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Abstract. The oloid is the convex hull of two circles with equal radius in per-
pendicular planes so that the center of each circle lies on the other circle. We
calculate the mean width of the oloid in two ways, first via the integral of mean
curvature, and then directly. Using this result, the surface area and the volume
of the parallel body are obtained. Furthermore, we derive the expectations of the
mean width, the surface area and the volume of the intersections of a fixed oloid
and a moving ball, as well as of a fixed and a moving oloid.
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1. Introduction

The oloid (2, is the convex hull of two circles k4, kg with equal radius r in perpendicular
planes so that the center of each circle lies on the other circle (see Figures 1 and 2). DIRNBOCK
abd STACHEL [4, p. 117] calculated the surface area and the volume of the oloid (see also [14],
[15], and Equations (5), (6), (7), and (8) of the present paper). The surface 02, is part of a
developable surface [4], [2], [14], [15].

FINCH 5] calculated surface areas, volumes and mean widths of the convex hulls of three
different configurations of two orthogonal disks with equal radius. The mean width b of every
convex hull is determined twice:

1) using the integral M of the mean curvature and the relation b = M/(27),
2) calculating b directly.

According to [4, pp. 105-106], the circles with » = 1 can be defined by

ka == {(z,y,2) eER*: 2+ (y+1/2)* =1 A2 =0},
kg = {(z,y,2) €R*: (y = 1/2* + 2> =1 Az =0}
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(I7yJZ)T = Q<m7t) = (wl(m7t>7 w2<m7t)7 :I:w3(m,t))—r, 0 <m< 17 _2§ <t< 2%7 (2)
with
wi(m,t) = (1 —m)sint, )
2(m — 1) cos®*t + (2m — 3) cost + 2m — 1
t) =
wa(m: 1) 2(1 4+ cost) ’ (3)
my/ 1+ 2cost
w(mot) = —
Vs

To the author’s knowledge, the mean width of the oloid is not yet known. In Section 3
we calculate the mean width of {2, using the integral of mean curvature, and in Section 4 we
calculate it directly. With the help of this result we derive the volume, the surface area and
the mean width of the parallel body of (2, in Section 5. Using the principal kinematic formula
of integral geometry, the expectations of the mean width, the surface area and the volume of
the intersections of a fixed oloid and a moving ball, as well as of a fixed and a moving oloid
are calculated in Section 6.

2. Preliminaries

In the following, we work in the real vector space R? with its standard scalar product <6, b > =
@ - b and its vector product @ x b for two vectors @ = (ay,as,as)’, b= (b1, by, b3)T. We denote

the partial derivatives g—w and %—L: of @ = d(m,t) (see (2)) by &y, and &, and so on.
m

Using (3), we find for the coefficients g1; = E, gi1o = F = ¢21, goo = G of the first
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fundamental form (see e.g. [6, pp. 87-88|, translation: p. 68)

Jgi1 = (Jim,d}'m) == 3, gi2 = (Jim,d}'t> = tan(t/Z),
— (@& = 2(3m? —4m + 1) cos®t — (4m — 3) cost + 1
g2 = W B = (1 + cost)(1+ 2cost) ’ (4)
911 912 9 2[(3m — 2) cost — 1]?
= det = — = )
g et(g;r) = go1 G22 1922 = Giz (1+cost)(1 +2cost)

Now, we able to calculate the surface area of the oloid (2;:

27/3 1
S((2) = / dsS = / dS(m,t) = 2/ / Vg(m,t)dmdt
o o t m=0

—27/3

2m/3 1 2m/3 2_ 1
:4/ / Vam. 1) dm dt = / / Smjcost +1] 4 4
t m=0

-0 o\/1+cost )(1+ 2cost)

—2V3 - cos dt . (5)
0 V(1 +cost)(1+2cost)

Mathematica evaluates this integral to
S(2) =2V2-V2m =4r. (6)

