Generalization of the Pappus Theorem in the Plane and in Space

Victor Oxman^{1,2}, Avi Sigler¹, Moshe Stupel^{1,3}

¹Shaanan College, P.O.B. 906, Haifa, Israel email: victor.oxman@gmail.com

²Western Galilee College, Acre, Israel ³Gordon College, Haifa, Israel

Abstract. One of the Pappus theorems states that if points F, E, D divide the sides of triangle ABC in the same ratio α , then the triangles ABC and FED have the same centroid. Therefore, the intersection \mathcal{Q} of such triangles FED obtained for all non-negative α , is not empty. In this paper we will characterize the domain \mathcal{Q} for general case of dividing the sides of a triangle (not necessary in the same ratio) and prove that \mathcal{Q} is bound by conic sections. We will also present some surprising results concerning \mathcal{Q} for the case of tetrahedron.

Key Words: Pappus Theorem, triangle, tetrahedron, conic sections *MSC 2010:* 51M05

1. Introduction

One of the great ancient Greek mathematicians PAPPUS OF ALEXANDRIA formulated and proved in his Book 8 the following statement [1, p. 10]:

"We make ABG a triangle and let its sides be divided in equal ratios at points H, T and K, such that the ratio of BT to TG is as the ratio of AH to HB and as that of GK to KA; let us join lines HT, TK, KH. Now I maintain that the centre of gravity of the two triangles ABG and HTK is one and the same."

In other words, this Pappus theorem states: If the sides of some triangle ABC are divided by points F, E and D in the same ratio

$$\frac{\mathrm{BD}}{\mathrm{DC}} = \frac{\mathrm{CE}}{\mathrm{EA}} = \frac{\mathrm{AF}}{\mathrm{FB}} = \alpha,$$

then the triangles ABC and FED have the same centroid (see Figure 1). The triangle FED is sometimes called *Pappus' triangle*.

There are many ways to prove this theorem. It can be also generalized for n points in \mathbb{R}^m . We shall bring a simple proof for the generalized version:

ISSN 1433-8157/\$ 2.50 \bigodot 2018 Heldermann Verlag

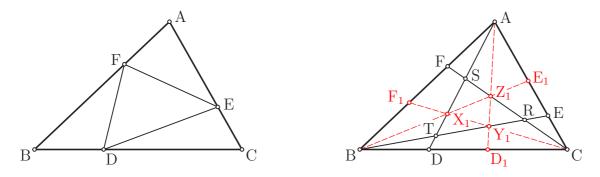


Figure 1: BD/DC = CE/EA = AF/FB. Figure 2: Illustration to the proof of Theorem 2.

Theorem 1. Let M be the centroid of the points $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \in \mathbb{R}^m$. And let the points $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ be on the line segments $\mathbf{x}_1 \mathbf{x}_2, \mathbf{x}_2 \mathbf{x}_3, \ldots, \mathbf{x}_n \mathbf{x}_1$, respectively, and divide this segments in the same ratio α , to say, $\mathbf{x}_i \mathbf{w}_i / \mathbf{w}_i \mathbf{x}_{i+1} = \alpha$ for all $i, 1 \leq i \leq n$, and $\mathbf{x}_{n+1} = \mathbf{x}_1$. Then M is also the centroid of the points $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$.

Proof. We have $M = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$. Since $\mathbf{w}_i = \frac{1}{1+\alpha} (\mathbf{x}_i + \alpha \mathbf{x}_{i+1})$, we obtain for the centroid of the points $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{w}_{i} = \frac{1}{n(1+\alpha)}\sum_{i=1}^{n}\left(\mathbf{x}_{i} + \alpha\mathbf{x}_{i+1}\right) = \frac{(1+\alpha)}{n(1+\alpha)}\sum_{i=1}^{n}\mathbf{x}_{i} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i} = \mathbf{M}.$$

Now we consider the general case for a triangle, where the points F, E, D divide the triangle's sides not necessarily in the same ratio

$$\frac{\mathrm{BD}}{\mathrm{DC}} = \alpha, \quad \frac{\mathrm{CE}}{\mathrm{EA}} = \beta, \quad \frac{\mathrm{AF}}{\mathrm{FB}} = \gamma$$

Let us denote the triangle DEF by $\Delta(\alpha, \beta, \gamma)$ and $\bigcap_{k\geq 0} \Delta(k\alpha, k\beta, k\gamma)$ by $\mathcal{Q}(\alpha, \beta, \gamma)$. Corollary 1. Theorem 1 implies $\mathcal{Q}(\alpha, \alpha, \alpha) \neq \emptyset$, because the centroid $M \in \mathcal{Q}(\alpha, \alpha, \alpha)$.

