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Abstract

In this paper we present a necessary and su�cient condition under which a PH curve
generated by a primitive quaternion polynomial has a non-primitive hodograph. Such
curves are regular PH curves, and we give a characterization of these curves in terms of
their associated quaternion polynomial. This work leads to the problem of the production
of RRMF curves by others of lower degree. Furthermore, we present some geometrical
properties of RRMF curves with non-primitive hodographs of degrees 5 and 7.
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1. Introduction

A polynomial space curve de�ned by x(t), y(t), z(t) ∈ R[t] is the set

C = {(x(t), y(t), z(t)) ∈ R3 | t ∈ R}.

We denote by r(t) the parametrization of C, i.e. the map de�ned by the correspondence
t 7→ (x(t), y(t), z(t)). In the following we shall refer to the polynomial space curve C by
giving its parametrization r(t).

A moving frame along a curve describes the orientation of a rigid body when it moves
along its trajectory. An adapted frame (f1, f2, f3) on a space curve r(t) is an orthonormal basis
de�ned at each curve point, where f1 coincides with the curve tangent t = r′/|r′| and f2, f3
span the normal plane, such that f1× f2 = f3. The variation of such a frame may be speci�ed
by its angular velocity ω = ω1f1 + ω2f2 + ω3f3 through the di�erential relations

f ′1 = σω × f1 , f ′2 = σω × f2 , f ′3 = σω × f3 ,

where σ(t) = |r′(t)| is the parametric speed of r(t). A familiar adapted frame is the Frenet
frame but it is often not suitable for applications since its normal h and binormal b vectors
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may appear to execute a rotation about the tangent vector t which is not desirable for the
study of space motions. The most appropriate adapted frame for applications is the rotation-
minimizing frame (RMF) which is characterized by the property that its angular velocity
satis�es ω ·f1 ≡ 0, i.e., ω has no component along f1, which is equivalent to f3 ·f ′2 = f ′3 ·f2 = 0.
This means that f2, f3 rotate as little as possible around f1 and thus RMFs minimize the
amount of rotation along the curve. Thus RMF is very useful in computer graphics, swept
surface constructions, motion design and other similar applications [9, 10, 15, 14, 17, 18, 19].

Since it is very important for computer aided design applications to have a frame rationally
dependent on the curve parameter, recently there has been great interest in constructing poly-
nomial curves which have rational rotation-minimizing frames (RRMF curves). The search of
such curves is restricted to the particular class of polynomial curves with a special structure,
the Pythagorean-hodograph curves (PH curves) [8], since only PH curves have rational unit
tangents. Due to this fact, PH curves admit an exceptional kind of frame, the Euler-Rodrigues
frame (ERF) which is rational by its construction [3] and is de�ned only on PH curves.

For a given space curve r(t) = (x(t), y(t), z(t)) the hodograph is its parametric derivative
r′(t) = (x′(t), y′(t), z′(t)) regarded as a curve in its own right. The curve r(t) is said to have
a Pythagorean-hodograph [8] if there exists a real polynomial σ(t) such that

x′2(t) + y′2(t) + z′2(t) = σ2(t). (1)

By [4] and [6], the equality (1) is satis�ed if and only if there are u(t), v(t), p(t), q(t) ∈ R[t]
such that we have:

x′(t) = u2(t) + v2(t)− p2(t)− q2(t),
y′(t) = 2 [u(t)q(t) + v(t)p(t) ],

z′(t) = 2 [ v(t)q(t)− u(t)p(t) ]. (2)

The polynomial

σ(t) = u2(t) + v2(t) + p2(t) + q2(t) (3)

de�nes the parametric speed of the curve r(t), i.e., the rate of change ds/dt of its arc length
s with respect to the curve parameter t.

We shall say that the curve r(t) is called regular if |r′(t)| 6= 0, for all t. If k =
max{deg u(t), deg v(t), deg p(t), deg q(t)}, then the PH curves obtained by integrating the
hodograph r′(t) are said to be of degree n = 2k + 1. If k = 1 and k = 2, then we shall
call them cubics and quintics, respectively.

A primitive hodograph r′(t) is characterized by the fact that gcd((x′(t), y′(t), z′(t)) = 1.
Otherwise it is called non-primitive. Primitive hodographs are desirable in practice since at
a common real root of x′(t), y′(t), z′(t) may incur a cusp or in�ection point. This is why we
consider polynomials u(t), v(t), p(t), q(t) having gcd(u(t), v(t), p(t), q(t)) = 1, since com-
mon real roots of these polynomials incur cusps on the curve. However, we can see in
[8] that gcd(u, v, p, q) = 1 does not ensure that the hodograph is primitive. The hodo-
graph components may have common quadratic factors with complex conjugate roots even
if gcd(u, v, p, q) = 1. In this case the hodograph r′(t) is non-primitive but the PH curve is
regular i.e., |r′(t)| 6= 0, for all real t.

In [4] Choi et al. introduced two equivalent characterization of solutions to condition (1)
using the algebra of quaternions and the Hopf map which are greatly useful in the research of
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spatial PH curves. Recall that a quaternion number is of the form Q = x0 + ix1 + jx2 + kx3,
where x1, x2, x3, x4 ∈ R, and i, j, k satisfy the multiplication rules

i2 = j2 = k2 = −1, i j = −j i = k, j k = −k j = i, k i = −i k = j.

The conjugate of Q is de�ned as Q∗ = x0 − ix1 − jx2 − kx3. The real and the imaginary
part of Q are ReQ = x0 and ImQ = ix1 + jx2 + kx3, respectively. The norm |Q| of Q is
de�ned to be the quantity

|Q| =
√
QQ∗ =

√
x20 + x21 + x22 + x23.

We denote by H the skew �eld of real quaternions. Let now H[t] be the polynomial ring in the
variable t over H. Every polynomial A(t) ∈ H[t] is written as A0t

n +A1t
n−l + · · ·+An where

n is an integer ≥ 0 and A0, . . . ,An ∈ H with A0 6= 0. The addition and the multiplication of
polynomials are de�ned in the same way as in the commutative case, where the variable t is
assumed to commute with quaternion coe�cients [16, Chapter 5, Section 16].