Now, we calculate the volume of (2;, and start with

2m/3
V() —2//zdxdy—2/ / ' (im, 1), wa(m ) |4
t —271'/3 a<m’t)

2m/3 (m,t), wa(m,t))
=4 2 ’ dmdt
L. /m o o(m. 1) ' "
From (3) it follows that
Owyi(m,t) Owi(m,t)
9 (wl(mu t)) wQ(m7 t)) _ om ot _ 1+ (2 — 3m) cost
a(m,t) Owa(m,t) dwa(m,t) 1+ cost '

om ot

So we have

/3 T2 1+ (2—
Vo) :4/ / m+/1+2cost 1+ ( 3m)costdmdt
t m=0

-0 _ 1+ cost 14 cost
203 /T + 2cost
_ /0 oot dt . (7)
Mathematica finds 5
V() = 5 |K(V3/2) +2E(V3 /2)} (5)
where
Kk) = F(x/2.k) / 1 — k2sin’z )
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is the complete elliptic integral of the first kind, and

E(k) = E(n/2,k) = /Om V1 — k2sin® v dx (10)

is the complete elliptic integral of the second kind. A numerical integration of (7) and
evaluation of (8) with Mathematica yields the decimal expansion

V(£21) =~ 3.05241846842437485669720053193
(see also [1]).

3. The integral of mean curvature

The surface 02, of the oloid (2 is piecewise continuously differentiable. We denote by H the
mean curvature in one point of 9f2;. The circles k4 and kg (see (1)) produce two edges ¢;
and ey, respectively, which are smooth curves. Let o = «(t) denote the angle between the
two unit normal vectors at each point of ;. Applying the general formula for the integral
M of the mean curvature (see [12, pp. 76-77, Eqs. (3.5), (3.7)]; cp. the formula for the mean
width in |5, p. 3|) to £2; gives

H(m,t) dS(m,t) + / a)dt (11

o €1

12
M) = HdS+§Z/ads:
i=1"¢i

o

For the unit normal vector one finds

— — T
. T WDy, X Dy . cost v1+2cost
7= (msnang) = = (Sm( /2 = Seost/D) " 2eos(t)2) (12)

Since 02, is part of a developable surface and the line segments ¢ = const, 0 < m < 1 are
part of the generators of 02, (see [4], [2]), it is not surprising that 7 does not depend on m.
The mean curvature in a point of a surface is defined by

1 1
H = 5 (K1 + K2) = 2 (911022 — 2g12b12 + go2b11) ,

where k1, ko are the principal curvatures, b;, are the coefficients of the second fundamental
form (see e.g. |6, p. 99|, translation: p. 79), and g, g are given by (4). In our case we have

1
H(m, t) dS(m, t) = H(m, t) \/ g(m, t) dmdt = m (g11b22 — 2912b12 + gggbll) dmdt

bll = L:<dmm7ﬁ>207 612:M:<dmtaﬁ>:07
(3m —2)cost — 1

V2 (1 +2cost) /1 +cost

and

by = N = (W, ) =

It follows that
(m, t)bgg(m, t)

g1
H(m,t)dS(m,t) = dmdt
2/ g(m,t)
3 (3m — 2)cost — 1 \/1—|—cost\/1+2(:ostdmdt
2 V2(1+2cost)y/1T+cost +2[(3m —2)cost — 1]
- amat

4+/1+ 2cost
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and

1 2m/3 27 /3
HdSzQ/ H(m,t)dS(m,t) = /dm/ —dt
Gl m=0 Jt=—2m/3 on/3 V/ 1+ 2cost
3

2m/3 1 2m/3
= —dt =3
2/2,,/3 v142cost 0 \/1+2cos

Mathematica finds
2m/3

dt
—_dt=K(V3/2), 13
0 V14 2cost ( /) (13)
where K is the complete elliptic integral of the first kind (9), hence
HdS =3K(vV3/2). (14)
o
A handmade proof for the relation in (13) may be found in Section 7.