2. The general case of dividing the sides of a triangle

Corollary 1 can be generalized in following way.

Theorem 2. For given non-negative α, β, γ holds $\mathcal{Q}(\alpha, \beta, \gamma) \neq \emptyset$.

Proof. Let $S = AD \cap FC$, $T = AD \cap BE$, $R = BE \cap FC$. Then there are three points X_1 , Y_1 , Z_1 on ST, TR and RS, respectively, which satisfy the following conditions: A lies on line Z_1Y_1 , B lies on line X_1Z_1 , and C lies on line X_1Y_1 (see Figure 2).

To prove this statement let's choose points F_1 , E_1 , D_1 on AB, AC and BC, respectively, which divide the triangle's side in the ratios

$$\frac{\mathrm{BD}_1}{\mathrm{D}_1\mathrm{C}} = \sqrt{\frac{\alpha}{\beta\gamma}} = \alpha_1, \quad \frac{\mathrm{CE}_1}{\mathrm{E}_1\mathrm{A}} = \sqrt{\frac{\beta}{\alpha\gamma}} = \beta_1, \quad \frac{\mathrm{AF}_1}{\mathrm{F}_1\mathrm{B}} = \sqrt{\frac{\gamma}{\alpha\beta}} = \gamma_1.$$

Then $\frac{CE_1}{E_1A} \cdot \frac{AF_1}{F_1B} \cdot \frac{BD}{DC} = \sqrt{\frac{\beta}{\alpha\gamma}} \cdot \sqrt{\frac{\gamma}{\alpha\beta}} \cdot \alpha = 1$. Therefore, according to the Ceva's theorem [2, pp. 137–138], CF₁, BE₁ and AD meet at a common point X₁. Similarly,we obtain two other points Y₁ and Z₁.

By the same way we can find the points X_2 , Y_2 and Z_2 on the sides of the triangle $X_1Y_1Z_1$, whose appropriate points F_2 , E_2 , D_2 on the sides of triangle ABC divide them in the ratios

$$\alpha_2 = \frac{BD_2}{D_2C} = \sqrt{\frac{\alpha_1}{\beta_1\gamma_1}}, \quad \beta_2 = \frac{CE_2}{E_2A} = \sqrt{\frac{\beta_1}{\alpha_1\gamma_1}}, \quad \gamma_2 = \frac{AF_2}{F_2B} = \sqrt{\frac{\gamma_1}{\beta_1\alpha_1}}.$$

By continuing this process we get

$$\alpha_{n+1} = \frac{\mathrm{BD}_{n+1}}{\mathrm{D}_{n+1}\mathrm{C}} = \sqrt{\frac{\alpha_n}{\beta_n \gamma_n}} = \alpha_n^{0.5} (\beta_n \gamma_n)^{-0.5}, \quad \beta_{n+1} = \frac{\mathrm{CE}_{n+1}}{\mathrm{E}_{n+1}\mathrm{A}} = \sqrt{\frac{\beta_n}{\alpha_n \gamma_n}} = \beta_n^{0.5} (\alpha_n \gamma_n)^{-0.5},$$
$$\gamma_{n+1} = \frac{\mathrm{AF}_{n+1}}{\mathrm{F}_{n+1}\mathrm{B}} = \sqrt{\frac{\gamma_n}{\beta_n \alpha_n}} = \gamma_n^{0.5} (\beta_n \alpha_n)^{-0.5}.$$

One can prove by mathematical induction that

 $\alpha_n = \left(\alpha^{p_n}(\beta\gamma)^{-p_{n-1}}\right)^{2^{-n}}, \quad \beta_n = \left(\beta^{p_n}(\alpha\gamma)^{-p_{n-1}}\right)^{2^{-n}}, \quad \gamma_n = \left(\gamma^{p_n}(\alpha\beta)^{-p_{n-1}}\right)^{2^{-n}},$

where $p_n = \frac{1}{3} (2^{n+1} + (-1)^n)$. Then

$$\lim_{n \to \infty} \alpha_n = \sqrt[3]{\frac{\alpha^2}{\beta\gamma}}, \quad \lim_{n \to \infty} \beta_n = \sqrt[3]{\frac{\beta^2}{\alpha\gamma}}, \quad \lim_{n \to \infty} \gamma_n = \sqrt[3]{\frac{\gamma^2}{\alpha\beta}} \quad \text{and} \quad \lim_{n \to \infty} \alpha_n \beta_n \gamma_n = 1.$$