The quaternion form generates a PH curve r(t) in R3 from a polynomial

A(t) = u(t) + i v(t) + j p(t) + k q(t) (4)

through the product

r′(t) = A(t) iA∗(t) = [u2(t) + v2(t)− p2(t)− q2(t) ] i

+ 2 [u(t)q(t) + v(t)p(t) ] j + 2 [ v(t)q(t)− u(t)p(t) ]k,
(5)

where A∗(t) = u(t)− i v(t)− j p(t)− k q(t) is the conjugate of A(t).
The Hopf map form generates a Pythagorean hodograph from polynomials α(t) = u(t) +

i v(t) and β(t) = q(t) + i p(t) through the expression

r′(t) =
(
|α(t)|2 − |β(t)|2, 2Re (α(t)β̄(t)), 2 Im (α(t)β̄(t))

)
(6)

The equivalence of (5) and (6) can be taken by

A(t) = α(t) + k β(t). (7)

The polynomialA(t) is called primitive, if gcd(u(t), v(t), p(t), q(t)) = 1, and non-primitive,
otherwise. Although a primitive quaternion polynomial generates a regular PH curve r(t),
the hodograph r′(t) may be primitive or non-primitive. Indeed, r′(t) may have the form
r′(t) = φ(t)B(t) iB∗(t), where φ(t) is a real polynomial of positive even degree and B(t) is
primitive quaternion polynomial with lower degree than the degree of A(t). In this case the
polynomial φ(t) does not have real roots, the hodograph is non-primitive and the curve r(t) is
regular [8, �23.3]. The question that arises is, when the hodograph generated by a primitive
quaternion polynomial is primitive and when it is non-primitive.

The main goal of this work is to obtain necessary and su�cient conditions for the quater-
nion polynomial A(t) such that a regular PH curve generated by A(t) has a non-primitive
hodograph. We prove that regular PH curves with non-primitive hodographs are those whose
associated quaternion polynomials have right complex factors. Through the study of non-
primitive hodographs, we see that there are RRMF curves which are produced by others of
lower degree. In particular, the RRMF curves of degree 7 with non-primitive hodograph for
which the ERF is an RMF are generated by a speci�c subset of quintic RRMF curves.
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The organization of this paper is as follows. In Section 2, the Euler-Rodrigues frame, which
is the key to identify RRMF curves, is introduced and the condition which characterizes the
RRMF curves is also described. Since quaternion polynomials are used to represent PH curves,
in Section 3 we recall an useful criterion for such a polynomial to have a root in C. Necessary
and su�cient conditions for a regular PH curve to have a non-primitive hodograph in terms of
its associated quaternion polynomial, are presented in Section 4. Working on regular curves
with non-primitive hodographs, we deal with the problem of generating PH curves by others
of lower degree and we study their geometrical properties in Section 5. Finally, in Section
6 we focus in our study on these quintics and RRMF curves of degree 7 with non-primitive
hodographs which have the ERF as an RMF and we characterize these special sets since this
property is of interest in applications. Moreover, a number of examples is given as well.

2. Euler-Rodrigues frame and RRMF curves

In this section we recall some basic facts about a special frame, the Euler-Rodrigues frame,
and the condition which characterizes curves with rational rotation-minimizing frames. In [3]
Choi and Han introduced a special adapted frame, the Euler-Rodrigues frame (ERF) which
is de�ned on any spatial PH curve and was an important step for identifying the RRMF
curves as a subset of PH curves. As we mentioned, the ERF is rational by its construction
and additionally has non-singular behavior at in�ection points. The ERF is not always an
RMF. The �rst true spatial RRMF curves for which the ERF is itself rotation minimizing
(ERF=RMF) are PH curves of degree 7. The conditions under which the ERF of a PH curve
can be an RMF were also investigated in [3].

The ERF on the PH curve speci�ed by (4) � (5) is the set of orthonormal vectors de�ned
by

e1 =
(u2 + v2 − p2 − q2) i + 2(uq + vp) j + 2(vq − up)k

u2 + v2 + p2 + q2
,

e2 =
2(vp− uq) i + (u2 − v2 + p2 − q2) j + 2(uv + pq)k

u2 + v2 + p2 + q2
,

e3 =
2(up+ vq) i + 2(pq − uv) j + (u2 − v2 − p2 + q2)k

u2 + v2 + p2 + q2
,

(8)

where e1 is the curve tangent, while e2 and e3 span the normal plane of the curve.
The ERF is a useful frame since it can be used as a reference frame to identify rational

rotation minimizing frames [3]. By [13], if the PH curve de�ned by (4)�(5) admits a rational
RMF (f1(t), f2(t), f3(t)), then e1 = f1 is the curve tangent, and the normal-plane vectors
f2(t), f3(t) must be obtainable from the ERF normal-plane vectors e2(t), e3(t) by a rational
rotation � i.e., for relatively prime polynomials a(t), b(t) we must have[

f2(t)
f3(t)

]
=

1

a2(t) + b2(t)

[
a2(t)− b2(t) − 2 a(t)b(t)

2 a(t)b(t) a2(t)− b2(t)

] [
e2(t)
e3(t)

]
.

In [13], Han proved that a PH curve, de�ned by (4) � (5), has a rational RMF if and only
if relatively prime polynomials a(t), b(t) exist, such that

u(t)v′(t)− u′(t)v(t)− p(t)q′(t) + p′(t)q(t)

u(t)2 + v(t)2 + p(t)2 + q(t)2
=
a(t)b′(t)− a′(t)b(t)

a(t)2 + b(t)2
. (9)

A PH curve which satis�es the above condition, is called a Rational Rotation-Minimizing
Frame curve (RRMF curve). Using the Hopf map form (6), condition (9) can be phrased by
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requiring the existence of a complex polynomial w(t) = a(t) + i b(t), with gcd(a(t), b(t)) = 1,
such that

Im
(
ᾱ(t)α′(t) + β̄(t)β′(t)

)
|α(t)|2 + |β(t)|2

=
Im (w̄(t)w′(t))

|w(t)|2
. (10)

When w(t) is either a real polynomial or a constant, the angle θ(t) between the ERF and
RMF is constant. This is equivalent to