Now we calculate the integral of mean curvature for the edges €1, €5 (see (11)). Therefore,
we consider €;. The first unit normal vector 7 = 7i(t) at a point ¢t € [—27/3,27/3], m = 0 is
given by (12), the second is 7i* = 7*(t) = (ny,n2, —n3) . So one gets

1+ cost

2m/3 2m/3 2m/3 cost
/ adt = / a(t)dt = 2/ a(t)dt = 2/ arccos | ———— | dt
€1 —27/3 0 0 1+ cost

We observe that the inverse function of the integrand is equal to the integrand, and hence
the graph of the integrand symmetrical with respect to the line f(¢) =¢. As solution of

f(t) =t = arccos (—LSt)

1+ cost

o(t) = arccos(fi(t), " (£)) = arccos (—L”) ,

hence

we find ¢ = 7/2, hence

w/2 ¢ /2 ¢ w/2
/ adt = 4/ {arccos (—&> — t} dt = 4/ arccos (—&> dt — 4/ tdt
o 0 1 4 cost 0 1 4 cost 0
w/2 ¢ 2 /2 ¢ 2
4/ arccos _ oSt dt — T 4/ T — arccos _ oot dt — T
0 1+ cost 2 0 1+ cost 2

/2 w/2 ¢ 2
47r/ dt —4/ arccos&dt -
0 0 1+ cost 2

3 m/2 t
= i — 4/ arccos — " dt. (15)
2 0 1+ cost

Mathematica and we, too, are not able to solve the last integral. Tt looks similar to COXETER's
integral in [7, pp. 194-201]. The NIntegrate-function of Mathematica provides

7'('/2 t
I = / arccos oSt dt ~ 1.87738105428247449505835371657 , (16)
0 1+ cost
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hence
/ adt = 7.29488238450413994801832163353 .

From (11), (14), (15), with (9) and (16), it follows that the integral M of the mean curvature
of (2, is given by

M(0,) = (31{(\/_/2)-+»——— —»41) r ~ 13.7644293270030696543343466299 7
For a convex body K, the mean width b is given by the relation b(K) = M(K)/2r (see [12,

p. 78, Eq. (3.9)]). So we proved the following theorem.

Theorem 1. The mean width of the oloid (2, is
_ 2
b($2,) = ( (\/'/2)-+-—— —-—-])7“z:2.19067696623158876633263049436r,

where K is the complete elliptic integral of the first kind (9), and

/2 Ccos T
I = arccos —— dx
0 1+ cosx

4. Direct calculation of the mean width

Let
P={(z,y,2) €ER*: ax+by+cz=d}

be a supporting plane of (21, given in the Hesse normal form. So N = (a,b,c)" with a,b, c € R,
a® +b? + ¢ = 1 is the normal unit vector of P and |d| is the distance of P from the origin.
P intersects the plane z = 0 in the line

Lyy = {(z,y) €R*: azx + by = d},
and the plane x = 0 in the line

L. ={(y,2) € R*: by +cz=d}.
The equation of L, in Hesse normal form is

ax N by B d
Va2 + 02 Va2 Va2 b

therefore, the distance d; of L,, from the center (0, —1/2,0) of ky4 is

B a 04 b <_1)_ d _b/2+d

(see e.g. [3, p. 172]). Since L,, is tangent to k4, we have

b/2+d

_— = = 2 2 _
N 1l = d=+vVa*+b
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Analogously one finds that the distance dy of L,, from the center (0,1/2,0) of kg is

b/2 —d

do = ——

:17
hence
d= \/a2+b2+g

It follows that the distance p between the support plane P and the origin is
b b
p= max{\/a2 + b2 — oL Va?+ b+ 2} :

Now we use spherical coordinates 0 < ¢ < 7/2 and 0 < ¢ < 7/2 as coordinates of the unit
normal vector N:

a=cospsinty, b=sinpsind, c¢=cos?.