Therefore, while $n \to \infty$, the triangles $X_n Y_n Z_n$ tend to a point which we denote by M₁. Obviously, $M_1 \in \Delta(\alpha, \beta, \gamma)$ and $M_1 \in \Delta(k\alpha, k\beta, k\gamma)$ for each $k \ge 0$. It means that $M_1 \in \bigcap_{k>0} \Delta(k\alpha, k\beta, k\gamma) \neq \emptyset.$

Note that for $\alpha = \beta = \gamma$ point M₁ is the centroid of the triangle ABC.

3. Characterization of the domain $\mathcal{Q}(\alpha, \beta, \gamma)$

We proved above that $\mathcal{Q}(\alpha, \beta, \gamma) \neq \emptyset$, because $M_1 \in \mathcal{Q}(\alpha, \beta, \gamma)$. The question arises whether there are any other points in this domain.

Theorem 3. Let AD, BE and CF be three concurrent cerians of triangle ABC that meet at point O and let $\frac{BD}{DC} = \alpha$, $\frac{CE}{EA} = \beta$ and $\frac{AF}{FB} = \gamma$. If for arbitrary three points $D_1 \in BC$, $E_1 \in AC, F_1 \in AB$ with

$$\frac{\mathrm{B}\mathrm{D}_1}{\mathrm{D}_1\mathrm{C}} = \alpha_1, \quad \frac{\mathrm{C}\mathrm{E}_1}{\mathrm{E}_1\mathrm{A}} = \beta_1, \quad \frac{\mathrm{A}\mathrm{F}_1}{\mathrm{F}_1\mathrm{B}} = \gamma_1$$

one of two following conditions holds, a) $\alpha_1 \leq \alpha$, $\beta_1 \leq \beta$, $\gamma_1 \leq \gamma$ or b) $\alpha \leq \alpha_1$, $\beta \leq \beta_1$, $\gamma \leq \gamma_1$, then $O \in \Delta(\alpha_1, \beta_1, \gamma_1)$.

Note: Geometrically the cases a) and b) mean that the three points D_1 , E_1 and F_1 belong to the segments BD, CE, AF or DC, EA, FB, respectively (see Figures 3 and 4).

Proof. Let $G: \mathbb{R}^2 \to \mathbb{R}^2$ be the affine transformation that transforms the triangle ABC to the triangle $A_1B_1C_1$ with coordinates $A_1 = (0, 1), B_1 = (0, 0), C_1 = (1, 0)$. Then

$$G(O) = O_1, \quad G(D_1) = D_2 \in B_1C_1, \quad \frac{B_1D_2}{D_2C_1} = \alpha_1, \quad G(E_1) = E_2 \in A_1C_1, \quad \frac{C_1E_2}{E_2A_1} = \beta_1,$$
$$G(F_1) = F_2 \in A_1B_1, \quad \frac{A_1F_2}{F_2B_1} = \gamma_1.$$

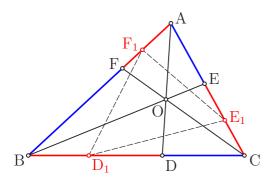


Figure 3: D_1 , E_1 and F_1 belong to the segments BD, CE, AF.

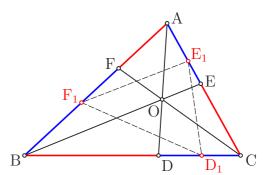


Figure 4: D_1 , E_1 and F_1 belong to the segments DC, EA, FB.