Im (ᾱ(t)α′(t) + β̄(t)β′(t)) = 0. (11)

Since in the computation of the RMF appears an integration constant, we may consider
(11) as the condition identifying coincidence of the RMF and ERF (for short, we shall write
ERF=RMF). Further analysis of this condition was presented in [3]. Finally, if A(t) =
u(t) + i v(t) + j p(t) + k q(t), then (11) is equivalent to

u(t)v′(t)− u′(t)v(t)− p(t)q′(t) + p′(t)q(t) = 0. (12)

3. Complex roots of quaternion polynomials

In 1971, Barnett determined the degree of the greatest common divisor of several univariate
polynomials with coe�cients in an integral domain by means of the rank of several matrices
involving theirs coe�cients [1, 2]. In [5], a formulation of Barnett's theorem is given by using
the hybrid Bézout matrices and, as it is noticed, these matrices have the best computational
behaviour. In [7], we used the results of [5] in order to study the existence of complex roots
of a quaternion polynomial (i.e., roots which are in C).

Let F be a �eld of characteristic zero and F[t] the ring of polynomials with coe�cients in
F. Consider polynomials

P (t) = p0t
n + p1t

n−1 + · · ·+ pn and Q(t) = q0t
m + q1t

m−1 + · · ·+ qm,

in F[t] with n ≥ m. The hybrid Bézout matrix, denoted by Hbez(P,Q), is a square matrix of
size n whose entries are de�ned by:

• for 1 ≤ i ≤ m, 1 ≤ j ≤ n, the (i, j)-entry is the coe�cient of tn−j in the polynomial

Km−i+1 = (p0t
m−i + · · ·+ pm−i)(qm−i+1t

n−m+i−1 + · · ·+ qmt
n−m)

− (pm−i+1t
n−m+i−1 + · · ·+ pn)(q0t

m−i + · · ·+ qm−i);

• for m+ 1 ≤ i ≤ n, 1 ≤ j ≤ n, the (i, j)-entry is the coe�cient of tn−j in the polynomial
tn−iQ(t).

Let R(P,Q) be the Sylvester resultant of P (t) and Q(t). By [5, Corollary 5.2], we have
det(Hbez(P,Q)) = R(P,Q).

In the next section, we shall use the following results:

Lemma 1. Let D(t) = gcd(P (t), Q(t)) and r = rank Hbez(P,Q). Then

degD(t) = n− r.

Proof. See [5, Theorem 5.1].
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Lemma 2. Let Q(t) ∈ H[t] \C[t] be a monic polynomial with degQ = n ≥ 1 and f(t), g(t) ∈
C[t] with f(t)g(t) 6= 0 such that Q(t) = f(t)+kg(t). Set E(t) = gcd(f(t), g(t)). Then the roots
of E(t) are precisely the complex roots of Q(t). Furthermore, the following are equivalent:

(a) Q(t) has a complex root.

(b) degE(t) > 0.

(c) det(Hbez(f, g)) = 0.

(d) R(f, g) = 0.

Proof. See [7, Theorem 1].

Lemma 3. Let Q(t) = t2 + Q1t + Q0 be a quadratic polynomial of H[t] \ C[t] with no real
factor. Set Q1 = b1 + k c1 and Q0 = b0 + k c0, where b0, b1, c0, c1 ∈ C. Then Q(t) has a
complex root if and only if

c20 − c0b1c1 + b0c
2
1 = 0.

Proof. See [7, Theorem 2].

4. Characterization of non-primitive hodographs

Let A(t) be a monic primitive quaternion polynomial of degree m. We write A(t) = f(t) +
kg(t), where f(t), g(t) ∈ C[t]. Let r′(t) = A(t) iA∗(t) be the hodograph generated by A(t).
Recall that it is possible for a PH curve to be regular even when its hodograph r′(t) is non-
primitive.

We say that the quaternion polynomial B(t) is a right (left) factor of A(t) if there is a
quaternion polynomial C(t) such that A(t) = C(t)B(t) (A(t) = B(t)C(t)).

The next theorem characterizes non-primitive hodographs.

Theorem 1. The following statements are equivalent:

(a) The hodograph de�ned by r′(t) is non-primitive.

(b) The polynomial A(t), has a right factor which is a polynomial of C[t] \ C.

(c) We have r′(t) = h(t)B(t) iB∗(t), where h(t) is a real monic polynomial with no real
roots and B(t) is a left factor of A(t).

(d) We have R(f(t), g(t)) = 0.

Proof. WriteA(t) = u(t)+i v(t)+j p(t)+k q(t), where u(t), v(t), p(t), q(t) are real polynomials.
Suppose that the hodograph r′(t) is not primitive. Then, there is a real monic irreducible
polynomial ℘(t) which divides the polynomials

u2(t) + v2(t)− p2(t)− q2(t), u(t)q(t) + v(t)p(t), v(t)q(t)− u(t)p(t).

The relations ℘(t) |u(t)q(t) + v(t)p(t) and ℘(t) | v(t)q(t)− u(t)p(t) imply

℘(t) |u2(t)q(t) + u(t)v(t)p(t) and ℘(t) | v2(t)q(t)− u(t)v(t)p(t)

and whence we get ℘(t) | (u2(t) + v2(t))q(t).
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Suppose �rst that ℘(t) 6 | q(t) . Then, we have ℘(t) |u2(t) + v2(t) , and so, the relation
℘(t) |u2(t)+v2(t)−p2(t)−q2(t) yields ℘(t) | p2(t)+q2(t). If ℘(t) = t−a, then the real number
a is a root of p2(t) + q2(t), and so a common root of p(t) and q(t). Similarly, a is a common
root of u(t) and v(t). Thus, we have gcd(u(t), v(t), p(t), q(t)) > 1 which is a contradiction,
and so, deg℘(t) ≥ 2. Since the irreducible polynomials of R[t] are linear or quadratic, we
deduce that deg℘(t) = 2.

Next, suppose that ℘(t) | q(t). Thus, we have

℘ |u2(t) + v2(t)− p2(t), ℘(t) | v(t)p(t), ℘(t) |u(t)p(t).

