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Abstract. We present two methods to interpolate between two given rigid body
displacements. Both are based on linear interpolation in the ambient space of
well-known curved point models for the group of rigid body displacements. The
resulting motions are either vertical Darboux motions or cubic circular motions.
Both are rational of low degree and lie in the cylinder group defined by the two
input poses. We unveil the essential parameters in the construction of these mo-
tions and discuss some of their properties.
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1. Introduction

Given two poses (position and orientation) of a rigid body in space, there exists a unique
helical displacement that maps the first pose to the second. The underlying continuous
helical motion can serve as a substitute for a linear interpolant in spatial kinematics and one
might believe that there are no natural alternatives to this. However, certain disadvantages
of helical interpolants (most notably, helical motions are not algebraic) suggest to look for
replacements of linear interpolation.

In this article we present two approaches to the interpolation problem of two poses. They
produce low degree rational motions, have a clear geometric background, and come in at
least one-parametric families. The underlying algebraic constructions are based on exten-
sions of well-known kinematic mappings from curved manifolds to linear (affine or projective)
spaces and might be extended to higher order interpolation. The lack of injectivity of these
“extended” kinematic maps may cause problems in certain applications and thus requires a
careful investigation of the underlying geometric and algebraic intricacies. Some aspects of
this are on the agenda in this article.

In Section 2 we recall two well-known point models, homogeneous transformation matrices
and dual quaternions, for the group SE(3) of rigid body displacements and discuss conversion
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formulas between them. By extending these formulas to the ambient affine or projective space,
we construct extended kinematic mappings in Section 3. Linear interpolation in the extended
dual quaternion model produces vertical Darboux motions whose elementary geometry is well-
understood. In Sections 4 and 5 we focus on the extended matrix model. We show how to
compute the fibers of the corresponding kinematic mapping and we demonstrate that linear
interpolation produces cubic circular motions or, more precisely, line-symmetric motions with
respect to one family of rulings in an orthogonal hyperbolic paraboloid.

2. Preliminaries

We proceed by introducing two well-known point models for the group SE(3) of rigid body
displacements and conversion formulas between them. The first model embeds SE(3) into the
group of affine maps which can naturally be identified with the affine space R12. The second
model is the projectivised dual quaternion model (Study parameters).

2.1. Point models for rigid body displacements

With respect to Cartesian coordinate systems in fixed and moving frame, a rigid-body dis-
placement κ : R3 → R3, x 7→ y can be given in terms of a homogeneous four-by-four trans-
formation matrix: [

1
x

]
7→
[
1
y

]
=

[
1 0ᵀ

a A

]
·
[

1
x

]
. (1)

Here, A is an orthogonal matrix of dimension 3 × 3 and determinant 1. If A fails to satisfy
the orthogonality conditions, (1) describes an affine map. In this sense, the space of affine
maps—which may be identified with R12 ∼= (A, a)—provides a point model for the group
SE(3) of rigid-body displacements. In this space, SE(3) is the algebraic variety defined by the
six quadratic equations resulting from A · Aᵀ = I3 (the identity matrix of dimension 3 × 3)
and the cubic equation detA = 1. This variety is of dimension and co-dimension six and its
ideal contains no linear equations.

Another important point model of SE(3) is Study parameters. These are most conveniently
described in terms of dual quaternions which we briefly introduce. For more details we refer
to [12, 4, 5]. A quaternion p is an element of the four-dimensional real associative algebra H,
generated by the base elements 1, i, j, k and the multiplication rules

i2 = j2 = k2 = ijk = −1.

It may be written as p = p0 +p1i+p2j+p3k with p0, p1, p2, p3 ∈ R. The conjugate quaternion
is defined as p := p0 − p1i − p2j − p3k, the quaternion norm pp = p20 + p21 + p22 + p23 is a
non-negative real number.