So we have

1
va?+b? — b_ <1 -3 singp) sind,

2

b 1 . . . .
\/a2+62+§ =3 sin p sin ¢ + \/51n29051n219+608219,

and can write p as

p(p,9) = max { <1 — ésin gp) sin ), %Singpsinﬁ + \/sin2 @ sin? ¥ + cos? 19} .

Clearly, p = p(¢, ¥) is the support function of {21 in the direction (¢,v). Hence, the width b
of {2, in this direction is given by

b(p, ) = p(p,J) +p(r + o, 7 —1).

In order to calculate the mean width b of £2; we have to integrate over all directions, hence
over the unit hemisphere. Let dS = dS(¢,¥) = sin ¥ d dp denote the surface element of the
unit sphere, we have

b(Q ) = fo fo J) dS (e, ) fo fo ?) + p(r+ @, 7 —39)]dS(p, )
1 Jo fo dS (¢, 9) Jo J5dS (e, )
Bl 0S(e0) et pn - )AS(p.0) _ 27 Lyl 0) 05 ()
Jo J dS(e,9) ﬁ)ﬁ)dS

(cp. [12, p. 78, Eq. (3.9)]), where the last equal sign follows from the fact that there are two
congruent portions of {21 in the half spaces y < 0 and y > 0. Due to the symmetry of 2; with
respect to the planes z = 0 and x = 0 we can restrict the spherical coordiates to the intervals
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0<v¥<m/2and 0 < p <7/2, respectively, hence

2 [T [T p(,9) dS(, ) 2]”/2 2 (¢, ) sin 9 ) dyp
f“/2 ”/2d5( ) f”z 0“/2s1m9dq9dgo

0
/ / ) sind dd dp
/6
/ / (smg081n19+\/81n @ sin 19+cos219> sind dd de
9=

/6
/ / — sin cp) sin? ¥ dv dy (17)
=0 Jo=¢(p

w/2

b((h) =

1 . . . . .
<2 sin @ sin ¢ + \/Sln2 ¢ sin? ¥ + cos? 19) sin ¥ dv dgp] ,
p=n/6 J¥=0

where
vV—1+2si
&(p) = arccos ﬂ
vV—=2+2sinp

is the solution of the equation

(1 — %singp) sind = %singosinﬁ + \/Sin230s1n219 + cos? ¥
for ¥ = £(¢). Numerical integration of (17) with Mathematica gives

b(£2)) ~ 2.19067696623 .

5. The parallel body
For a convex body K C R" and ¢ > 0, the set (Minkowski sum)
K+ By ={r€R": d(z,K) < o0}
is the parallel body of K at distance g, where B is the n-ball of radius o,
B ={z € R": ||z] < o},

and d(z, K) is the distance between the point x and K. The volume of the parallel body is
given by the Steiner formula

Vo(K + Bp) = Zgn Tin—jVi(K) (18)
where
/2
= 19
T T+ k)2) (19)
is the volume of the k-dimensional unit ball BY, and Vp, ..., V,_; are the intrinsic volumes of

K [11, p. 2, pp. 12-13, p. 600]
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Using the relations in [10, p. 301|, where y denotes the Euler characteristic, the intrinsic
volumes of (2, are

Vo(2)=x=1, Vi(£2,)=2b(2)= { (f/2)+——ff} o)

Vo(2,) = %S(QT) =2m?, V() = V() =3 [2E(\/§/2) +K(V3/2)]

with E (see (10)), K (see (9)), and I (see (16)). Let (2. , denote the parallel body of (2, at
distance g. Due to (18), its volume is

V(Qr,g) = ‘/3(97‘,9) = KoV3(§2,) + ’{1‘/2(91")9 + “2‘/1(*(27”)@2 + 53‘/0(97‘)@3
47
= V3(£2,) + 2Va(2,) 0 + VA (£2,) 0" + ?%(QT)Q3

A .
=V(82,)+ S(§2,)0+ M(£2,)0* + ?ﬂgd

=V (2)r* + S(2)r%0 + M(2))ro* + 4%@3 :
Applying [12, p. 82, (3.17)] allows to calculate the surface area S of (2, ,:
S(82,.,) = S(82,) + 2M(£2,)0 + dmo® = S(§0)r* + 2M (£21)ro + 4mo” .
Clearly, the mean width of §2, , is equal to b({2,) + 20, hence
M(82,.,) =27 [b(£2,) + 20| = 27b(£2,) + 4wo = M(£2,) + 4wp = M(£))r + 4mp
(see also [12, p. 82, (3.17)]). The results of the following theorem follow immediately.

