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Abstract. The classification of spherical tilings is a problem far from being
solved. Here we show how to generate new families of antiprismatic spherical
tilings using GeoGebra, a well known free software commonly used as a tool to
teach and learn mathematics. Within the described propose some spherical geom-
etry capabilities of GeoGebra had to be extended. The outline of the algorithms
behind some of the newly designed and implemented GeoGebra tools and appli-
cations will be given.
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1. Introduction

The research work described here has as its main goal a systematic way to generate spherical
tilings and to search for new ones by making use of computational capabilities. Our main
result is the description of the combinatorial and geometric characterisation of the spherical
tiling family B̂ p

q
, p, q in N with gcd(p, q) = 1, which expands the antiprismatic spherical

tilings.
The obtained results emerged by the new produced GeoGebra tools and the dynamic

interaction capabilities of this software [18, 19], being the construction of an algorithm to get
the orbit of a set of spherical points under the action of a (sub)group of spherical isometries
(for the details see Section 2.4) as crucial point.

Let us consider the sphere centred at the point O = (0, 0, 0), S2 = {(x, y, z) ∈ R3 :
d ((x, y, z), (0, 0, 0)) = 1}. An element of S2 is called a spherical point. Two spherical points
are said to be antipodal points if the spherical distance between them is π.
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Any two non-antipodal spherical points, A andB, define uniquely a great circle, a spherical
line s, on the sphere such that A,B ∈ s. The spherical line s will be also denoted by AB.
The smaller of the two great arc circles terminated by A and B is called a spherical segment
and denoted by [AB].

Given a spherical segment [AB], its length |AB| is the measure of the angle ∠AOB, i.e.,
|AB| = AÔB. Given two spherical segments [AB] and [BC], they form a spherical angle
ÂBC defined by the angle between the tangent lines to the great circles AB and BC.

Considering three non-collinear spherical points on S2, they define three spherical seg-
ments which bound two spherical regions. The smallest of these regions is the convex spherical
triangle defined by the points; the other region is a concave spherical triangle. In this work
we are only interested in convex spherical triangles. A spherical n-gon is a closed polygonal
spherical line.

By a spherical tiling we mean a decomposition of the sphere by classes of congruent
polygons (tiles). A monohedral spherical tiling is one in which all the tiles are congruent
among them. In an monohedral spherical tiling any tile can be considered a prototile of the
tiling. A dihedral spherical tiling is a tiling composed by two classes of congruent polygons,
which means, a tiling made of two distinct prototiles. Similarly, n-hedral tilings, n ∈ N and
n ≥ 3, are tilings with n distinct prototiles.

There are many tools to work with spherical geometry as Povray [11], and in an inter-
active way Sphaerica [17] and Spherical Easel [1]. While Povray [17] is a powerful tool to
illustrate objects in spherical geometry, Sphaerica and Easel present some potential to make
constructions and explorations. For our purposes we need to work with more flexible tools
and commands, in particular, we need to obtain in real time the orbit of a set of spherical
points under the action of a (sub)group of spherical isometries. For that, GeoGebra [20] seems
the best option for two crucial reasons: the widespread use of GeoGebra and the possibility of
interaction with geometrical and algebraic representations simultaneously. In fact, GeoGebra
has several geometrical representations in 2 and 3 dimensions allowing the interaction with
spherical points in a diversity of ways. Besides, the algebraic capabilities of GeoGebra allow
the study and the induction of some geometrical properties which may be visualized in real
time. Among its many features, GeoGebra allows the creation of new tools and commands1,
deals with sequences of several geometrical and algebraic objects and uses logic procedures
and heuristics which, among other things, permits one, for instance, to certify the congruence
of objects. There are other software as powerful as GeoGebra for work in three-dimensional
geometry (for example, Archimedes Geo3D 2), but they are not free, and this is, without any
doubt, an added value to the choice of GeoGebra. It is worthwhile to mention that this
methodology (making use of GeoGebra tools) was already implemented in the exploration of
planar hyperbolic tilings (see [26]).

The systematized study of spherical tilings started with D. Sommerville [24] who has
established part of the classification of spherical tilings by isosceles triangles having analyzed a
very particular case by scalene triangles [12, p. 467]. H. Davies in [9] presents an incomplete
classification of triangular monohedral tilings of the sphere [9] omitting many details which
were fixed lateron.

