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Abstract. The Mandelbrot-Julia sets (henceforth abbrev. M-J sets) and their
properties have been extensively studied since their discovery. Many studies are
focused on properties and dynamics of generalized M-J sets in complex and hyper-
complex vector spaces, however there are still many variations of M-J sets which
have not been studied yet. The following paper discusses one of such variations
� the M-J sets in the biquaternionic vector space. Starting from theoretical fun-
damentals on an algebra of biquaternions and its closedness under addition and
multiplication, which is required for constructing biquaternionic M-J sets, the au-
thor de�nes the generalized biquaternionic M-J sets and their relation both with
complex M-J sets as well as with their 4-space analogues: quaternionic and bi-
complex M-J sets. The connectedness and dynamics of J sets is also studied.
Moreover, the analysis of 3D cross-sections of J sets allows validating the relation-
ships with other hypercomplex fractal sets and evaluating a symmetry of resulting
biquaternionic sets.
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1. Introduction

Mandelbrot and Julia sets have been extensively studied in terms of their properties such
as self-similarity, multifractality, symmetry, periodicity, stability and many others. Most of
these studies are concerned with the classical Mandelbrot and Julia sets, given by the following
recursive equation

z ← z2 + c (1)

in the complex number space C (see, e.g., [19, 27]) as well as almost in�nite number of their
variations with respect to powers of z [13, 14, 3], trigonometric and other functions applied
in the recursive iteration of (1) [2, 26], polynomials (a great survey was presented in [22])
and others. Numerous researchers have studied the hypercomplex versions of M-J sets since
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Norton introduced their generalization in quaternionsH [24, 23]. The latter paper introduces
intensive studies on variations of quaternionic M-J sets. The �rst published studies on the
stability of the quaternionic version of (1) were presented in [10], where the authors performed
the mathematical analysis of multi-cycle stability of the M-sets. Further, the generalizations
of (1) with respect to a power α, we studied

z ← zα + c, α ∈ N, (2)

and provided the stability analysis of M-J sets.
A further extension of (1) to octonions O was proposed in [12] immediately after the

extension of M-J sets to quaternions and in [11] the authors presented some preliminaries of
stability analysis of octonionic J-sets. The next studies were performed by Dixon et al. [4],
where the �rst trials of generalization of M-J sets in higher-dimensional vector spaces were
presented.

Simultaneously, the tensor products of algebras were considered in order to construct
M-J sets. The �rst study on generalized bicomplex C ⊗ C (or equivalently C2) M-J set was
presented by Rochon [29]. The bicomplex M-J set has unique properties, i.e., it is a four-
dimensional (4D) vector space, similar to the quaternionic M-J sets. The deep studies of
these properties were performed by the authors of [20, 21]. Then, Rochon and his team
proposed further generalization of M-J sets in a tricomplex C3 8-space with extended analysis
of 3D cross-sections of M-J sets and �nally, the multicomplex Cn M-J sets with an analysis
of dynamic behavior of such systems and a generalization of the Fatou-Julia theorem for
multicomplex number spaces [6, 25].

The presented study is focused on the generalization of M-J sets in a biquaternionic
C ⊗ H vector space. Only the few mentions in the available literature can be found in this
area. Gintz [7] presented preliminaries of biquaternionic fractal sets and their several 3D
cross-sections. Bogush et al. [1] studied symmetry properties of biquaternionic J sets. How-
ever, the mathematical formalism of the generalized biquaternionic M-J sets has never been
introduced to date. Following this, the appropriate mathematical description and analysis of
biquaternionic M-J sets is necessary in order to introduce a new class of hypercomplex fractal
sets.

2. The algebra of biquaternions

The algebra of biquaternions (known also as an algebra of complex quaternions) is a tensor
product 4-algebra with a basis 1, i1, i2, i3. The symbolic representation of a biquaternion q̃ is
as follows:

C⊗H := {q̃ = a1 + a2i1 + a3i2 + a4i3 | an ∈ C} , (3)

which can be also presented in the alternative form:

C⊗H := {q̃ = (g1 + h1j) + (g2 + h2j) i1 + (g3 + h3j) i2 + (g4 + h4j) i3 | gn, hn ∈ R} , (4)

where i1, i2, i3 and j are imaginary units, and j2 = −1, i21 = i22 = i23 = i1i2i3 = −1. The
biquaternions contain zero divisors, idempotents and nilpotents [30]. The idempotent repre-
sentation of biquaternions is unique and is given by the following (see Theorem 2 in [30]):

e1,2 =
1

2
± 1

2
ξj , (5)