If ℘(t) 6 | p(t), then ℘(t) | v(t), ℘(t) |u(t) and the relation ℘(t) |u2(t)+v2(t)−p2(t) implies that
℘(t) | p(t), which is a contradiction. Therefore ℘(t) | p(t) and so, we have ℘(t) | p2(t) + q2(t),
whence follows that ℘(t) |u2(t) + v2(t). If ℘(t) = t− a, a is a common root of u(t) and v(t),
and since t− a|p(t), t− a | q(t) we have gcd(u(t), v(t), p(t), q(t)) > 1, which is a contradiction.
Hence, we have deg℘(t) = 2. Therefore, in both cases, we have that ℘(t) |u2(t) + v2(t),
℘(t) | p2(t) + q2(t) and ℘(t) = (t− r) (t− r̄), where r ∈ C \R and r̄ is the complex conjugate
of r.

We remark that the divisibility relations

℘(t) |u(t)q(t) + v(t)p(t) and ℘(t) | v(t)q(t)− u(t)p(t)

can be equivalently presented by the relation

(t− r)(t− r̄) | (u(t) + v(t) i) (q(t)− p(t) i).

We also have

(t− r)(t− r̄) | (u(t) + v(t) i) (u(t)− v(t) i), (t− r)(t− r̄) | (q(t) + p(t) i) (q(t)− p(t) i).

Suppose that t − r |u(t) + v(t) i. If t − r 6 | q(t) + p(t) i, then t − r | q(t) − p(t) i and so,
t− r̄ | q(t) + p(t) i. On the other hand, we have that the relation t− r 6 | q(t) + p(t) i implies
t− r̄ 6 | q(t)− p(t) i. Thus, the relation

(t− r)(t− r̄) | (u(t) + v(t) i) (q(t)− p(t) i)

implies that t − r̄ |u(t) + v(t) i. Thus, we deduce that the polynomials u(t) + v(t) i and
q(t)+p(t) i have a common complex root. If t−r | q(t)+p(t) i, then we also have that u(t)+v(t) i
and q(t) + p(t) i have a common complex root. Since A(t) = u(t) + v(t) i + k (q(t) + p(t) i),
it follows that A(t) has a complex root.

Suppose that A(t) = B(t) C(t), where B(t) ∈ H[t] and C(t) is a monic polynomial of
C[t] \ R[t] with degC(t) > 0. Then we have

r′(t) = f(t)B(t) iB∗(t),

where f(t) = C(t) C∗(t) is a real monic polynomial with non real root. It follows that the
hodograph r′(t) is non-primitive.

Thus, we have established the equivalence of propositions (a), (b) and (c). Finally,
Lemma 2 provides the equivalence of (b) and (d).

Corollary 1. The hodograph r′(t) is primitive if and only if the quaternion polynomial A(t)
has no complex roots.
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Lemma 3 and Corollary 1 give immediately the following result.

Corollary 2. Suppose that the hodograph r′(t) is generated by the polynomial A(t) = t2+Bt+
C. Set B = b1 + k c1 and C = b0 + k c0, where b0, b1, c0, c1 ∈ C. Then, r′(t) is non-primitive if
and only if

c20 − c0b1c1 + b0c
2
1 = 0.

Remark 1. From the proof of Theorem 1 we also conclude that if the hodograph r′(t) is
non-primitive then gcd(x′(t), y′(t), z′(t)) has no real roots.

We call the maximum of degrees of complex polynomials C(t) ∈ C[t] with the property,
that there exists a quaternion polynomial B(t) ∈ H[t] such that A(t) = B(t)C(t), the level of
non-primitivity of the hodograph r′(t) generated by the quaternion polynomial A(t), and we
denote it by `(r′(t)). Note that the level of non-primitivity of a primitive hodograph is zero.

Combining Lemma 1 and Theorem 1, we obtain the following result:

Theorem 2. The level of non-primitivity of the hodograph r′(t) generated by the polynomial
A(t) is

`(r′(t)) = degA− rank Hbez(f, g).

Since the polynomial B(t) generates the hodograph r̂′(t) = B(t) iB∗(t) we can give the
following de�nition. We say that a polynomial curve r(t) is generated by another polynomial
curve r̂(t), and we write r(t) � r̂(t), if r′(t) = h(t) r̂′(t) for some monic real polynomial h(t)
with non real roots. We shall also say that the curve r̂(t) generates the curve r(t).

Clearly, a PH curve with a non-primitive hodograph is generated by another PH curve,
of lower degree. Such curves are de�ned by quaternion polynomials A(t) that admit factor-
izations of the form A(t) = B(t)C(t), where C(t) is a non-constant complex polynomial with
no real roots. Thus, a PH curve r(t) is generated by another PH curve of lower degree if and
only if the level of non-primitivity of its hodograph r′(t) is > 0.

Proposition 1. The relation � is a partial ordering in the set of polynomial curves P.

Proof. For every r(t) ∈ P we clearly have r(t) � r(t). Suppose that r(t) � r̂(t) and r̂(t) �
r(t). Then there are real monic polynomials f(t) and g(t) with non-real roots such that
r′(t) = f(t) r̂′(t) and r̂′(t) = g(t)r′(t). Thus, we get r′(t) = f(t) g(t)r′(t), whence we obtain
f(t) = g(t) = 1. Hence r(t) = r̂(t). Finally, suppose that r1(t) � r2(t) and r2(t) � r3(t). It
follows that there are real monic polynomials f1(t) and f2(t) with non-real roots such that
r′1(t) = f1(t) r

′
2(t) and r′2(t) = f2(t)r

′
3(t). Thus, we have r′1(t) = f1(t) f2(t)r

′
3(t), whence we

get r1(t) � r3(t). Hence, the relation � is re�exive, antisymmetric and transitive and so is a
partial ordering in P .

Remark 2. The polynomial curves having primitive hodograph are the minimal elements of
this ordering.