The algebra DH of dual quaternions is obtained by extension of scalars from the real
numbers R to the dual numbers D = R[ε]/〈ε2〉. Any dual number may be written as r = s+εt
with s, t ∈ R. Multiplication obeys the rule ε2 = 0 so that (s+ εt)(u+ εv) = su+ ε(sv+ tu).
Any dual quaternion h can be written as h = p + εq with quaternions p (the primal part)
and q (the dual part). Defining also the dual quaternion conjugate h := p + εq, the dual
quaternion norm is hh = pp+ ε(pq+ qp). It is a dual number whose dual part (the coefficient
of ε) vanishes precisely if the Study condition

pq + qp = 0 (2)
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is satisfied. Dual quaternions are related to spatial kinematics by an isomorphism from SE(3)
to a certain subgroup constructed from DH. We embed R3 into H via (x1, x2, x3) ∈ R3 ↪→
x = x1i + x2j + x3k and define the action of h = p+ εq with norm hh ∈ R \ {0} on x by

1 + εx 7→ (pp)−1(p− εq) · (1 + εx) · (p+ εq). (3)

The map (3) is a rigid body displacement. With p = p0 + p1i + p2j + p3k and q =
q0 + q1i+ q2j+ q3k, the entries of the homogeneous vector [p0, p1, p2, p3, q0, q1, q2, q3] are called
the Study parameters of the displacement (3). The composition of displacements in Study
parameters is just the dual quaternion multiplication. Thus, SE(3) is isomorphic to the group
of dual quaternions of unit norm, modulo the multiplicative real group. Study parameters
allow for a bilinear composition of displacements with a minimal number of parameters but
have other advantages as well.

Since the Study parameters are only determined up to multiplication with a non-zero
real scalar, the underlying point model of SE(3) is contained in real projective space P 7

of dimension seven. More precisely, the bilinear form p + εq 7→ pq + qp (compare with
Equation (2)) defines a quadric S ⊂ P 7, the so-called Study quadric. Rigid body displacements
are in bijection to points of S minus the exceptional generator E, given by the equation p = 0.

2.2. Conversion formulas

Formulas for the conversion between homogeneous transformation matrices and Study pa-
rameters are well-known. A straightforward calculation shows that the displacement given by
h = p+ εq via (3) is also given by the matrix

A =
1

∆


∆ 0 0 0
a1 a11 a12 a13
a2 a21 a22 a23
a3 a31 a32 a33

 (4)

where ∆ = p20 + p21 + p22 + p23,

a11 = p20 + p21 − p22 − p23, a12 = 2(p1p2 − p0p3), a13 = 2(p0p2 + p1p3),

a21 = 2(p0p3 + p1p2), a22 = p20 − p21 + p22 − p23, a23 = 2(p2p3 − p0p1),
a31 = 2(p1p3 − p0p2), a23 = 2(p0p1 + p2p3), a33 = p20 − p21 − p22 + p23,

and
a1 = 2(−p0q1 + p1q0 − p2q3 + p3q2),

a2 = 2(−p0q2 + p1q3 + p2q0 − p3q1),
a3 = 2(−p0q3 − p1q2 + p2q1 + p3q0).

(5)

In order to invert this calculation, we have to find a dual quaternion h = p+εq that satisfies the
Study condition and describes the displacement (1) with orthogonal matrix A = (aij)i,j=1,2,3

and vector a = (a1, a2, a3)
ᵀ. To begin with, the dual part q can be computed from primal

part p and a: Augmenting (5) with the Study condition p0q0 + p1q1 + p2q2 + p3q3 = 0 gives
a system of linear equations for q0, q1, q2, and q3 with determinant ∆2 6= 0. Provided p is
normalised, its unique solution is

q0
q1
q2
q3

 =
1

2


0 a1 a2 a3
−a1 0 a3 −a2
−a2 −a3 0 a1
−a3 a2 −a1 0

 ·

p0
p1
p2
p3

 . (6)
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Hence, we may focus on the primal part. Comparing coefficients of A with (4) we find

p20 = 1
4
(1 + a11 + a22 + a33), p21 = 1

4
(1 + a11 − a22 − a33),

p22 = 1
4
(1− a11 + a22 − a33), p23 = 1

4
(1− a11 − a22 + a33)