A. Katunin: The Generalized Biquaternionic M-J Sets 51

where e1,2 is represented in the form e1,2 = w1 + ξw2 with w1, w2 ∈ C, ξ ∈ C ⊗ H and
ξ2 = −1. This is a very useful property which allows performing addition and multiplication
of biquaternions element-wise. Based on this observation, the addition and multiplication of
two biquaternions q̃1 = a1 + a2i1 + a3i2 + a4i3 and q̃2 = b1 + b2i1 + b3i2 + b4i3 with an, bn ∈ C
can be de�ned as

q̃1 + q̃2 := (a1 + b1) + (a2 + b2) i1 + (a3 + b3) i2 + (a4 + b4) i3, (6)

q̃1 · q̃2 := (a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 − a4b3) i1 (7)

+ (a1b3 − a2b4 + a3b1 + a4b2) i2 + (a1b4 + a2b3 − a3b2 − a4b1) i3,

or, in equivalent form, using the de�nition of q̃ given by (4).

3. The generalized M-J sets in biquaternionic vector space

Considering quadratic polynomial of type (1) de�ned in biquaternions, one can construct its
generalized version in the form

z ← zp + c for p ≥ 2, z, c ∈ C⊗H. (8)

The condition p ≥ 2 leads to several interesting properties of M-J sets de�ned in C⊗H. When
this condition is ful�lled the point at in�nity is a super-attracting �xed point, and taking into
consideration that for every z 6=∞ a sequence resulting from (8) has �nite values, this �xed
point is also the exceptional point. However, when the condition of p ≥ 2 is not ful�lled the
resulting sets are not M sets. Let us consider �ve possible cases for values of p when p 6≥ 2.
• When 0 ≤ p < 1, the critical point is not at zero, but at the point of in�nity. This leads
to a fact that c in (8) is not on the trajectory of in�nity, thus M-J sets do not exist for
such values of p.

• In the second case, when p = 1, the critical point does not exist; so the M-J sets do not
exist, too (similar observations were obtained by the authors of [31] for hypercomplex
M-J sets).

• Considering the third case, when 1 < p < 2, the critical point is located at zero as
for p ≥ 2, the resulting M-J sets resemble integer-valued M-J sets and hold the axial
symmetry, however the rotational symmetry is not ful�lled. Such sets hold their fractal
properties for arbitrary p > 1, p ∈ N following the studies of the authors of [18].

The next two cases consider the negative values of p.

• The case, when −1 < p < 0, is similar to the case of 0 ≤ p < 1, i.e., the M-J sets in this
case do not exist.

• Finally, for p < −1, p ∈ N, the dynamics of resulting sets reveals a completely di�erent
behavior with respect to p > 2. In this case the critical point is at in�nity which means
that the set of prisoners has an attractor at the point at in�nity and covers the whole
C ⊗ H-space except some small regions near c. Therefore, the obtained structures in
this case are not M-J sets.

Considering the properties of the generalized M-J sets, one can de�ne the M set and the
J set following the next de�nitions.
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De�nition 1. Let fc(z) = zp + c, where z, c ∈ C ⊗ H and p > 2 (p ∈ R), be a mapping in
the biquaternionic vector space (a C ⊗ H-space). Then, the resulting M set is a generalized
biquaternionic M set, for which the trajectory of c is limited

Mp
C⊗H =

{
c ∈ C⊗H | f (s)

c (0) 6→ ∞ if s→∞
}
, (9)

and thus Mp
C⊗H is bounded.

De�nition 2. The generalized ��lled� J set, obtained while iterating the recursive equation
fc(z) = zp + c, where z, c ∈ C⊗H and p > 2, is mapped into the biquaternionic vector space
with a limited trajectory of c, and

JpC⊗H =
{
c ∈ C⊗H | f (s)

c (z) 6→ ∞ if s→∞
}
, (10)

and thus JpC⊗H is bounded.

The De�nitions 1 and 2 introduce the generalized biquaternionic M-J sets with dynamics
similar to bicomplex and hypercomplex (Cli�ordean) sets (see the extended description pre-
sented in [34, 31]). These de�nitions lead to a possibility of constructing Mp

C⊗H-J
p
C⊗H sets in

a 4-space with a certain bailout value B (known also as the escaping-time limit).

De�nition 3. X ⊆ C ⊗ H is a C ⊗ H-Cartesian product determined by X1 and X2 if X =
X1 ×e X2 := {z1 + z2j ∈ C⊗H : z1 + z2j = w1e1 + w2e2 | w1, w2 ∈ X1 ×X2}.

De�nition 3 leads to the formulation of a theorem of connectedness of the Mp
C⊗H-J

p
C⊗H

sets. Knowing that the Mp
C sets are connected (see [5] for a recursive equation of type (1)

and [34] for its generalized version of type (2)), and Mp
H sets are connected [35], it is possible

to show that Mp
C⊗H sets are also connected.