Tilings of the sphere by rectangular triangles were obtained by Yukako Ueno and Yoshio
Agaoka in 1996 [29]. Later, in 2002, the same authors obtain the complete classification of
monohedral edge-to-edge triangular spherical tilings [30]. Triangular spherical folding tilings

1For more details about tools in GeoGebra see [25, pp. 89–94] and [28].
2http://spatialgeometry.com/drupal/en
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were studied by Ana Breda, and their classification was obtained in 1992, being these a
subset of the triangular monohedral spherical tilings [7]. Spherical tilings by isosceles and
right triangles can be found in [10, 13]. Recently, the authors using the tools described
here, characterised a family of spherical monohedral tiles by four congruent and non-convex
spherical pentagons [4].

The classification of spherical tilings by triangles is not yet completed. In fact, little is
known when the condition of being monohedral or edge-to-edge is dropped out. A systemized
study to enumerate and classify all spherical tilings is far from been solved.

Being a rich research field with several distinct ways of approach, tiling problems are inter-
esting not only regarding theoretical aspects but also regarding the innumerable applications
about the distribution of points on a sphere [23] with strong implications in the contemporary
technology and in science in general. The study of spherical tiling has also applications to
chemistry, for instance, in the study of periodic nanostructures [16], emerging new forms of
association of molecules, notably fullerenes [15], which lead to the study of spherical tilings by
triangles, squares, pentagons, and hexagons [21]. In the same line of reasoning other tilings
including heptagons [27] and heptagon and octagons [22] had emerged. Some other research
points to new possibilities for new molecular patterns [31, 14]. The facility location problems
and spherical designs and minimal energy point configurations on spheres [2, 3] are other
fields where the study of tilings can be used for which we may give some contributions.

Next, we begin, in Section 2, presenting some tools created that extend GeoGebra ca-
pabilities in spherical geometry. In Section 3, we introduce and prove our main results.
Subsequently, in Section 4, we also explain other ways of obtaining spherical tilings, from
a spherical triangle subject to the local action of a (sub) group of symmetries, a strategy
that may help to find new spherical tilings. Finally, in Section 5, we present some of our
conclusions about the use of GeoGebra in the study of spherical tilings.

2. GeoGebra tools for spherical geometry

GeoGebra gives the possibility of interacting, simultaneously, with graphic, algebraic and
calculus views. It also gives the chance to create new tools and commands. In fact, the
tools can be created from the combination of existing tools or commands. The new tool
and the corresponding commands can be used in new constructions or may be integrated in
the construction of new tools. We will use these functionality to construct useful tools and
commands for spherical geometry. Next we will show how some of the new tools may be used.

2.1. Spherical geometry tools

Spherical GeoGebra tools were constructed for the purpose to explore, among others, spherical
tilings. Among these spherical tools, we mention the following ones: Spherical Segment ,
Spherical Equidistant Points , Spherical Compass , Spherical Equilateral Triangle. Here, by
way of example, we describe how the Spherical Segment tool was constructed.

Given two non antipodal spherical points A and B, the spherical segment joining them
is a great circular arc bounded by A and B. These spherical segment can be obtained in
GeoGebra using the command SphereSegment[A,B] described below (see Figure 1).
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Tool Name Spherical Segment
Command Name SphericalSegment

Syntax SphericalSegment[A,B]
Help Given A,B and a spherical, s, draw the spherical segment joining A to B.

Icon

Script

s=Sphere[(0,0,0), 1]
A=PointIn[s]
B=PointIn[s]
If[Distance[A,B] 6=2,CircularArc[(0,0,0), A,B,Plane[(0,0,0),A,B]]]

Figure 1: Tool to construct a spherical segment.

2.2. Spherical geometry tool to construct a spherical triangle given three angles

It is well known that we may use trigonometric relations to obtain the arc lengths of a spherical
triangle given the measurements of its spherical angles.

Let A, B and C be the vertices of a spherical triangle and α, β, γ the measure of the
corresponding spherical angles. Denoting by a the measure of the arc BC, a = |BC| , b the
measure of AC, b = |AC|, and c the measure of the arc AB, c = |AB|, the following relations
hold:

cos a = cosα +
cosβ cos γ

sinβ sin γ
, cos b = cos β +

cosα cos γ

sinα sin γ
, cos c = cos γ +

cosα cosβ

sinα sinβ
. (1)

Thus, we may obtain the measure of the arcs, as a function of the angles of the spherical
triangle. Using these proprieties we may create the tool, following the steps described below.