Theorem 2. The integral M of mean curvature, the surface area S and the volume V' of the
parallel body (2, , are given by

M($2.,) = M)r+4np, S(£2, ,) =4mr? + 2M (1) ro+ 47 o?,

Vilte) = % 2B(V3/2) + K(V3/2)] r® + dmro + M(f2) re® + %W 0’
with i
T COST
M(¢21) = 3K(V3/2) + - 4/0 arceos T —— de .

6. Intersections with an oloid

Now, we apply our results and the principal kinematic formula to derive some expectations
for the intersections of the oloid (2, and the three-dimensional ball B, := B2 of radius r, and
of two oloids (2,.

The principal kinematic formula (see [10, p. 301]) for a fixed convex body K and a moving
convex body M is for j € {0,...,n} given by

Li(K, M) : /SO / (K N (IM + ) dAN(Z) dv (v Zan]ka Vopin(M)  (21)

with the notation
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SO,, group of proper (orientation-preserving) rotations |11, p. 13],

0 proper rotation, v € SO,,
z translation vector,
A Lebesgue measure on R",
v unique Haar measure on SO,, with v(S0,,) =1 [11, p. 584],
and .
Kl kp(n+ 7 — k) Kngjoi
Ak = y  Onjk = Qpj(ntj—k) s Qnjj = Qpjp = 1 >

Jlejn! Kk,

where ky, is the volume of the unit k-ball (see (19)). Since the intersection of two convex sets
is a convex set, we have

Io(K, M) /SO / V(K A (9M + 7)) dA(@) dv(9)

_ / / L riont o0 20 AA(T) dv (D), (22)
SO, n

where 15 is the indicator function of the event B. So we see that (K, M) is the measure of
the set of rigid motions bringing M into a hitting position with K (see |11, p. 175], 8, p. 262,
p. 267]).

For n = 3, (21) gives

To(K, M) = Vo(E) Va(M) + 3 Vi(I) Va(M) + 3 Va(I) V(M) + Vi(K) Vo (M) , )
1(K, M) = Vi(K) V5(M) + 7 VoK) Va(M) + V5 (K) Vi(M) (23)
I(K, M) = Vy(K) Va(M) + V3(K) Va(M),
Iy(K, M) = Vy(K) Va(M). )
From (22) it follows that
BV (K 0] = (0 0] = 2] (24)

is the expected volume of K N M. Analogously, we get the expected mean width and the
expected surface area:

E[b(KNM)] = %]E[Vl(KﬂM)] = % (25)
E[S(KNM)] =2E[Va(KNM)] = % (26)

Clearly, it is possible to reverse the roles of the fixed body and the moving body.

Example 1. As an example, we calculate the expected values (25), (26) and (24) for K = (2,
and M = B,, or, equivalently, for K = B, and M = (2.. For the ball B, one easily gets

Vo(B,) = x(B,) =1, Vi(B,) = 2b(B,) = 4r,

3 27
V2(Bv') = %S<Br) = 27TT27 VS(BT) = V(B,.) = ! 3 ( )
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Note that these terms also follow from the general formula

V(Br) = Vi (BY) = a(B) 1t = () o
k) K3 g

[10, p. 300], where kj is the volume of the unit k-ball (see (19)). Plugging (20) and (27) in
(23) gives

=<
w

0n + 327 + SE(V3/2) + 22K (v3/2) - 241,

|
[37r + 672 + 16E(v/3/2) + 20K (v/3/2) - 161,

°°|ﬁu> @|

5

T |2m +2B(V3/2) + K (V3/2)].