Theorem 1. Mp
C⊗H = Mp

C ×e M
p
H.

Proof. Let c ∈ C ⊗ H. For fc(z) = zp + c, p > 2, p ∈ N, z, c ∈ C ⊗ H and f
(s)
c (z) :=(

f
(s−1)
c ◦ fc

)
(z), according to De�nition 1, f

(s)
c (0) has a bounded orbit ∀s ∈ N. Additionally,

when p > 2 one obtains

fc(z) = zp + c = [(z1 − z2j)p + (c1 − c2j)] e1 + [(z̃1 + z̃2j)
p + (c̃1 + c̃2j)] e2, (11)

where z = (z1 − z2j) e1 + (z̃1 + z̃2j) e2, and c = (c1 − c2j) e1 + (c̃1 + c̃2j) e2, thus

f (s)
c (z) = f

(s)
c1−c2j (z1 − z2j) e1 + f

(s)
c̃1+c̃2j

(z̃1 + z̃2j) e2. (12)

Considering that f
(s)
c (0) = f

(s)
c1−c2j(0)e1 + f

(s)
c̃1+c̃2j

(0)e2 is bounded when s → ∞, f
(s)
c1−c2j(0)e1

and f
(s)
c̃1+c̃2j

(0)e2 are also bounded when s → ∞. Then c1 − c2j ∈ Mp
C, c̃1 + c̃2j ∈ Mp

H, and
c = (c1 − c2j) e1 + (c̃1 + c̃2j) e2 ∈ Mp

C ×e M
p
H, and Mp

C⊗H ⊂ Mp
C ×e M

p
H.

Theorem 2. The Mp
C⊗H sets are connected.

Proof. De�ning the mapping e as

C⊗H = C×H e→ C×e H = C⊗H (z1, z2) 7→ z1e1 + z2e2, (13)

one can see that the mapping e is a homeomorphism. Thus, if X1 ⊂ C and X2 ⊂ H are
connected, then e (X1 ×X2) = X1 ×e X2 is also connected. Following this and considering
Theorem 1, Mp

C⊗H is also connected.
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Considering De�nition 2, it is possible to investigate the connectedness of ��lled� JpC⊗H
sets and relationships between Mp

C⊗H and JpC⊗H sets. Having in mind the theorem on struc-
tural dichotomy of M-J sets on a C-plane proposed by Douady and Hubbard [5], one can
formulate the theorem which can support the proof of a similar theorem for Mp

C⊗H-J
p
C⊗H sets.

Theorem 3. Jpc,C⊗H = Jp(c1−c2j)e1+(c̃1+c̃2j)e2,C⊗H = Jpc1−c2j,C ×e J
p
c̃1+c̃2j,H.

The proof of Theorem 3 proceeds along the same lines as that for Theorem 1.

Theorem 4. c ∈ Mp
C⊗H ⇔ Jpc,C⊗H are connected.

Proof. Theorem 3 indicates that Jpc,C⊗H = Jpc1−c2j,C ×e J
p
c̃1+c̃2j,H. Considering the homeomor-

phism of the mapping e in the proof of Theorem 1, Jpc1−c2j,C × Jpc̃1+c̃2j,H are connected i�
Jpc1−c2j,C ×e J

p
c̃1+c̃2j,H are connected. Then Jpc1−c2j,C ×e J

p
c̃1+c̃2j,H are connected i� Jpc1−c2j,C and

Jpc̃1+c̃2j,H are connected. Hence, generalizing the theorem on structural dichotomy of M-J sets
on a C-plane [5], Jpc,C⊗H is connected i� c = (c1 − c2j) e1 + (c̃1 + c̃2j) e2 ∈ Mp

C⊗H.

4. Analysis of 3D cross-sections of generalized biquaternionic M-J sets

In order to investigate a geometric structure of generalized biquaternionic M-J sets and their
speci�c properties as well as to show the character of their evolution, while changing the
degree p of an iterated polynomial, and �nally, to prove additionally the above theorems,
experimentally a series of numerical simulations was performed. Since the biquaternionic
vector space is four-dimensional, the biquaternionic M-J sets can be visualized in the form of
3D projections in R3. For this purpose, the last element in a biquaternion presented in the

(a) c = 0.15 + 0.4i1 + 0.1i2 (b) c = −0.6− 0.5i1 + 0.22i2 + 0.4i3 (c) c = −i1

(d) c = −0.75 (e) c = −0.390541− 0.586788i1 (f) c = −1− 0.1i1

Figure 1: Examples of biquaternionic J sets.
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(a) J2H, c = −0.75 (b) J2C2
, c = −0.75

(c) J2H, c = −1− 0.1i (d) J2C2
, c = −1− 0.1i

Figure 2: Analogues of the degenerate biquaternionic J sets.

form (3) remains �xed. This approach is widely applied during the visualization of 4D fractal
sets [29, 35, 34, 21]. Further, a characteristic perspective view is selected to prepare a 2D
image. Several examples of views of 3D cross-sections of biquaternionic J sets for p = 2 with
various c values are presented in Figure 1.