(i) Definition of the unit sphere:
O = (0, 0, 0);
S = Sphere[O, 1].
(ii) Defining three angles of the spherical triangle.
α = pi/2;
β = pi/2;
γ = pi/2.
(iii) Creating the vertices A, B and C:
A=Point[IntersectPath[z = 0, S]]
B=Rotate[A, acos((cos(γ) + cos(α) cos(β)) / (sin(α) sin(β))), Centre[S], z = 0]
C=Intersect[IntersectPath[PerpendicularPlane[Rotate[A, acos((cos(β) + cos(α) cos(γ)) /
(sin(α) sin(γ))),Centre[S], z = 0], Line[Centre[S], A]], S], IntersectPath[ PerpendicularPlane[
Rotate[ Rotate[A, acos((cos(γ) + cos(α) cos(β)) / (sin(α) sin(β))),Centre[S], z = 0],
acos((cos(α) + cos(β) cos(γ)) / (sin(β) sin(γ))), Centre[S], z = 0], Line[Centre[S],
Rotate[A, acos((cos(γ) + cos(α) cos(β)) / (sin(α) sin(β))), Centre[S], z = 0]]], S], 1]
(iv) Drawing the edges of spherical triangle:
Sa=CircularArc[O,B,C];
Sb=CircularArc[O,A,C];
Sc=CircularArc[O,A,B].
(v) Creating The tool

The final step is the creation of the GeoGebra tool hiding all the constructions presented
in the algebraic view, as illustrated in Figure 2.
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Figure 2: GeoGebra application to create a spherical triangle given three angles.

This tool is useful to find spherical tilings and search for new spherical patterns. These
tool can be easily adapted to create tools to build any type of spherical triangles.

2.3. An application of the Equilateral Spherical Triangle Tool

One of the spherical tools constructed was the Spherical Compass . Using this tool we can
easily construct equilateral spherical triangles.

Starting from a net of n congruent equilateral triangles, depending on initial points A and
B, and moving these points around the sphere, we can explore many configurations where
some of them are spherical tilings. In Figure 3 we illustrate these procedure, using nets with
three, eight and twenty triangles ending up in the tetrahedral, octahedral and icosahedral
regular spherical tilings. Using the same strategy with another net of triangles, for example
with common vertices or adjacent sides, and observing the evolution of the set according to
the different positions of the initial points, we may explore the possibilities to obtain new
spherical tilings. The application presented above will be used and improved to develop some
research in spherical tilings.

In the next section we show another way to find spherical tilings using spherical isometries.

2.4. Using spherical isometries to obtain spherical tilings by means of GeoGebra

Let s be the sphere centred in O = (0, 0, 0) and radius 1. Let e be a great circle of s and A and
B two distinct points in e. Choose one point C ∈ s such that [ABC] defines an equilateral
triangle.

Let Bn, n ∈ N, be a band (closed net) of n congruent spherical equilateral triangles.
Using the tool equilateral spherical triangle, SEqT[A,B], we can construct an application to
explore some properties of the band Bn. We will start with n = 12 (see Figure 4).

This application works in a similar way to that shown in Figure 3. Its use (exploration)
reveals that for each position of the point B:
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Figure 3: Evolution of nets of equilateral and congruent triangles (see [6]).

i) the orbits of the points A and C leave in the same plane, α;
ii) the orbits of the point B are in a plane, β, parallel to α;

1 s:Sphere[(0,0,0),1]
2 e:IntersectPath[z=0,s]
3 A=(1,0,0)
4 B=Point[e]
5 ABC=CircularArc[(0,0,0),A,B,Plane[(0,0,0),A,B]],CircularArc[(0,0,0),B,C,Plane[(0,0,0),B,C]],

CircularArc[(0,0,0),C,A,Plane[(0,0,0),C,A]]
6 CBD=SEqT[C,B]
7 CDE=SEqT[C,D]
8 EDF=SEqT[E,D]
9 EFG=SEqT[E,F]
10 GFH=SEqT[G,F]
11 GHI=SEqT[G,H]
12 IHJ=SEqT[I,H]
13 IJK=SEqT[I,J]
14 KJL=SEqT[K,J]
15 KLM=SEqT[K,L]
16 MLN=SEqT[M,L]

Figure 4: GeoGebra commands to explore the orbit of the equilateral triangles in band B12.