(7)

so that all coefficients of p are determined up to sign. Moreover, we have

p0p1 = 1
4
(a32 − a23), p0p2 = 1

4
(a13 − a31), p0p3 = 1

4
(a21 − a12),

p1p2 = 1
4
(a21 + a12), p1p3 = 1

4
(a31 + a13), p2p3 = 1

4
(a32 + a23).

(8)

From (7) and (8) we see that the ratio of the primal part coefficients (the so-called Euler
parameters) is given as

p0 : p1 : p2 : p3 =

1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12 =

a32 − a23 : 1 + a11 − a22 − a33 : a21 + a12 : a31 + a13 =

a13 − a31 : a21 + a12 : 1− a11 + a22 − a33 : a32 + a23 =

a21 − a12 : a31 + a13 : a32 + a23 : 1− a11 − a22 + a33.

(9)

Any of the four ratios may be used to compute p up to irrelevant scalar multiples unless it
gives 0 : 0 : 0 : 0. This is the case for half-turns (p0 = 0) or rotations around vectors parallel
to a coordinate plane (p1 = 0, p2 = 0, or p3 = 0). At least one of the four ratios in (9) is
always valid.

For a geometric study of these relations, we take a more general point of view. We embed
the space of three by three matrices into R9 by the inclusion map

A ↪→ (x1, x2, x3, x4, x5, x6, x7, x8, x9)
ᵀ = (a11, a12, a13, a21, a22, a23, a31, a32, a33)

ᵀ.

For ` ∈ {0, 1, 2, 3}, we define a linear map µ′` : R10 → R4 via

µ′0(x) := (x0 + x1 + x5 + x9, x8 − x6, x3 − x7, x4 − x2)
µ′1(x) := (x8 − x6, x0 + x1 − x5 − x9, x4 + x2, x7 + x3),

µ′2(x) := (x3 − x7, x4 + x2, x0 − x1 + x5 − x9, x8 + x6),

µ′3(x) := (x4 − x2, x7 + x3, x8 + x6, x0 − x1 − x5 + x9).

(10)

These maps are constructed such that the de-homogenisation x0 = 1 produces a vector µ′`(x)
that after normalisation yields the coefficients of the `-th proportion in (9). This anticipates
the projective viewpoint we will adopt a little later. Even more generally, we define a family

µ′m : R10 → R4, x 7→ m0µ
′
0(x) +m1µ

′
1(x) +m2µ

′
2(x) +m3µ

′
3(x) (11)

of maps which is parameterised by the vector m = (m0,m1,m2,m3)
ᵀ ∈ R4. The map µ′m can

be extended to a family of maps

µm : R13 → R8, (x, a1, a2, a3)
ᵀ 7→ (p0, p1, p2, p3, q0, q1, q2, q3)

ᵀ (12)

where (p0, p1, p2, p3)
ᵀ = µ′m(x) and (q0, q1, q2, q3)

ᵀ is computed via (6). Any map µm takes a
rigid body displacement given as homogeneous matrix to a vector of Study parameters, unless
the image is the zero vector.
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3. Extended kinematic mappings

So far, we introduced two point models for SE(3) and explained conversion formulas between
both models. The first model is a certain variety in the space R12 of affine maps, defined by
orthogonality of the linear component and positivity of its determinant. The second model is
the Study quadric S ⊂ P 7 minus the exceptional generator E.

At the core of this article stands the observation that the conversion formulas between both
point models can formally be extended to the complete ambient space R12 or P 7, respectively,
and still yield a well-defined rigid body displacement in the other model. This gives rise to
extended kinematic mappings or, considering (12), even a family of such extended mappings.