Then the coordinates of the points are

$$D_{2} = \left(\frac{\alpha_{1}}{\alpha_{1}+1}, 0\right), \quad E_{2} = \left(\frac{1}{\beta_{1}+1}, \frac{\beta_{1}}{\beta_{1}+1}\right), \quad F_{2} = \left(0, \frac{1}{\gamma_{1}+1}\right).$$

 O_1 is an interior point of $\Delta(\alpha_1, \beta_1, \gamma_1)$ (see Figure 5) if, and only if, the following system of equations has a non-negative solution $\lambda_1, \lambda_2, \lambda_3$, where $\lambda_1, \lambda_2, \lambda_3$ are barycentric coordinates of O_1 with respect to the triangle ABC [3, pp. 216–221]:

$$\begin{cases} \frac{\lambda_1 \alpha_1}{\alpha_1 + 1} + \frac{\lambda_2}{\beta_1 + 1} &= \frac{\alpha}{\alpha \beta + \alpha + 1}, \\ \frac{\lambda_2 \beta_1}{\beta_1 + 1} + \frac{\lambda_3}{\gamma_1 + 1} &= \frac{\alpha \beta}{\alpha \beta + \alpha + 1}, \\ \lambda_1 + \lambda_2 + \lambda_3 &= 1. \end{cases}$$

From this system one can find that

$$\lambda_1 = \frac{1 + \frac{\gamma_1}{\gamma} \left(\frac{\beta_1 - \beta}{\beta}\right)}{\left(\alpha\beta + \alpha + 1\right) \left(\frac{\alpha_1\beta_1\gamma_1 + 1}{\alpha_1 + 1}\right)}.$$

Similar formulas can be obtained for λ_2 and λ_3 . Thus we have two cases:

a) $\alpha_1 \leq \alpha, \ \beta_1 \leq \beta, \ \gamma_1 \leq \gamma$: In this case $-1 \leq \frac{\gamma_1}{\gamma} \left(\frac{\beta_1 - \beta}{\beta}\right) \leq 0$ and so $0 \leq \lambda_1$. Similarly $0 \leq \lambda_2$ and $0 \leq \lambda_3$. b) $\alpha \leq \alpha_1, \ \beta \leq \beta_1, \ \gamma \leq \gamma_1$: In this case $0 \leq \frac{\gamma_1}{\gamma} \left(\frac{\beta_1 - \beta}{\beta}\right)$ and so $0 < \lambda_1$. Similarly $0 < \lambda_2$ and

$$0 < \lambda_3.$$

Corollary 2. It is easy to see that Corollary 1 is a particular case of Theorem 3.

Proof. Indeed, for given α, β, γ we can choose $k = \sqrt[3]{\alpha\beta\gamma}$ that satisfies $(k\alpha)(k\beta)(k\gamma) = 1$, and so the point $S = (k\alpha, k\beta, k\gamma)$ is inside the triangle $\Delta(k\alpha, k\beta, k\gamma)$. Therefore S is also an interior point of all the triangles $\Delta(t\alpha, t\beta, t\gamma)$.

Let M be the point of intersections of three concurrent cevians AD, BE and CF in the given triangle ABC, where $\frac{BD}{DC} = \alpha$, $\frac{CE}{EA} = \beta$ and $\frac{AF}{FB} = \gamma$. Let's denote M by $M = (\alpha, \beta, \gamma)$ and let's denote Q_{ρ} the locus of all the points (α, β, γ) which satisfy $\rho = \beta/\gamma$. In the following theorem we will characterize this curve Q_{ρ} .

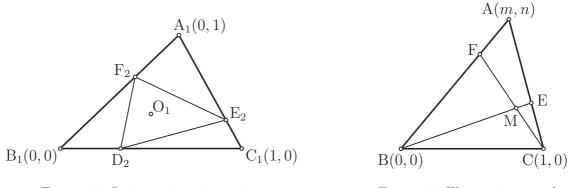
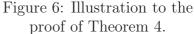


Figure 5: O_1 is an interior point of $\Delta F_2 E_2 D_2 = \Delta(\alpha_1, \beta_1, \gamma_1)$.



Theorem 4. Let $\rho = \beta/\gamma$ be a positive constant. Then the curve Q_{ρ} is a) an ellipse, when $\rho < 4$; b) a parabola, when $\rho = 4$; and c) a hyperbola, when $\rho > 4$.