A.M. Breda, J.M. Dos Santos: Spherical Geometry and Spherical Tilings with GeoGebra 289

Figure 5: Band with 12 equilateral spherical triangles. Cases that end up
in antiprismatic spherical tilings (see [5]).

iii) the distance between α and β is equal to the height of the spherical triangle [ABC];
iv) for the values of the length of AB equal to π

2
+arcsin

(
1
3

)
, π

2
, arccos

(
2
√
2−1
7

)
, arccos

(√
5
5

)
,

arccos
(√

3
3

)
we obtain, respectively, the spherical tilings induced by the antiprisms of 4,

6, 10, 12 and 14 faces (see Figure 5).
The exploration of the above GeoGebra application revealed that the orbit of the triangle
[ABC] is generated by the action of a group of spherical rotations about an axis r, perpendic-
ular to the plane α and β, passing through the center of s. Let P be the point of intersection
of a and r. Then the band (Bn)n∈N is obtained by rotations of the spherical triangle [ABC]
about the axis r by multiples of ∠APB.

For our purposes we are interested in knowing the conditions for which Bn, n ∈ N, gen-
erates spherical tilings.

In order to construct a more accurate GeoGebra application to allow more generalized
cases we consider

i) the sphere s, the north pole PN=(0,0,1);
ii) natural numbers p and q, q < p, defined by sliders;
iii) the point B1, in the north hemisphere of s;
iv) the point B2 obtained by the rotation of B1 about the z-axis by an angle of 2π/p

q
;

v) the point A1, a point in the bisector of the arc B1B2, which not belong to this arc, that
is, a point at the same spherical distance from B1 and B2 (note that A1 belongs to the
great circle defined by the plane y = 0).

Under these conditions, [B1B2A1] defines an equilateral spherical triangle. Denoting, respec-
tively, by l and h the half of the length and the height of the spherical triangle [B1B2A1],
chosen in the way described previously, one has

l = l

(
p

q

)
=
√
2

√
cos
(
π/pq

)
+2 sin2

(
π/pq

)
+1

cos
(
π/pq

)
+ 2 sin2

(
π/pq

)
+ 1

, h = h

(
p

q

)
=

√(
cos
(
π/pq

)
+2 sin2

(
π/pq

))2
−1

cos
(
π/pq

)
+ 2 sin2

(
π/pq

)
+ 1

.

Note that for l being well defined we need that cos
(
π/p

q

)
+ 2 sin2

(
π/p

q

)
+ 1 6= 0, which

corresponds to p
q
6= 1

2n+1
, n ∈ N. 3

On the other hand, for h being well defined we need that(
cos

(
π/
p

q

)
+ 2 sin2

(
π/
p

q

))2

− 1 ≥ 0.

3The application of GeoGebra shows the three points B1, B2 and A1 coincident.
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If x := cos
(
π/p

q

)
then (−2x2+x+2)2−1 ≥ 0 ⇐⇒ −1

2
≤ x ≤ 1. Thus, if −1

2
≤ cos

(
π/p

q

)
≤

1 then 0 < q ≤ 2

3
p . Hence, h is well defined if and only if p

q
≥ 3

2
.

Accordingly,

B1 =
(
l
(
p
q

)
cos
(
π/p

q

)
, −l

(
p
q

)
sin
(
π/p

q

)
, h
(
p
q

))
,

B2 =
(
l
(
p
q

)
cos
(
π/p

q

)
, l
(
p
q

)
sin
(
π/p

q

)
, h
(
p
q

))
, A1 =

(
l
(
p
q

)
, 0, −h

(
p
q

))
.

Therefore [B1B2A1] is an equilateral triangle with side lengths equal to

|B1B2| = |B2A1| = |A1B1| = arccos

cos
(
π/p

q

)
+ 2 cos2

(
π/p

q

)
− 1

cos
(
π/p

q

)
+ 2 sin2

(
π/p

q

)
+ 1

 ,

|B1B2| = |B2A1| = |A1B1| = arccos

1− 2 cos
(
π/p

q

)
2 cos

(
π/p

q

)
− 3

 ,

and with an angle measure equal to

B̂1B2A1 = B̂2A1B1 = Â1B1A2 = arccos

(
−1

2
+ cos

(
π/
p

q

))
.