From Figure 1 a variety and complexity of biquaternionic J sets can be observed, but
it is also possible to perceive several similarities of biquaternionic J sets with their complex
analogues. By cutting the resulting 3D cross-sections of fractals presented in the Figures 1(c) �
(f) by a plane along the axis of reals, one can obtain the well known J sets on a C-plane.
That is, the biquaternionic analogues of the Dendrite, San Marco fractal and Siegel Disk are
presented in the Figures 1(c) � (e), respectively. Based on this observation, one can introduce
the following remark.

Remark. Let c be represented by two non-zero coe�cients a1 and a2 only, following the
symbolic representation of a biquaternion given by (3). Then, the J set with a3 = 0 and
a4 = 0 is a degenerate biquaternionic J set.

Moreover, when analyzing the shapes of 3D cross-sections of biquaternionic J sets one can
observe that their symmetry properties are broken with respect to quaternionic analogues of
these J sets. This is very well visible in the Figures 1(d),(f) which are neither rotationally
symmetric as their quaternionic analogues (see Figures 2(a),(b)) nor quadrilaterally symmetric
as their bicomplex analogues (see Figures 2(c),(d)), which results from the complexi�cation
of a quaternion.

What is interesting, the behavior of a biquaternionic quadratic map of type (1) with c = 0
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(a) p = 2 (b) p = 3 (c) p = 6

(d) p = 10 (e) p = 50 (f) p = 100

Figure 3: Examples of biquaternionic J sets for various values of p and with c = 0.

also does not reveal symmetry typical for complex, quaternionic and other higher-dimensional
hypercomplex generalizations of J sets. As it was shown in [15], for c = 0 the J sets in the
mentioned vector spaces are (d − 1)-spheres, where d is the dimension of the given vector
space. This is a direct consequence when iterating (1) for c = 0. However, in the case
of biquaternionic quadratic map the resulting set (see Figure 3(a)) is not a (d − 1)-sphere,
due to the tensor product of dimensionally unequal algebras. When the order of an iterated
polynomial increases the resulting J sets resemble a shape of a pillow with multiple horn-
like protruding geometric structures on the boundaries, therefore we can call these sets the
Devil's pillows. The Devil's pillows are not rotationally symmetric, however they retain several
symmetries, e.g., they have two symmetry planes. Moreover, in contrast to the mentioned
complex and hypercomplex J sets, the geometric structure of biquaternionic J sets with c = 0
remains fractal.

(a) p = 2, c = 0.45 + 0.45i1 (b) p = 3, c = 0.8i1 (c) p = 3, c = 0.54

Figure 4: Examples of disconnected but not totally disconnected biquaternionic J sets.
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Considering the results of exploration of biquaternionic J sets, one observes that some
of these sets are connected, some of them are totally disconnected, and the other ones are
disconnected but not totally (see examples in Figure 4). This classi�cation is similar to the
results of studies on the connectedness of multicomplex J sets described in [28]. Following
this, one can formulate the following conjecture.

Conjecture. The connectedness of biquaternionic J sets can be fully described by the following
three cases:

1. for c ∈ Mp
C⊗H the JpC⊗H sets are connected;

2. for c 6∈ Mp
C⊗H the JpC⊗H sets are totally disconnected (e.g., homeomorphic to the Cantor

dust);

3. there exist other cases of JpC⊗H sets that are disconnected, but not totally.

5. Conclusions

This paper introduces a new class of hypercomplex fractal sets � the generalized biquater-
nionic M-J sets with appropriate mathematical description and analysis. The generalized M-J
sets in the biquaternionic vector space are de�ned and analyzed. In particular it was proven
that the bailout value (escaping-time limit) equal to 2 is the best possible value, same as for
other complex and hypercomplex analogues of M-J sets. It was proven that the biquaternionic
M set and the corresponding ��lled� J sets are connected. The analysis of 3D cross-sections
of generalized biquaternionic J sets shows that, due to the speci�city of construction of these
sets in a vector space resulting from a tensor product of two algebras (C⊗H), the symmetry
of these sets is broken, which was con�rmed by appropriate examples. The graphical analysis
also allows analyzing relations with complex J sets as well as its hypercomplex analogues
de�ned in the bicomplex and quaternionic vector spaces. Finally, the conjecture of connect-
edness of J sets was formulated which is a topic of further studies related to biquaternionic
M-J sets.
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