Proof. Without loss of generality we can assume that A = (m, n), B = (0, 0), C = (1, 0) (see Figure 6). Since $\frac{CE}{EA} = \beta$ and $\frac{AF}{FB} = \gamma$, then

$$\mathbf{E} = \left(\frac{1+\beta m}{\beta+1}, \frac{\beta n}{\beta+1}\right) \text{ and } \mathbf{F} = \left(\frac{m}{\gamma+1}, \frac{n}{\gamma+1}\right).$$

For M = (x, y) we obtain the following system of equations:

$$\begin{cases} \frac{x}{y} = \frac{1+\beta m}{\beta n}, \\ \frac{x-1}{y} = \frac{m-1-\gamma}{n}. \end{cases}$$

This system and $\beta/\gamma = \rho$ imply

$$\rho n^2 x^2 + (\rho m^2 - \rho m + 1)y^2 + (\rho n - 2\rho m n)xy - \rho n^2 x + mn\rho y = 0$$

This is a quadratic curve

$$ax^2 + 2hxy + by^2 + 2fx + 2gy + c = 0,$$

where $a = n^2 \rho$, $b = \rho m^2 - \rho m + 1$, c = 0, $h = \frac{1}{2}(\rho n - 2\rho m n)$, $f = -\frac{1}{2}\rho n^2$, $g = \frac{1}{2}mn\rho$. The discriminant Δ of the quadratic equation is

$$\Delta = ab - h^2 = n^2 \rho (\rho m^2 - \rho m + 1) - \left(\frac{\rho n - 2\rho mn}{2}\right)^2 = \frac{n^2 \rho (4 - \rho)}{4}.$$

Thus we obtain

- If $\Delta = 0$, i.e., $\rho = 4$, the locus is a parabola;
- If $\Delta > 0$, i.e., $\rho < 4$, the locus is an ellipse;
- If $\Delta < 0$, i.e., $\rho > 4$, the locus is a hyperbola.

Obviously, the same result can be obtained for the loci of points for which $\gamma/\alpha = \rho$ or $\alpha/\beta = \rho$.

Theorem 5. Point $O = (\alpha_1, \beta_1, \gamma_1) \in \mathcal{Q}(\alpha, \beta, \gamma)$ if and only if the three following conditions are satisfied:

$$\frac{\beta_1}{\gamma_1} \le \frac{4\beta}{\gamma}, \quad \frac{\gamma_1}{\alpha_1} \le \frac{4\gamma}{\alpha}, \quad \frac{\alpha_1}{\beta_1} \le \frac{4\alpha}{\beta}.$$

Proof. As it was mentioned in the proof of Theorem 3, $O = (\alpha_1, \beta_1, \gamma_1)$ is an interior point of the triangle $\Delta(k\alpha, k\beta, k\gamma)$ if and only if the three following inequalities are satisfied:

$$1 + \frac{k\gamma}{\gamma_1} \left(\frac{k\beta - \beta_1}{\beta_1}\right) \ge 0, \quad 1 + \frac{k\alpha}{\alpha_1} \left(\frac{k\gamma - \gamma_1}{\gamma_1}\right) \ge 0, \quad 1 + \frac{k\beta}{\beta_1} \left(\frac{k\alpha - \alpha_1}{\alpha_1}\right) \ge 0.$$

Therefore $O = (\alpha_1, \beta_1, \gamma_1) \in \mathcal{Q}(\alpha, \beta, \gamma)$ if and only if these inequalities are satisfied for each $k \geq 0$. Since the first inequality is equivalent to $\gamma\beta k^2 - \beta_1\gamma k + \beta_1\gamma_1 \geq 0$, we obtain that $(\beta_1\gamma)^2 - 4\gamma\beta\beta_1\gamma_1 \leq 0$, i.e., $\beta_1/\gamma_1 \leq 4\beta/\gamma$. Similarly, the two other inequalities imply $\gamma_1/\alpha_1 \leq 4\gamma/\alpha$ and $\alpha_1/\beta_1 \leq 4\alpha/\beta$.

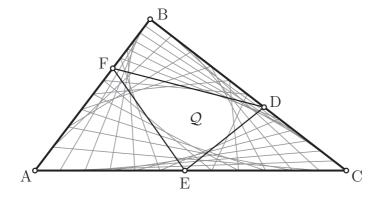


Figure 7: Illustration to Corollary 3.

Corollary 3. Let's denote $\rho_1 = 4\beta/\gamma$, $\rho_2 = 4\gamma/\alpha$, $\rho_3 = 4\alpha/\beta$. Let D_{ρ_1} , D_{ρ_2} , D_{ρ_3} be the domains inside the triangle ABC, bound by conic sections Q_{ρ_1} , Q_{ρ_2} and Q_{ρ_3} , respectively. Then $\mathcal{Q}(\alpha, \beta, \gamma) = D_{\rho_1} \cap D_{\rho_2} \cap D_{\rho_3}$ (see Figure 7).