The orbit of the equilateral triangle [B1B2A1]
⋃
A1A2 by the the action of a group of rotations

about the z-axis and of angle 2π/p
q
, can be obtained using the GeoGebra commands defined

in Figure 7.
The generated spherical patterns depend on the value of p

q
. When p

q
∈ N and p

q
> 2 the

orbit defines spherical antiprisms associated to the p
q
-gon antiprism. All vertices have equal

valence (3, 3, 3, p
q
= n), and the tiling has 2n vertices, 4n edges, 2n spherical triangles and

Figure 6: Spherical triangle [B1B2A1].
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1 Sequence(Rotate(CircularArc((0,0,0),B1,B2,Plane((0,0,0),B1,B2)),k 2 pi/(p/q),zAxis),k,1,pq)
2 Sequence(Rotate(CircularArc((0,0,0),B2,A1,Plane((0,0,0),B2,A1)),k 2 pi/(p/q),zAxis),k,1,pq)
3 Sequence(Rotate(CircularArc((0,0,0),A1,B1,Plane((0,0,0),A1,B1)),k 2 pi/(p/q),zAxis),k,1,pq)
4 Rotate(Reflect(Sequence(Rotate(CircularArc((0,0,0),B_1,B_2,Plane[(0,0,0),B_1,B_2)),k 2 pi/(p/q),

zAxis),k,1,pq),Plane(z=0)),pi/(p/q),zAxis)

Figure 7: GeoGebra commands for the generation of spherical tilings.

2 spherical n-gons4. All the triangles have congruent angles of measure arccos
(
cos
(
π
n

)
− 1

2

)
.

The spherical n-gons have congruent angles with measure 2π − 3 arccos
(
cos
(
π
n

)
− 1

2

)
. All

arcs of these tilings have measure arccos
(
(1− 2 cos

(
π
n

)
)/(2 cos

(
π
n

)
− 3)

)
. All these tiling are

invariant by the cycled group of order n and have central symmetry.
Analysing the behaviour of the maps h and l and considering their domain as the set of real

numbers, we can prove in a straightforward way that limx→∞ l(x) = 1 and limx→∞ h(x) = 0
which corresponds to the construction of a tiling of the sphere by two hemispheres. Consider-
ing x > 3

2
, the function h has a maximum of 3

5
and l has a minimum of 4

5
at x = π/ arccos

(
1
4

)
,

thus the minimum value of 2l is 8
5
, near of the arc length of the prototype of the tetrahedral

spherical tiling, corresponding to the tiling of the sphere by equilateral triangles.

Figure 8: GeoGebra output of the graph behaviour of functions h and l,
where h 9

q
= h(9

q
) and l 9

q
= l(9

q
).

If 3
2
< x < π/ arccos

(
1
4

)
the corresponding side lengths B1B2 decrease to a minimum of

4
5
, while the sequence of heights of the corresponding triangles [B1B2A1] grow to a maximum

value of 3
5
. Thus the generated bands, Bx, range from a set of two hemispheres to other bands

whose “non-lateral” edges have their midpoints increasingly close to the poles (see Figure 8,
Bk, k ∈ {32 ,

9
5
, 9
4
}).

4In this case the Euler formula, F + V = E + 2, is obviously satisfied. Note that the tilings induce the
antiprism inscribed in the sphere.
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Figure 9: n-gon antiprism, n ∈ N and n > 2, obtained by rotations of a
band of 2n equilateral triangles.

On the other hand, if x > π/arccos
(
1
4

)
the midpoints of the “non-lateral” edges of the

band move away from the poles until the tiling pattern, associated with an regular n-agon
antiprism is obtained (see Figure 8, Bk, k ∈ {3, 92 , 9}).

Figure 9 illustrates Bn, n ∈ {4, 5, 6}, and shows the arcs lengths, the angle measures and
the planar configuration associated to the corresponding generated spherical tiling, from now
on denoted by B̂n . The angles and arcs measure of the triangles of the associated tilings can
be obtained, dynamically, with the GeoGebra CAS.

By the use of the sequence command, GeoGebra uncovers more complex tilings as the
ones illustrated in Figure 10, when we allow n to be the rational numbers 5

q
with q ∈ {1, 2, 3}.

The tiling B̂ 5
1
corresponds to the spherical pentagonal antiprism tiling described above.