5. Geometrical properties

Here we discuss the geometrical interpretation of a PH curve which is generated by another
PH curve of lower degree. More precisely, we are interested in �nding the relation between
these curves in the space and if the geometrical properties of the one are transferred to the
other.
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Let r(t) and r̂(t) be PH curves de�ned by monic quaternion polynomials

A(t) = u(t) + i v(t) + j p(t) + k q(t), B(t) = û(t) + i v̂(t) + j p̂(t) + k q̂(t)

satisfying r′(t) = f(t)B(t) iB∗(t), for some monic real polynomial f(t) with no real roots.
Let (t,h,b), (e1, e2, e3), κ1(t), τ1(t), σ1(t) and (t̂, ĥ, b̂), (ê1, ê2, ê3), κ2(t), τ2(t), σ2(t) be the
Frenet frame, Euler-Rodrigues frame, curvature, torsion and parametric speed of r(t), r̂(t) at
each t, respectively.

If r(t) � r̂(t), then at each t, the curves r(t) and r̂(t) have the same Frenet and Euler-
Rodrigues frames. Further, the parametric speed of r(t) is equal to that of r̂(t) multiplied by
|f(t)|, while the curvature and torsion of r(t) equal those of r̂(t) divided by |f(t)| and f(t),
respectively.

Indeed, if we substitute r′ = f r̂′ and its derivatives into the de�nitions of the tangent,
principal normal, and binormal,

t =
r′

|r′|
, h =

r′ × r′′

|r′ × r′′|
× t , b =

r′ × r′′

|r′ × r′′|
,

and the parametric speed, curvature, and torsion,

σ = |r′| , κ =
|r′ × r′′|
|r′|3

, τ =
(r′ × r′′) · r′′′

|r′ × r′′|2
.

We obtain
t = t̂, h = ĥ, b = b̂

and

σ1(t) = |f(t)|σ2(t),
κ1
κ2

=
1

|f(t)|
, and

τ1
τ2

=
1

f(t)
for each t.

By Theorem 1, we have f(t) > 0 and so, we get κ1(t)τ2(t) = κ2(t)τ1(t), for the corresponding
points of r(t) and r̂(t).

Now, we shall prove that e1 = ê1, e2 = ê2, e3 = ê3, at each t. Indeed, since r′(t) =
f(t)r̂′(t), we have that

A(t) iA∗(t) = f(t)B(t) iB∗(t), (13)

which is equivalent to

u2(t) + v2(t)− p2(t)− q2(t) = f(t) [û2(t) + v̂2(t)− p̂2(t)− q̂2(t)],
u(t)q(t) + v(t)p(t) = f(t) [û(t)q̂(t) + v̂(t)p̂(t)], (14)

v(t)q(t)− u(t)p(t) = f(t) [v̂(t)q̂(t)− û(t)p̂(t)].

By multiplying (13) by B(t) and A∗(t) from the right and the left, respectively, we obtain

|A(t)|2 iA∗(t)B(t) = f(t) |B(t)|2A∗(t)B(t) i

which implies that

|A(t)|2 |iA∗(t)B(t)| = |f(t)| |B(t)|2 |A∗(t)B(t) i|. (15)

Since f(t) > 0 and |iA∗(t)B(t)| = |A∗(t)B(t) i|, (15) gives

|A(t)|2 = f(t) |B(t)|2. (16)



172 P. Dospra: PH Curves with Non-Primitive Hodographs

Substituting (14) and (16) into (8) and simplifying, we deduce

e1 = ê1, e2 = ê2 and e3 = ê3 at each t.

Next, we shall prove that if the r(t) is a planar curve (straight line) then r̂(t) is a planar
curve (straight line) and conversely. Write A(t) = α(t)+k β(t) and B(t) = γ(t)+k δ(t), where
α(t), β(t), γ(t), δ(t) are polynomials of C[t] and A(t) = B(t)C(t), where C(t) ∈ C[t]\C. Then,
we have α(t) = γ(t)C(t) and β(t) = δ(t)C(t). So, we deduce that r′(t) = (x′(t), y′(t), z′(t)),
where

x′(t) = |α(t)|2 − |β(t)|2, y′(t) = 2Re (α(t)β̄(t)), z′(t) = 2 Im (α(t)β̄(t)).

The curve r(t) is planar if and only if x′(t), y′(t) and z′(t) are linearly dependent. Since A(t)
is monic, the degree of x′(t) is bigger than the degree of y′(t) and z′(t). Thus, x′(t), y′(t) and
z′(t) are linearly dependent if and only if y′(t) and z′(t) are linearly dependent. Thus, r(t)
is a planar curve if and only if the polynomials Re(α(t)β̄(t)) and Im(α(t)β̄(t)) are linearly
dependent. Similarly, r̂(t) is planar if and only if Re(γ(t)δ̄(t)) and Im(γ(t)δ̄(t)) are linearly
dependent. Since(

Re (α(t)β̄(t)), Im (α(t)β̄(t)
)

= |C(t)|2
(
Re (γ(t)δ̄(t)

)
, Im

(
γ(t)δ̄(t))

)
,

we deduce that r(t) is a planar curve if and only if r̂(t) is a planar curve.
The curve r(t) is a straight line if and only if x′(t), y′(t) and x′(t), z′(t) are linearly

dependent. The degree of x′(t) is bigger than the degrees of y′(t), z′(t) and so, we have that
r(t) is a straight line if and only if y′(t) = z′(t) = 0. Thus r(t) is a straight line if and only if
Re (α(t)β̄(t)) = Im (α(t)β̄(t)) = 0 which is equivalent to α(t)β̄(t) = 0. Since A(t) is monic,
we have α(t) 6= 0, and so r(t) is a straight line if and only if β(t) = 0 which is equivalent
to A(t) ∈ C[t]. Similarly, r̂(t) is a straight line if and only if and only if B(t) ∈ C[t]. Since
A(t) = B(t)C(t), where C(t) ∈ C[t], we have that A(t) ∈ C[t] if and only if B(t) ∈ C[t].
Hence r(t) is a straight line if and only if r̂(t) is a straight line.

Up to now, we have proved that r(t) is a planar curve if and only if r̂(t) is a planar curve
and r(t) is a straight line if and only if r̂(t) is a straight line. Consequently, if r(t) is a (true)
space curve then r̂(t) is a (true) space curve and conversely.