This corollary follows directly from the two previous theorems.

Corollary 4. If $\alpha = \beta = \gamma$, then $\mathcal{Q}(\alpha, \alpha, \alpha)$ is the intersection of all Pappus triangles (for all $\alpha \geq 0$). In this case $\rho_1 = \rho_2 = \rho_3 = 4$, and so $\mathcal{Q}(\alpha, \alpha, \alpha)$ is bound by three identical parabolas. This is a well-known fact because for a given angle AOB the envelope of the family of segments XY satisfying AX/XO = OY/YB is a parabola touching the angle's rays at points A and B (see Figure 7).

Theorem 6. For any two domains $Q_1 = Q(\alpha_1, \beta_1, \gamma_1)$ and $Q_2 = Q(\alpha_2, \beta_2, \gamma_2)$ with $\alpha_1\beta_1\gamma_1 = \alpha_2\beta_2\gamma_2 = 1$, there is a homography (projective transformation) $G: \mathbb{R}^2 \to \mathbb{R}^2$ so that $G(Q_1) = Q_2$.

Proof. It is known that there is a unique homography of a plane which transforms given four points not including any three collinear ones into four points. Let $D_1(\alpha_1, \beta_1, \gamma_1)$ and $D_2(\alpha_2, \beta_2, \gamma_2)$ be two points in the triangle ABC and let $G: \mathbb{R}^2 \to \mathbb{R}^2$ be a homography such that G(A) = A, G(B) = B, G(C) = C, and $G(D_1) = D_2$. Then $G(E_1) = E_2$ where

$$\frac{BE_1}{E_1C} = \alpha_1, \quad \frac{BE_2}{E_2C} = \alpha_2, \quad (E_1 = AD_1 \cap BC \quad E_2 = AD_2 \cap BC).$$

Keeping in the mind that for any point $M = M(\alpha, \beta, \gamma)$ in the triangle ABC holds $\alpha\beta\gamma = 1$, it is easy to check that

$$G(\mathbf{M}) = \mathbf{M}_1 = \left(\alpha \cdot \frac{\alpha_2}{\alpha_1}, \ \beta \cdot \frac{\beta_2}{\beta_1}, \ \gamma \cdot \frac{\gamma_2}{\gamma_1} \right).$$

This means that if point E_k on the side BC satisfies $k\alpha_1 = BE_k/E_kC$, then $G(E_k) = F_k$, and F_k satisfies $k\alpha_2 = BF_k/F_kC$. Therefore each triangle with vertices dividing the sides BC, CA, AB in ratios $k\alpha_1$, $k\beta_1$, $k\gamma_1$, respectively, is transformed to a triangle whose vertices divide BC, CA, AB in ratios $k\alpha_2$, $k\beta_2$, $k\gamma_2$, i.e., $G(Q_1) = Q_2$.

Corollary 5. It is impossible that $Q_1 \subset Q_2$ or $Q_2 \subset Q_1$.

Proof. Let's suppose that $Q_1 \subset Q_2$. Since G is a continuous function that transforms the vertices A,B,C to themselves and point $M_1(\alpha_1, \beta_1, \gamma_1)$ to $M_2(\alpha_2, \beta_2, \gamma_2)$, then according to Brouwer's fixed-point theorem [4, p. 170] G has a fixed-point in Q_1 . This means that G is the identity function (four points are transformed to themselves) which contradicts $G(M_1) = M_2$.

4. Generalization of Pappus theorem for tetrahedra

The Pappus theorem can be formulated with the help of barycentric coordinates. Let the vertexes of the triangle ABC have barycentric coordinates A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1). Then the points F, E, D are dividing the sides AB, AC and BC in the same ratio, and they have barycentric coordinates $F = (\lambda_1, \lambda_2, 0)$, $E = (\lambda_2, 0, \lambda_1)$ and $D = (0, \lambda_1, \lambda_2)$, where λ_1, λ_2 are non-negative numbers with $\lambda_1 + \lambda_2 = 1$. Let's denote the triangle DEF by

$$\begin{bmatrix} 0 & \lambda_1 & \lambda_2 \\ \lambda_2 & 0 & \lambda_1 \\ \lambda_1 & \lambda_2 & 0 \end{bmatrix}.$$

