problems are met when we apply up-sampling operations to all of blocks.

One is the still water problem. As there always remains errors during the up-sampling process
no matter how high the accuracy is, artifacts appear around the boundary of blocks as shown
in Figure 4a. Due to the nature of liquid surface construction, these artifacts can be clearly
observed. Moreover, these artifacts cannot be eliminated even when neighbor blocks are
overlapped.

Another problem faced in up-sampling is the boundary problem around obstacles. Since
our training phase does not support the scenes with obstacles and our training data do not
include blocks with boundaries, there may exist obvious artifacts around the boundaries of
obstacles (Figure 4c). Besides, there is no need to up-sample the blocks in deep water because
they are steady and do not contribute to the splashing effect. Therefore, leaving out the up-
sampling operation for blocks where obstacles are included or where they are in deep water
does not lead to the loss of details and eliminates the need for computation for up-sampling.

To address the above problems, we introduce the adaptive up-sampling. This is based
on the idea that only the blocks with low coherence of velocity directions will be up-sampled
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(a) (b)

(c) (d)

Figure 4: Still water problem and boundary problem. (a) With artifact near still water.
(b) Artifact fixed by our adaptive up-sampling method. (c) With artifact near obstacle
boundaries as well as still water. (d) Artifact fixed by our adaptive up-sampling method.

(see Figure 5). Specifically, we define the angle consistency φ,

φ =

∑Nb

i | cos ∆θi|
Nb

, (3)

where Nb = n3
b is the number of cells in a block, ∆θi is the angle between the velocity’s

direction in a cell i, and the average direction of velocities in the corresponding block. The
value of φ is between 0 and 1. When φ is close to 0, the velocity’s direction in a block tends
to be different according to the block. Also, when φ is close to 1, all velocities have the same
direction. By adjusting the threshold for φ, we are able to eliminate the still water problem
and also control the up-sampling level (see Figures 4b and d).

4. Results and discussion

All our experiments were conducted on a desktop PC under Linux OS equipped with Intel R©
CoreTM i7-4770 3.40GHz CPU, nVIDIA R© GeForceTM GTX 760 GPU, and 32GB RAM.
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Figure 5: Least-squares up-sampling case (left) and linear up-sampling case (right).
Note that velocity field in the right is much more coherent than the left.

Figure 6 shows the comparison between our data-driven results and ground-truth results.
In this experiment, the initial scene used in high-resolution simulation and that executed by
run-time low-resolution simulation are the same. The top row shows the ground-truth result
simulated on the 803 grid. The bottle row shows the result simulated on a 1583 grid which is
also used for obtaining the learning data. The middle row shows the result of our data-driven
method. It can been seen from the comparison result that all our results are enhanced just
like the high-resolution ground-truth in terms of the geometry of the liquid surface, number

Figure 6: Comparison results. From left to right: 1st, 35th, 70th, 95th, and 130th frame.
Top: Ground-truth on 803 grid. Middle: Our data-driven result on 803 grid.

Bottom: Ground-truth on 1583 grid.
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Table 1: Statistical results. From left to right: phase (ground truth (gt) or data-driven (dd)
or out-of-core SVD (svd)), grid resolution (#gr), number of particles (#pt), simulation time
(minutes), number of frames (#fr).

phase #gr #pt time (min.) #fr
gt 803 360,576 34 300
gt 1583 2,955,968 643 300
svd 1583 - 342 -
dd 803 360,576 45 300

of splashing particles, behavior of liquid movement, etc.
Statistical results including the computation time are listed in Table 1. In FLIP-based

simulations, the 803 ground-truth simulation for 300 frames takes about 34 minutes, and the
1583 ground-truth 643 minutes. Moreover, the computation of BVs by out-of-core SVD takes
about 342 minutes. On the other hand, our data-driven method in the run-time simulation
takes 45 minutes, which is slightly longer than the 803 ground-truth simulation. Note that
although the total pre-computation time adds up to 643+342 = 985 minutes, which seems to
be a long time at first glance, the database needs only to be learnt once and can be repeatedly
used in run-time simulation.