Concerning the RRMF condition, one can verify that r(t) is a RRMF curve if and only
if r̂(t) is a RRMF curve. Suppose, as previously, that the quaternion polynomials A(t) =
α(t) + k β(t) and B(t) = γ(t) + k δ(t), are associated to the curves r(t) and r̂(t), respectively.
Furthermore, we have A(t) = B(t)C(t), where C(t) ∈ C[t] \ C. Suppose �rst that r̂(t) is a
RRMF curve. Then there exists a polynomial w(t) = w1(t) + iw2(t) where w1(t), w2(t) ∈ R[t]
with no real factor such that

Im
(
γ̄(t)γ′(t) + δ̄(t)δ′(t)

)
|γ(t)|2 + |δ(t)|2

=
Im (w̄(t)w′(t))

|w(t)|2
.

Then, we easily verify that the following equality holds:

Im
(
ᾱ(t)α′(t) + β̄(t)β′(t)

)
|α(t)|2 + |β(t)|2

=
Im
(
wC(t)(wC)′(t)

)
|(wC)(t)|2

.

Since A(t) is primitive, C(t) has no real factor, and so the polynomial (wC)(t) has also no real
factor. Hence r(t) is a RRMF curve. Suppose next that r(t) is a RRMF curve. Then there
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exists a polynomial V (t) = v1(t) + i v2(t) where v1(t), v2(t) ∈ R[t] with gcd(v1(t), v2(t)) = 1
such that

Im
(
ᾱ(t)α′(t) + β̄(t)β′(t)

)
|α(t)|2 + |β(t)|2

=
Im
(
V̄ (t)V ′(t)

)
|V (t)|2

.

Consequently,

Im
(
γ̄(t)γ′(t) + δ̄(t)δ′(t)

)
|γ(t)|2 + |δ(t)|2

=
Im
(
V̄ (t)V ′(t)

)
|V (t)|2

−
Im
(
C̄(t)C ′(t)

)
|C(t)|

=
Im
(
V C̄(t)(V C̄)′(t)

)
|(V C̄)(t)|2

.

Furthermore, (V C̄)(t) has no real factor. Hence r̂(t) is a RRMF curve.

The above discussion is summarized as follows:

Proposition 2. Let r(t), r̂(t) be PH curves with r(t) � r̂(t). Then, we have:

1. r(t) and r̂(t) have the same Frenet and Euler-Rodrigues frames at each t.

2. r(t) is planar, straight line and true space curve if and only if r̂(t) is likewise, respec-
tively.

3. r(t) is an RRMF curve if and only if r̂(t) is an RRMF curve.

4. κ1(t)τ2(t) = κ2(t)τ1(t), where κ1(t), κ2(t) and τ1(t), τ2(t) are the curvature and torsion
of r(t), r̂(t) respectively.

6. RRMF curves of degrees 5 and 7

In this section we study RRMF curves of degrees 5 and 7 whose hodographs are non-primitive
and possess the speci�c geometrical property of having the ERF as an RMF (ERF=RMF).
More precisely, in case of the RRMF curves of degree 7, we �nd the necessary and su�cient
conditions under which an RRMF curve of degree 7 with a non-primitive hodograph has ERF
as an RMF, and we prove that these curves are generated only by RRMF quintic curves of
Class II with primitive hodographs. Recall that RRMF quintics of Class II are those which
satisfy condition (9) with linear polynomials a(t) and b(t) [12]. For the case of the RRMF
quintic curves, we study only two sets: the RRMF quintic curves of Class II with non-primitive
hodographs and the RRMF quintics with ERF=RMF with non-primitive hodographs as well.

6.1. RRMF curves of degree 5 with non-primitive hodographs

The simplest example of two PH curves r(t), r̂(t) such that r(t) � r̂(t) concerns the case of a
quintic r(t) de�ned by a quadratic quaternion polynomial A(t) that admits a factorization of
the form A(t) = B(t)(t− z), where z ∈ C. The PH quintic r(t) is generated by the PH cubic
r̂(t) de�ned by the hodograph r̂′(t) = B(t) iB∗(t) . We shall give necessary and su�cient con-
ditions under which an RRMF quintic with non-primitive hodograph is of Class II. Moreover,
we prove that quintics with non-primitive hodograph with ERF=RMF do not exist.

Consider the quaternion polynomial (7) where α(t), β(t) are considered to be in normal
form [12, Lemma 1], i.e., α(t) is a monic quadratic polynomial and β(t) a linear polynomial.
We assume that A(t) has one non-real complex root. Then α(t) = (t − z1)(t − z2) and
β(t) = c(t− z2) with c ∈ C.
Proposition 3. The polynomial A(t) de�nes a non-primitive hodograph of a RRMF quintic
of Class II, if and only if Im(z1) = 0. In this case, the polynomial w(t) = a(t) + i b(t), with
a(t) = t − Re(z2) and b(t) = −Im(z2), satis�es condition (10). Furthermore, A(t) does not
de�ne a non-primitive hodograph of an RRMF quintic curve with ERF=RMF.
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Proof. The polynomial A(t) de�nes a hodograph of a RRMF quintic of Class II if and only
if there exists a complex polynomial w(t) = a(t) + i b(t) with a(t) = t − a0, b(t) = b0 and
gcd(a(t), b(t)) = 1 such that (10) is valid.

By plugging zi = ai + i bi, (i = 1, 2) into α(t) and β(t) and substituting α(t) and β(t) into
the left part of (10), we obtain

Im (αcα′ + βcβ′)

|α|2 + |β|2
=

(b1 + b2)t
2 − 2(b1a2 + a1b2)t− b2|z1|2 − b1|z2|2 + |c|2b2
[(t− a1)2 + b21 + |c|2][(t− a2)2 + b22]

.