One of the biggest advantages of these mappings is that they eliminate the non-linearity
of the underlying point space. This comes, however, at the cost of losing injectivity whence
one is led to study the induced fibers (pre-images of single displacements.) Other interesting
questions pertain to kinematic interpretations of “simple” curves. In particular, we may ask
for the motion corresponding to a straight line connecting two given poses. We will provide
a detailed answer to these questions for the extended kinematic mappings (12). Before doing
this, we consider the extended kinematic mapping from κ : P 7 \ E → SE(3) that is defined
by Equations (4) and (5). Since it has already been studied elsewhere [11, 9, 8], we confine
ourselves to briefly stating some facts of interest but omit proofs:
• The fiber of the displacement represented by the dual quaternion h = p + εq is the

straight line spanned by h and εq [8].
• The κ-image of a motion connecting two poses by a straight line segment is a vertical

Darboux motion [9, 10].
Recall that a vertical Darboux motion is the composition of a rotation around a fixed axis

with a translation in direction of this axis where rotation angle ϕ and translation distance z
are coupled by a sine function (z = λ sin(ϕ + κ); λ, κ ∈ R) [1, Chapter 9, §7]. Special cases
include λ = 0 (rotation) and the limit for λ→∞ (translation).

The vertical Darboux motion has quite a few interesting properties which we state below in
form of a theorem. (Not because they are new but because we want to emphasise similarities
to the motion obtained as µm-image of a straight line in Theorem 2). Before doing so,
we introduce a few more concepts. A motion group generated by rotations around and
translations parallel to a fixed axis is called a cylinder group. An element of a cylinder group
is fully specified by rotation angle ϕ and signed translation distance z, both measured with
respect to a fixed initial position. A motion in a cylinder group is fully specified, if ϕ and z
are functions of a common parameter t. We call the thus described parametric curve in the
[ϕ, z]-plane the motion’s transmission curve. Finally, a line-symmetric motion is the motion
obtained by rotating the moving space about the generators of a ruled surface through 180◦.

Theorem 1. The vertical Darboux motion has the following properties:
1. It is a motion in a cylinder group (Figure 1).
2. It is line-symmetric with respect to the rulings of a Plücker conoid [6] (Figure 2).
3. The transmission curve of a vertical Darboux motion is a scaled and shifted sine curve

(Figure 1).
4. The trajectories of points are rational curves of degree two (ellipses or, in special cases,

straight line segments; Figure 1).

Given a start and an end pose, there exists a two-parametric set of lines connecting a
point in the fiber of the start pose with a point in the fiber of the end pose. This corresponds
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Figure 1: Vertical Darboux motion (left), trajectories connecting A and B (centre)
and relationship between rotation angle ϕ and translation distance z (right).

Figure 2: Line-symmetric motion with respect to a Plücker conoid.

to certain variations of λ and κ. Considering these changes modulo the fibration, only one
essential parameter remains. This can also be explained by Number 3 in Theorem 1. Other
statements on the interpolant are:

• There exists exactly one Darboux motion that interpolates the two given poses and
contains a third pose in their cylinder group.

• It is possible to prescribe the instantaneous pitch (ratio of angular velocity and trans-
lational velocity) in start or end point but not in both.

• There is a distinguished interpolant where start and end point on the transmission curve
are at the same distance to an inflection point.

In the following sections, we aim at comparable statements for the extended kinematic
map µm. Indeed, we will see many similarities between the motions resulting from both maps.
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4. Basic properties and fibers

The aim of this section is a more detailed study of the basic geometry of the maps µm and
µ′m. An important observation is that µ′m, as defined in (11), induces a projective map whose
restriction to the affine sheet x0 = 1 translates between orthogonal matrices and quaternions.
We denote this projective map by µ′[m] since it only depends on the point [m] ∈ P 3 and not
the vector m ∈ R4. Its matrix representation reads [x0, x1, . . . , x9]