Figure 7 shows the results of two other enhancements carried out with our data-driven
method. The top row is the scence with the different position of a dam, and the bottle row is
the scene of using a box as the obstacle. As the learning data, the same database calculated
in the experiment shown in Figure 6 is used. The results indicate that the enhancement can
be successfully carried out with scenes different from the training data.

Evaluation about database creation and usage
With our method above, a sequence of vector fields by the high-resolution simulation of only a
scene is compressed and a database is created as basic velocities in the pre-computation phase.
However, we believe that the resulting quality differs according to the database creation and

Figure 7: More data-driven results. From top to bottom: 1st, 35th, 70th, 95th, 130th, 180th
frame. (a) Data-driven result on 803 grid with initial dam size and position modified.

(b) Data-driven result on 803 grid with obstacle.
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usage. Furthermore, since there is no need to have a single scene, it may be possible to utilize
multiple databases using simulations with several different scenes. We thus evaluated how
database creation and usage methods influence enhancement results within the framework of
our method.

In the next experiment, databases are created from two different scenes and several up-
sampling operations are performed by using such databases. In this experiment, the following
four types for database creation and usage are tested:

MDB-1 Two sequences of vector fields from different scenes are integrated into a single
matrix and the BVs of such a matrix is created.

MDB-2 The BVs of two databases are created independently from two different scenes. In
run-time simulation, one of the two BVs with miminum matching error in Equation (1)
is selected from the two databases.

MDB-3 Two sequences of vector fields from different scenes are grouped into two categories
according to the angle consistency φ in Equation (3), and multiple BVs are set per
database. In run-time simulation, one of the two BVs with appropriate angle consistency
is selected from the two databases.

MDB-4 Two sequences of vector fields from different scenes are grouped into three categories
according to the position on a grid (around the surface, around the boundary, deep
water) and the BVs of each category are created. In run-time simulation, one of the
three sets of BV with the appropriate position on a grid is selected from the three
databases.

We now introduce the avarage matching error E as an index to evaluate the up-sampling
results. This is an average of the matching errors in Equation (1) taken from all frames and
all blocks.

E =

∑f ∑b
∥∥vl −

∑m−1
i=0 wib

↓
i

∥∥2
2

fb
, (4)

where f is the number of frames and b is the number of blocks per frame. This error is used
to judge how different the vector field of a low-resolution simulation is from its approximation
by the BVs of a database.

Figure 8 shows the experimental results. In run-time simulation, a scene (DB1) is used for
low-resolution simulation. Also, in MDB-1 and MDB-4, both two scenes (DB1 and DB2)
are used for multiple databases. For reference, the results of using a single database (DB1,
DB2) as learning data are shown.

It can be seen from this graph that the up-sampling of MDB-3 has the smallest average
matching error. That is, with our method, better results can be obtained compared with
other databases by classifying vector fields with similar features as much as possible. This
can also be justified from the viewpoint that the result does not necessarily improve even if
a database from a single scene is used, although both scenes in the training phase and in
run-time phase are the same.

One issue forMDB-3 is that the results can be largely changed according to the threshold
of angle consistency, and trial and error is required for obtaining the appropriate threshold
value. It is necessary to establish a method to automatically determine such parameters in
future work.
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Figure 8: Average matching errors for experiments on database creation and usage.

5. Conclusions and future work

We proposed a method to enhance the splashing effect in liquid simulation by using a data-
driven approach. With our method, we have demonstrated that the computation time can be
largely reduced while keeping the enhancing quality in high-resolution simulation. Through
experiments on database creation and usage, we have shown that the use of multiple databases
classified according to the angle consistency of vector fields improves the quality of enhance-
ment.

We believe that our method is a promising approach in the area of data-driven fluid
simulation. However, the following improvements need to be made in future work.
– First, our method only supports one-step up-sampling and we hope to extend it to multi-
steps up-sampling to obtain further details while saving more time.
– Secondly, we adopt an adaptive up-sampling method for scenes with obstacles. To improve
the accuracy of this method, a database taking into consideration the boundary of obstacles
has to be constructed. Moreover, deeper insight into the creation and use of multiple databases
is necessary.
– Lastly, we use SVD to obtain the databases. However, there are other algorithms like sparse
coding which may improve the enhancement quality of our data-driven method.
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