Then, according to the Pappus theorem, point M (the triangle's centroid) with barycentric coordinates $\begin{bmatrix} c & c \\ c & b \\ c & c \\ c &$

$$\mathbf{M} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \in \bigcap_{\substack{\lambda_1, \lambda_2 \ge 0\\\lambda_1 + \lambda_2 = 1}} \left[\begin{array}{ccc} 0 & \lambda_1 & \lambda_2\\ \lambda_2 & 0 & \lambda_1\\ \lambda_1 & \lambda_2 & 0 \end{array} \right].$$

This result can be generalized for tetrahedra, i.e., for the case of 3-space. Let

$$\mathbf{L} = (\lambda_1, \lambda_2, \lambda_3, 0), \quad \mathbf{N} = (0, \lambda_1, \lambda_2, \lambda_3), \quad \mathbf{P} = (\lambda_3, 0, \lambda_1, \lambda_2), \quad \mathbf{Q} = (\lambda_2, \lambda_3, 0, \lambda_1)$$

be points on the faces of a tetrahedron ABCD, where $\lambda_1, \lambda_2, \lambda_3 \ge 0$ and $\lambda_1 + \lambda_2 + \lambda_3 = 1$. Let's denote the tetrahedron LNPQ by

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & 0\\ 0 & \lambda_1 & \lambda_2 & \lambda_3\\ \lambda_3 & 0 & \lambda_1 & \lambda_2\\ \lambda_2 & \lambda_3 & 0 & \lambda_1 \end{bmatrix} \quad \text{and} \quad \bigcap_{\substack{\lambda_1, \lambda_2, \lambda_3 \ge 0\\ \lambda_1 + \lambda_2 + \lambda_3 = 1}} \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & 0\\ 0 & \lambda_1 & \lambda_2 & \lambda_3\\ \lambda_3 & 0 & \lambda_1 & \lambda_2\\ \lambda_2 & \lambda_3 & 0 & \lambda_1 \end{bmatrix} \quad \text{by } \mathcal{T}.$$

Theorem 7. $M = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \in \mathcal{T}.$

V. Oxman, A. Sigler, M. Stupel: Generalization of the Pappus Theorem

Proof.
$$\begin{pmatrix} x_L \\ x_N \\ x_P \\ x_Q \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 & 0 \\ 0 & \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_3 & 0 & \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 & 0 & \lambda_1 \end{pmatrix} \begin{pmatrix} x_A \\ x_B \\ x_C \\ x_D \end{pmatrix}.$$
 So
$$\frac{x_L + x_N + x_P + x_Q}{4} = \frac{(x_A + x_B + x_C + x_D)(\lambda_1 + \lambda_2 + \lambda_3)}{4} = \frac{x_A + x_B + x_C + x_D}{4}.$$

By the same way a similar equality can be obtained for the other coordinates of L, N, P, and Q. Thus the tetrahedra ABCD and LNPQ have a common centroid $M = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$.

Similarly to the triangle's case we can ask if there are other points in \mathcal{T} . The following theorem gives a surprising answer to this question.

Theorem 8. $\mathcal{T} = \{M\}$ for $M = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$.

Proof. For $\lambda_1 = \lambda_2 = \frac{1}{2}$, $\lambda_3 = 0$ we obtain a degenerated flat tetrahedron with the vertices at the midpoints of AB, BC, CD, and DA. These points form parallelogram \mathcal{P} . Thus $\mathcal{T} \subseteq \mathcal{P}$. For $\lambda_1 = \lambda_3 = \frac{1}{2}$, $\lambda_2 = 0$ the tetrahedron degenerates to the line segment \mathcal{S} with the ends at the midpoints of DB and AC. Therefore $\mathcal{T} \subseteq \mathcal{P} \cap \mathcal{S}$. Since the segment \mathcal{S} does not lie in the plane of the parallelogram \mathcal{P} , $\{M\} = \mathcal{P} \cap \mathcal{S}$ and thus $\{M\} = \mathcal{T}$.

References

- PAPPUS ALEXANDRINUS: Mathematical Collection, Book 8. transl. D. JACKSON, 1970, available at http://archimedes.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.cgi?page= 10;dir=pappu_coll8_095_en_1970;step=textonly.
- [2] R. HONSBERGER: Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Math. Assoc. Amer., Washington DC 1995.
- [3] H.S.M. COXETER: Introduction to Geometry. 2nd ed., Wiley, New York 1969.
- [4] M. ROSENLICHT: Introduction to Analysis. Dover, New York 1968.

Received January 31, 2018

66