ᵀ 7→ Mm · [x0, x1, . . . , x9]ᵀ
where Mm = [M1,M2] and

M1 =


m0 m0 −m3 m2 m3

m1 m1 m2 m3 m2

m2 −m2 m1 m0 m1

m3 −m3 −m0 m1 m0

 , M2 =


m0 −m1 −m2 m1 m0

−m1 −m0 m3 m0 −m1

m2 m3 −m0 m3 −m2

−m3 m2 m1 m2 m3

 .
The map µ′[m] is not defined on the six-dimensional projective space Nm over the nullspace of
Mm. For a generic choice of m, this space is spanned by the vectors

f0 := (n1n2,−n2n4, n0, 0, 0,−n1n5, 0, 0, 0, n4n5)
ᵀ,

f1 := (−n4n6, n1n6, 0, n0, 0,−n1n3, 0, 0, 0, n3n4)
ᵀ,

f2 := (−n4n5, n1n5, 0, 0, n0, n2n4, 0, 0, 0,−n1n2)
ᵀ,

f3 := (n2n3, n5n6, 0, 0, 0,−n3n5, n0, 0, 0,−n2n6)
ᵀ,

f4 := (n1n3,−n3n4, 0, 0, 0, n4n6, 0, n0, 0,−n1n6)
ᵀ,

f5 := (−n5n6,−n2n3, 0, 0, 0, n2n6, 0, 0, n0, n3n5)
ᵀ.

(13)

where
n0 := 4m0m1m2m3, n1 := m0m1 −m2m3, n2 := m0m2 −m1m3,

n3 := m0m3 −m1m2, n4 := m0m1 +m2m3,

n5 := m0m2 +m1m3, n6 := m0m3 +m1m2.

(14)

The basis vectors in (13) correspond to the matrices that we denote by F0, F1, . . . , F5,
respectively.

The family of maps (12) induces a family of maps from P 12 to P 7 which we similarly denote
by µ[m]. The first four coordinate functions are linear, the last four are quadratic. Moreover,
the maps are linear in a0, a1, a2, and a3. Thus, the µ[m]-image of all displacements with
fixed orientation is a projective subspace of dimension four,—a left co-set of the translation
group. The base set of µ′[m] is the projective space [Nm] over the nullspace of µ′m. The µ′[m]-
fiber F ′[m]([x

′]) of a point [x′] ∈ P 9 (the preimage of µ′[m]([x
′])) is the projective subspace

[x′] ∨ [Nm].
In order to describe the µ[m]-fiber F[m]([x]) of [x] ∈ P 12, we introduce some more notation.

Given x = (x0, x1, . . . , x12) ∈ R13, we denote its projection on the rotational component
by x′ := (x0, x1, . . . , x9, 0, 0, 0) and its projection on the translational component by xt :=
(0, 0, . . . , 0, x10, x11, x12). The µ[m]-fiber of [x] ∈ P 12 is then

F[m]([x]) = x0F ′[m]([x
′]) + ψ[xt] (15)

where ψ is the common homogenising coordinate (entry in the top left corner) of F ′[m]([x
′]).
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5. Image of straight lines

Now we come to a central part of this article. We consider two poses A0, B0 and linear
interpolants in R12 constructed from them. Without loss of generality, we assume that A0 is
the identity and

B0 =


1 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
d 0 0 1


with fixed values ϕ ∈ [0, 2π) and d ∈ R. It is not sufficient to just consider the straight line
connecting A0 and B0 but we should study the lines in the set

{A ∨B | A ∈ F[m](A0), B ∈ F[m](B0)}.