Thus, (10) yields:

(b1 + b2)
t2 − 2

b1a2 + a1b2
b1 + b2

t− b2|z1|2 + b1|z2|2 − |c|2b2
b1 + b2

[(t− a1)2 + b21 + |c|2][(t− a2)2 + b22]
=

−b0
(t− a0)2 + b20

. (17)

The denominator of the left side is a real polynomial of degree 4 and of the right side a
polynomial of degree 2. Hence, the numerator of the left side is required to be of degree 2
and so b1 + b2 6= 0. We have the following two cases: either

t2 − 2
b1a2 + a1b2
b1 + b2

t− b2|z1|2 + b1|z2|2 − |c|2b2
b1 + b2

= (t− a1)2 + b21 + |c|2

and
b1 + b2

(t− a2)2 + b22
=

−b0
(t− a0)2 + b20

or

t2 − 2
b1a2 + a1b2
b1 + b2

t− b2|z1|2 + b1|z2|2 − |c|2b2
b1 + b2

= (t− a2)2 + b22

and
b1 + b2

(t− a1)2 + b21 + |c|2
=

−b0
(t− a0)2 + b20

.

Thus (17) holds if and only if either

b1a2+a1b2
b1+b2

= a1, − b2|z1|2+b1|z2|2−|c|2b2
b1+b2

= b21 + |c|2 + a21,

b20 = b22, −b0 = b1 + b2, a0 = a2

or
b1a2+a1b2

b1+b2
= a2, − b2|z1|2+b1|z2|2−|c|2b2

b1+b2
= b22 + a22,

b20 = b21 + |c|2, b0 = −(b1 + b2), a0 = a1.

Combining the third and fourth equation of the �rst system, we obtain (b1 +b2)
2 = b22, and so,

b1 = 0 or b1 = −2 b2. By setting b1 = 0, we get (a0, b0) = (a2,−b2). If b1 = −2 b2, then b2 = 0
which is a contradiction, since A(t) is primitive. Now, by the fourth and the third equation
of the second system we have |c|2 = b22 + 2 b1 b2 and from the �rst equation we get a1 = a2.
Substituting the last two relations into the second we obtain b1 = 0 or b1 = −2 b2. For b1 = 0
the second system has the solution (a0, b0) = (a2,−b2), and by substituting b1 = −2 b2 into
the second equation, we obtain 3 b22 + |c|2 = 0, which is a contradiction. Hence, condition (17)
holds if and only if b1 = 0.
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Now, a quintic curve generated by the quaternion polynomial (7), has ERF=RMF if and
only if we have

(b1 + b2)t
2 − 2(b1a2 + a1b2)t+ b2|z1|2 + b1|z2|2 + |c|2b2 = 0

which is equivalent to the following system:

b1 = −b2, b1a2 + a1b2 = 0, b1|z2|2 + b2|z1|2 + |c|2b2 = 0.

From the second equation we get b2 = 0 or a1 = a2. But since A(t) is primitive, b2 6= 0
and hence we study only the case a1 = a2. Substituting the last relation and b1 = −b2
into the third equation of the system we obtain that A(t) is a real polynomial which is a
contradiction.

Example 1. Choosing the values c = 1, z1 = 0 and z2 = 1− i, we have A(t) = α(t) + k β(t),
where α(t) = t2 − t + i and β(t) = t − 1 + i. The polynomial A(t) de�nes a non-primitive
hodograph of an RRMF quintic of Class II. We can easily verify that

Im (αcα′ + βcβ′)

|α|2 + |β|2
=

−t2 − 1

t4 − 2 t3 + 3 t2 − 2 t+ 2
= − 1

(t− 1)2 + 1
,

and the complex polynomial w(t) satisfying condition (10) is w(t) = t− 1 + i. The resulting
hodograph is

r′(t) = (x′(t), y′(t), z′(t)) = (t2 − 2 t+ 2)(t2 − 1, t, 0),

and its components de�ne a curve with a non-primitive hodograph and which satis�es (3),
where σ(t) = (t2 + 1)(t2 − 2 t+ 2).

Proposition 4. We have the following:

1. If r̂(t) is an RRMF curve then r(t) is an RRMF quintic of Class II.

2. The curve r(t) is an RRMF quintic of Class II with non-primitive hodograph if and only
if it is planar.

Proof. 1. Let A(t) = α(t) + k β(t) and B(t) = γ(t) + k δ(t). If r̂(t) is an RRMF cubic curve,
then r̂(t) is planar. Thus, [3] implies that r̂(t) has ERF=RMF and so, we have

Im
(
γ̄(t)γ′(t) + δ̄(t)δ′(t)

)
|γ(t)|2 + |δ(t)|2

= 0 .

Since α(t) = γ(t)(t− z) and β(t) = δ(t)(t− z), eq. (10) yields

Im
[(
γ̄(t)γ′(t) + δ̄(t)δ′(t)

)
|t− z|

2
+ (|γ(t)|2 + |δ(t)|2) |t− z|

]
(|γ(t)|2 + |δ(t)|2) |t− z|2

=
Im
(
t− z

)
|t− z|2

.

From the last follows that the curve r(t) satis�es condition (10) with w(t) = t− z and so r(t)
is an RRMF quintic of Class II.
2. Suppose that r(t) is an RRMF quintic of Class II with non-primitive hodograph. Since
r(t) is an RRMF quintic, Proposition 2(3) implies that r̂(t) is an RRMF cubic curve, i.e., a
planar curve. Further, Proposition 2(2) implies that r(t) is planar. Conversely, if r(t) is a
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planar RRMF quintic of Class II, then by [12, Prop 2] a parameterization of A(t) is given as
follows

A(t) = t2 + u1t− (u1 + r)r + i [v1t+ (u1 + r)v1] + j (p1t+ v1q1 − p1r) + k (q1t− v1p1 − q1r)

where r, u1, v1, p1, q1 are the free real variables. We can easily see that A(t) satis�es the
conditions of Corollary 2, and thus r(t) has a non-primitive hodograph.

Remark 3. Combining Propositions 4(3) and 2(2), we have that all RRMF quintics curves of
Class II generated by cubics are planar.

6.2. RRMF curves of degree 7 with non-primitive hodographs

In this section, we study the PH curves of degree 7 which have a rotation-minimizing ERF and
the corresponding cubic polynomial A(t) ∈ H[t] \ C[t] has a complex right factor. We shall
prove that these curves are generated only by RRMF quintic curves of Class II. Furthermore,
we shall give a parametrization of these curves.