W

L(£2,,B,) =

5(2.8,) = T [2B(v3/2) + K(V3/2)]
and

L(2,,B,) 3w +6m2+16E(V/3/2) + 20K (V3/2) - 167
206(2:.B,) 97>+ 327 + 8E(V3/2) + 22K (v/3/2) — 241 "

E[b(2, N B,)] =

_2L,(2,,B,) 167 [2m + 2E(V3/2) + K (V3/2)] )
Bl B)] = (2. B,) 972 + 327 + 8E(v/3/2) + 22K (v/3/2) — 241
L(2.5,) _ 167 [28(v3/2) + K (v3/2)] 3

E[V(2,NB,)] =

102, B,) 3 [9n2 + 327 + SE(V/3/2) + 22K (v/3/2) — 241]

Example 2. In the case K = (2, = M, we have
(2, 2,) = %3 (972 + 8B (V3/2) + 22K (V3/2) - 241,
(2, 02,) = ;—; 37t 2 (28(V3/2) + K(V3/2)) (37* + 6K (V3/2) - 81)] |

B(2,.2,) = T [2E(V3/2) + K (V3/2)]
12 2) = 2 an(v3/2) + K (V3/2)] .
hence
L(2.,9,) 31 +2[2E(V3/2) + K(V3/2)] [3n® + 6K (v/3/2) — 81
20o(82,,2,) 21 (972 + 8E(V/3/2) + 22K (V/3/2) — 241 "
21,(2,,92,) 167 2E(V3/2) + K(v3/2)] )
Io(2,2,)  9n2 + SE(v/3/2) + 22K (v/3/2) — 241 |
]3(97’7 Qr) o 4 [2E(\/§/2) + K(\/g/Q)]Q 3
(2, 2) 3972+ 8E(v/3/2) + 22K (V3/2) — 241]

E[b(2,N2,)] =

E[S(2.N02,)] =

E[V(2,N Q)] =
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The following table shows numerical approximations for the expectations of the intersections.

K | M |Eb(KnM)]/r|E[S(KNM)|/r* | E[V(KNM)]/r?
B, | B, || 0.9626377063 3.141592654 0.5235987756
2. | B, || 0.9169621588 2.710463736 0.3808512243
Q0| 2, || 0.8585694641 2.280916270 0.2770215506

7. Appendix

Now we are going to show that the integral
0 vV1+2cost
is equal to K (v/3/2) (see (13)) without the use of Mathematica. With

J =

1+2cost:1+2<1—2sin2;):3—4sin2;:3[1—(

Sl
w
N———
2o
2.
=
o
|
.

we have

2m/3 dt
J = .
/0 \/5\/1 — (2/v/3)*sin?(t/2)

Now, following the argumentation in [13], we put

to 2 — " 2w
csC — = —= = —.
2 /3 °7 3
This gives
1 /to 1 Gt
2 Jo sin(te/2) /1 — csc2(to/2) sin®(¢/2)
Now let
sin(t/2) = sin(to/2) sinp,
so the angle t is transformed to
in(t/2
(p = arcsin M ,
sin(ty/2)
hence T
t=0 = ¢=0, (=t = p=_.

Taking the differentials gives

L on () dt = sin (12) LS (£ a = sin ()
2008(2>dt—sm(2 cospdy, or 5 1 —sin 5 dt = sin 5 cospdy,
1 .2 t(] .2 d o to

—sin® (5 ) sin® e t = sin B cos pdyp.

hence

| =
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Plugging this in gives

g 1/ /2 1 sin(tg/2) cos pde
2 Jo  sin(t/2) /1 —sin? g (1/2) y/1 — sin®(ty/2) sin” ¢
_ / dy "/ de
/1 — sin®(ty/2) sin’ <,0 0 /1 —sin®(7/3)sin® ¢
- dv — K(V3/2).
/ \/1 — \/_/2 sin? ¢
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