The elements A′ ∈ F ′[m](A
′
0) and B′ ∈ F ′[m](B

′
0) can be written as

A′ = A′0 +
5∑

`=0

α`F`, B′ = B′0 +
5∑

`=0

β`F`

where (α0, α1, . . . α5)
ᵀ, (β0, β1, . . . β5)

ᵀ ∈ R6. The elements of F[m](A0) and F[m](B0) can then
be computed by (15) with obvious adaptions to matrix notation. The span of A ∈ F[m](A0)
and B ∈ F[m](B0) can be parameterized as C = t0A + t1B with [t0, t1]

ᵀ ∈ P 1 or, using
an inhomogeneous parameter t with (1 − t) : t = t0 : t1, as C = (1 − t)A + tB. Then
c := µ[m](C) is a polynomial of degree two over the ring DH. Motions of this type are the
topic of [3]. They are line-symmetric with respect to a regulus, that is, they can be generated
by reflecting a fixed frame of reference in one family of rulings of a quadric Q. A more detailed
look at the coordinate functions of c will reveal that our case is even more special. We have
c(t) = [c0, 0, 0, c3, c4, 0, 0, c7]

ᵀ where

c0 = −g1((m0(cosϕ− 1) +m3 sinϕ)t+ 2m0),

c3 = g1(m3(cosϕ− 1)−m0 sinϕ)t, c4 = −g−11 g2c3, c7 = g−11 g2c0.
(16)

Here, we abbreviate g1 = −2((1− t)a+ tb+ 1) and g2 = td(b+ 1) where

a := n1n2α0 − n4n6α1 − n4n5α2 + n2n3α3 + n1n3α4 − n5n6α5,

b := n1n2β0 − n4n6β1 − n4n5β2 + n2n3β3 + n1n3β4 − n5n6β5

and the values of n1, n2, . . . , n6 are given in (14). We thus have:
1. The motion parameterised by c lies in the cylinder group generated by the rotations

about and translations in the third coordinate direction. More generally, any motion
corresponding to a line in R12 lies in a cylinder group.

2. The degree of c in t is two but the primal part has the common real polynomial factor
g1 of degree one. For t equal to the zero of g1, the primal part vanishes and the
corresponding motion becomes undefined. This is equivalent with the quadric Q being
a hyperbolic paraboloid [3]. The corresponding motion is called a cubic circular motion
[13] (Figure 3).



H.-P. Schröcker: From A to B: New Methods to Interpolate Two Poses 95

z

ϕAA

BB

ϕ

z

AA

B

Figure 3: Circular cubic motion (left), trajectories connecting A and B (centre)
and relationship between rotation angle ϕ and translation distance z (right).

3. The parametric equation of c formally depends on numerous parameters that are inde-
pendent from the displacements A and B: The homogeneous vector [m0,m1,m2,m3]

ᵀ

determines the map µ[m]; α0, α1, . . . , α5 determine the point in F(A0) and β0, β1, . . . ,
β5 determine the point in F(B0). However, only m0, m3, a and b occur in (16).

The fact that the motion c lies in a cylinder group suggests to compute rotation angle
ω and translation distance z. This will help us to assess more precisely the meaning of the
parameters m0, m3, a and b. From

tan
ω

2
=
c3
c0

= − (m3(cosϕ− 1)−m0 sinϕ)t

(m0(cosϕ− 1) +m3 sinϕ)t+ 2m0

(17)

we see that the rotation angle depends only on m0 and m3 (and ϕ). From

z = −2g2
g1

=
td(b+ 1)

(1− t)a+ tb+ 1
(18)

we see that z depends only on a and b (and d). The functional relationship between translation
distance z and rotation angle ω for varying parameters is displayed in Figure 3, right.

Moreover, we infer from (17) and (18) that tan
ω

2
and z fulfill a functional relation of the

shape
(pt+ q) tan

ω

2
= (rt+ s)z

where p, q, r, and s are real numbers depending on m0, m3, a, b, d, and ϕ that can easily be
computed. This demonstrates that the curves depicted in Figure 3 are translated and scaled
(in ω- and z-direction) copies of the graph of the tangent function. Consequences of this
observation are, for example:
• There is a two-parametric family of cubic circular motions interpolating two prescribed

poses.
• For any given interpolant, the respective slopes at start- and endpoint of any trajectory

with respect to the z-axis have the same sign.
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Figure 4: Line-symmetric motion with respect to an orthogonal hyperbolic paraboloid.