If n = 5
2
, the tiling B̂n has 25 vertices, 27 tiles from which two are spherical pentagons, ten

are spherical triangle and fifteen are spherical quadrilaterals (five spherical rhombus and ten
spherical kites). Finally, if n = 5

3
, the corresponding tiling B̂ 5

3
has 30 vertices defining 32

tiles (two spherical pentagons, ten spherical triangles, and twenty spherical kites).
In Figure 10 we may observe the tilings B̂ 5

q
, q ∈ {1, 2, 3}. This figure highlights the

rotational symmetry of order 5 about the x-axis of all these tilings, the central symmetry of



A.M. Breda, J.M. Dos Santos: Spherical Geometry and Spherical Tilings with GeoGebra 293

Figure 10: B 5
q
, q ∈ {1, 2, 3}, combinatorial, geometric proprieties,
and some of the associated polyhedra.

B̂ 5
q
, q ∈ {2, 3} and the reflection symmetry of B̂ 5

2
.

It should be noted that in this study we are not interested in the prismatic compound
antiprisms, whose bases correspond to skew zig-zag polygons [8]. Although they appear in
some cases, we emphasise that the tilings described above go beyond the class of tilings
associated with those polyhedra. In our description there are tilings in which vertices of a
given tile are not coplanar. This is the case of B̂ 5

2
and B̂ 5

3
(see Figure 10).

We may associate a polyhedron to these type of tilings, making use of a triangulation of
the non-coplanar tiles, but the process is not unique. The tiling B̂ 5

2
has 27 spherical faces, 25

vertices and 40 edges; and we may associated to this tiling several polyhedra with 37 faces,
25 vertices and 60 edges (see row five in the table illustrated in Figure 10). It is worthwhile
to mention that, while the tiling B̂ 5

2
has two types of quadrangular faces, one with coplanar

vertices and other with not coplanar vertices, the tiling B̂ 5
3
has all quadrangular faces of a

single type; its vertices are always non-coplanar.
Let p and q be any two natural numbers, p > q. Observe that:
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Figure 11: Configurations obtained with GeoGebra involving p
q
-gons with p > q.

• if B1 6= B2 then p
q
6= 1

n
, n ∈ N;

• if p
q
= 3

2
, the points B1, B2 and A3 are coplanar and |B1B2| = |B2A1| = |A1B2| = 2π

3
,

and we have the sphere divided in two hemispheres. However, this case corresponds to
having A1 on the arc [B1,B2], which is not in consideration.
• the non trivial cases arise when p

q
> 3

2
and gcd(p, q) = 1.

3. Results

Theorem 3.1. Let p and q be natural numbers such as p
q
> 3

2
and gcd(p, q) = 1. Let

k = min{q, p − q} and denote respectively by v, e and t, the number of vertices, edges and
faces of the spherical tiling B̂ p

q
, associated to B p

q
. Then

• v = p(2k + q − 1),
• e = 2p(2k + q − 1),
• f = p(2k + q − 1) + 2.

Proof. The orbits of the points A1 and B1, as defined above, by the group of rotations abut
the z-axis through multiples of 2π/p

q
generates two p

q
spherical star-polygons, SpT and SpD,

about the points (0, 0, 1) and (0, 0,−1), respectively.
Denote by Tj and Dj the vertices of SpT and SpD, with j ∈ {1, . . . , p}, respectively. These

vertices of SpT and SpD are given by Tj = RotOz(B1, (j−1)2πp ) and Dj = RotOz(A1, (j−1)2πp )
with j ∈ {1, . . . , p}. The configurations of SpT , and SpD are the same as those corresponding
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to p
q
and p

p−q . Let k = min{q, p − q}. Thus, the number of vertices in SpT and SpD as part
of B̂ p

q
is kp (see Figure 12).

Let us now see how to count the number of edges in SpT and SpD as part of B̂ p
q
. Each

arc TiTi+q (respectively DiDi+q) is divided into 2k − 1 arcs giving rise to p(2k − 1) edges.
Thus, in total, SpT and SpD contribute with 2p(2k − 1) edges to the edges of B̂ p

q
.

Figure 12: Vertices and cross points B̂ p
q
.

The “lateral” edges5 of B̂ p
q
joining the (external) vertices of SpT and SpD are the arcs

corresponding to the orbit of the arcs T1D1 and D1T1+q by the cyclic group generated by the
rotation of angle 2π

p
about the z-axis. The arc T1D1 intersects the arcs T1+jDp−q+j in q − 1

cross points Ij with j ∈ {1, . . . , q − 1}. Therefore, the vertices T1, D1 and the cross points,
(Ij)j∈{1,...,q−1}, define q edges [T1I1], [I1I2], . . . , [Ij−1Ij], [IjD1] of the B̂ p

q
tiling (see Figure 12).