We already know that any motion corresponding to a straight line in R12 by virtue of the
kinematic map µ[m] is line-symmetric with respect to one regulus on a hyperbolic paraboloid.
Moreover, it is contained in a cylinder group. Now we show that the latter property is
equivalent to the orthogonality of the underlying hyperbolic paraboloid.

Consider the hyperbolic paraboloid Φ given by the quadratic form

[x0, x1, x2, x3]
ᵀ 7→ x0x3 +

x21
a2
− x22
b2

with a, b ∈ R \ {0}. One set of rulings of this surface admits the parametric equation

[4at2, 4bt2, 4t, b, a, −2abt]ᵀ, t ∈ R ∪ {∞}

in Plücker line coordinates. Its line-symmetric motion in the dual quaternion model is ob-
tained as

c(t) = 4t((ai + bj)t+ k) + ε(2abkt− bi− aj).
Our aim is to find a necessary and sufficient condition for this motion to lie in a cylinder
group. To this end, we write c(t) = 4(ai + bj)F1F2 where

F1 = t− 1

a2 + b2
(bi− aj) + ε

a2 − b2

4(a2 + b2)
(ai + bj) and F2 = t− 1

4
ε(ai− bj).

(Since t serves as a real motion parameter, it is natural to define multiplication of polynomials
over the non-commutative ring DH by the convention that the indeterminate t commutes
with the dual quaternion coefficients.) This shows that the motion is a composition of a
translational motion in direction of the vector (a,−b, 0)ᵀ, given by the last factor F2, a rotation
about an axis parallel to (b,−a, 0)ᵀ, given by the middle factor F1, and a constant rotation,
given by the first factor. Translation direction and rotation axis are parallel if and only if
a = ±b and this is equivalent with the orthogonality of the underlying hyperbolic paraboloid.
The corresponding line-symmetric motion is not unheard of in German literature [2, 7, 13].
It is visualised in Figures 3 and 4.

We summarise our findings of this section in
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Figure 5: A cubic Bézier motion via de Casteljau’s algorithm
and the extended kinematic map µ[m].

Theorem 2. The motion obtained as µ-image of a straight line has the following properties:
1. It is a motion in a cylinder group.

2. It is line-symmetric with respect to one family of rulings on an orthogonal hyperbolic
paraboloid. [6] (Figure 4).

3. The transmission curve is a scaled and shifted tangent curve (Figure 3, right).

4. The trajectories of points are rational curves of degree three with exactly one point at
infinity; the curve’s orthographic projection in direction of this point is a circle (Figure 4,
right).

The last statement follows easily from either the geometric generation or the parametric
representation c(t) of the motion.

6. Summary and outlook

We have presented two methods to interpolate between two given poses A and B by linear
interpolation in a point model of SE(3), extended to the ambient projective or affine space.
The resulting motions are vertical Darboux motions in one and cubic circular motions in the
other case. More precisely, the latter motions turned out to be line-symmetric with respect
to an orthogonal hyperboloid.

An interesting feature of the extended matrix point model of SE(3) is that it automat-
ically comes with an affine structure. This allows to directly employ affine constructions of
Computer Aided Design, like the algorithms of de Casteljau and de Boor or certain subdivi-
sion schemes, to motions—something that is not always possible with other curved models
of SE(3). Via the map µ[m] the CAD constructions propagate to SE(3). The map µ[m] is
not invertible which may result in unwanted behaviour with respect to motion singularities or
numerics. Nonetheless, it seems to be a promising and straightforward idea for adapting CAD
curve design techniques to motion design which deserves further attention. A proof of concept
is presented in Figure 5 where a cubic Bézier curve in R12 is mapped, via µ[m], to a planar
motion. The “control poses” are rigid body displacements and not affinely distorted. The
“sides” of the control polygon are planar versions of cubic circular motions, that is, rotations.
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