Thus the “lateral” net of B̂ p
q
has p(q − 1) vertices and pq edges.

Consequently B̂ p
q

has v = p(2k + q − 1) vertices, e = 2p(2k + q − 1) edges, and
f = p(2k + q − 1) + 2 faces, being (k − 1)p triangles and p(q + 1) quadrilaterals.

Corollary 3.1.1. If p
q
∈ N the family B̂ p

q
corresponds to the p

q
-antiprismatic tilings.

Theorem 3.2. Let p and q be natural numbers such that gcd(p, q) = 1 and p
q
> 3

2
. Then the

tilings B̂ p
q

• are invariants of the cyclic group Cp;
• if q is odd then the tilings have central symmetry;
• if q is even hen the tilings have reflection symmetry.

Proof. The first and second statement are true having in consideration the construction of
the band B p

q
and the corresponding notation, given previously.

For the last statement it is enough to observe that

5In fact, the spherical segments that emerged between the vertices of SpT and SpD correspond to a helical
polygon [8].
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• the vertices Ai ∈ 1, . . . p are on the orthogonal bisector of the arc segment BiBi+1. Thus,
when q is even, the projections of the orbits of Ai and Bi in the plane z = 0 coincide;
• the edges of the lateral net whose endpoints are not (external) vertices of SpT and SpD

form an even number of edges of B̂ p
q
defining q − 1 vertices of this tiling.

4. Exploring spherical tilings with GeoGebra

Here, we explore possible conjectures starting from a spherical triangle and its orbit under a
local action of spherical reflections. We obtain a determined pattern by constructing a spher-
ical triangle using the tools described in Section 2 and reflecting it in the planes containing
its sides. We implemented this procedure in a GeoGebra application entitled “edge to edge”.

Using this application and iterating it, we get a sequence of spherical patterns as the one
illustrated in Figure 13a. Since the initial triangle is not fixed, it is expected that some of
these patterns will end up in monohedral spherical tilings (see Figure 13b).

In Figure 13b we illustrated this process beginning with the (fixed) spherical triangle
(π/2, π/2, π/3). As expected, we end up with the hexagonal bypyramidal tiling. Using the
same strategy but starting with the family of spherical triangles of angles (π/2, π/2, 2π/n)
we end up with the family of n-gons bypiramidal tiling.

(a) Angles π/5, 2π/5, and 3π/5 (b) Angles π/2, π/2, and π/3

Figure 13: Spherical monohedral tilings, evolution to bi-pyramids tiling.

Starting with the spherical triangle with angles π/3, π/4, and π/2 and using the same
technique, we end up with a spherical tiling with octahedral symmetry which corresponds to
a polyhedron with 48 faces, the Catalan polyhedron disdyakis dodecahedron (see Figure 14a).

The spherical triangle with angles π/5, π/3, and π/2 gives rise to a spherical tiling with 120
congruent scalene triangles (see Figure 14b), with icosahedral symmetry, which corresponds
to the Catalan polyhedron disdyakis triacontahedron.

Using the spherical triangle of angles π/3, 3π/4, and π/4, we can obtain a tiling by 12
congruent scalene spherical triangles, that corresponds to a non-convex polyhedron with 12
triangular faces, 8 vertices and 18 edges (see Figure 14c). Continuing this process, we end up
always with a spherical tiling in which the starting triangle is not a tile of the achieved tiling
but it is decomposed into tiles of the new tiling.
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(a) Angles π/3, π/4, and π/2 (b) Angles π/5, π/3, and π/2 (c) Angles π/3, 3π/4, and π/4

Figure 14: Spherical monohedral tilings by triangles.

The explorations carried out so far present some interesting results that need to be
strengthened. It seems that, using Schwarz triangles, this procedure seems to be able to
provide a dynamic illustration of the polyhedral kaleidoscopes studied by Coxeter [8].

5. Conclusions

We have presented several new GeoGebra tools that may be used to explore spherical geometry
and to explore spherical tilings. An important advantage of these applications is the interac-
tivity and the visualisation of the created objects, promoting conjectures and the respective
formal proofs. The conjectures can also be tested by the GeoGebra CAS capabilities.
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