Suppose now that A(t) = u(t) + i v(t) + j p(t) + k q(t) de�nes a PH curve of degree 7. By
[12, Lemma 1], we may write

u(t) = t3 + u2t
2 + u1t+ u0, v(t) = v2t

2 + v1t+ v0,

p(t) = p2t
2 + p1t+ p0, q(t) = q2t

2 + q1t+ q0.

In [11], necessary and su�cient conditions are given for a PH curve of degree 7 having
ERF=RMF, in terms of the Hopf map form. For our purposes, we need necessary and
su�cient conditions given in terms of the coe�cients of u(t), v(t), p(t) and q(t) which are
provided in the next lemma.

Lemma 4. The PH curve of degree 7 de�ned by A(t) has the ERF as RMF if and only if

v1 = v2 = 0, u2v0 + p0q2 − p2q0 = 0,

u1v0 + p0q1 − p1q0 = 0, 3v0 + p1q2 − p2q1 = 0.
(18)

Proof. It is easily veri�ed that the relations (18) of Lemma 4 follow by substituting u(t), v(t),
p(t), q(t) into (12) and by elementary operations.

Suppose that there is B(t) ∈ H[t] \ C[t] and z ∈ C \ R such that

A(t) = B(t)(t− z). (19)

A(t) generates the hodograph r′(t) of a PH curve of degree 7 and B(t) the hodograph r̂′(t) of
the quintic one. We have the following two cases:

First Case: `(r′(t)) = 1. Write B(t) = U(t) + iV (t) + jP (t) + kQ(t). By [12, Lemma 1], we
may assume

U(t) = t3 + u′2t
2 + u′1t+ u′0, V (t) = v′2t

2 + v′1t+ v′0,

P (t) = p′2t
2 + p′1t+ p′0, Q(t) = q′2t

2 + q′1t+ q′0.

Substituting

B(t) = t2 + u′1t+ u′0 + i (v′1t+ v′0) + j (p′1t+ p′0) + k (q′1t+ q′0)
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and z = a+ b i into (19), we obtain:

A(t) = t3 + (u′1 − a) t2 + (u′0 − au′1 − bv′1) t− au′0 − bv′0
+ i [ (v′1 + b) t2 + (v′0 − av′1 + bu′1) t+ bu′0 − av′0 ]

+ j [ p′1t
2 + (p′0 − ap′1 + bq′1) t+ bq′0 − ap′0 ]

+k [ q′1t
2 + (q′0 − aq′1 − bp′1) t− aq′0 − bp′0 ],

If A(t) generates an RRMF curve of degree 7 with ERF=RMF, then conditions (18) are
satis�ed by A(t) and thus we have

v′1 + b = 0, v′0 − av′1 + bu′1 = 0, p′1q
′
0 − p′21 b− p′0q′1 − bq′21 = 3(bu′0 − av′0),

bu′0u
′
1 − au′1v′0 − abu′0 + a2v′0 + bq′0q

′
1 − ap′0q′1 + aq′0p

′
1 + bp′0p

′
1 = 0

and

bu′20 − au′0v′0 − abu′0u′1 + a2u′1v
′
0 − b2u′0v′1 + abv′0v

′
1 + bq′20 − b2q′0p′1

+ a2p′0q
′
1 + bp′20 − a2q′0p′1 + b2p′0q

′
1 = 0.

The �rst two equations imply b = −v′1 and a = v′0/v
′
1−u′1 (with b = −v′1 6= 0 since z ∈ C \R)

and, substituting to the next three, we take the necessary and su�cient conditions for the
coe�cients of r̂′(t) in order to generate an RRMF curve of degree 7 with ERF=RMF:

p′1q
′
0 − p′0q′1 + v′1(p

′2
1 + q′21 ) = −3

(
v′1u

′
0 + v′0u

′
1 −

v′20
v′1

)
,

−2u′0u
′
1v
′
1 +

u′1v
′2
0

v′1
+ 2u′21 v

′
0 + u′0v

′
0 +

v′30
v′21
− v′1(q′1q′0 + p′1p

′
0)

−
(
v′0
v′1
− u′1

)
p′0q
′
1 + (v′0 − u′1)q′0p′1 = 0,(

v′0 − v′1u
′
1

v′1

)2

(u′1v
′
0 + p′0q

′
1 − p′1q′0) + (v′0 − v′1u′1)

(
−u′0v

′
0

v′1
+ u′1u

′
0 − v′0v′1

)
+ v′21 (p′0q

′
1 − q′0p′1) + v′1(p

′2
0 + q′20 )− u′0v′1(u′0 + v′21 ) = 0.

(20)

Now, we shall also determine the set of curves r′(t). Working as in the proof of item 1
in Proposition 4, we deduce that B(t) generates an RRMF quintic curve r̂′(t) of Class II.
Hence, we obtain that each RRMF curve of degree 7 with ERF=RMF having a non-primitive
hodograph is generated by an RRMF quintic of Class II. For the converse, we can see that
relations (22) and (23) of [12, Prop. 2] verify (20) and we deduce that each RRMF quintic of
Class II generates an RRMF curve of degree 7 with ERF=RMF. Hence, from (20), [12, Prop.
2], and from the fact that each RRMF curve of degree 7 with ERF=RMF is generated by an
RRMF quintic of Class II and vice versa follows that we can represent the set of RRMF curves
of degree 7 with ERF=RMF, using (22), (23) of [12, Prop. 2], in terms of the coe�cients of
the RRMF quintic of Class II, as follows:

u0 = (u′1 + a)(v′21 + a2), u1 = −2u′1a− a2 + v′21 , v0 = v1 = v2 = 0,

p0 = p′1(v
′2
1 + a2), p1 = −2p′1a, q0 = q′1(v

′2
1 + a2),

q1 = −2q′1a, p2 = p′1, q2 = q′1,

(21)



178 P. Dospra: PH Curves with Non-Primitive Hodographs

or

u0 = (u′1 + a)(a2 + v′21 ) +
4av′21 (p′21 + q′21 )

(u′1 + 2a)2 + 9v′21 + p′21 + q′21
,

u1 = −2u′1a− a2 + v′21 −
4v′21 (p′21 + q′21 )

(u′1 + 2a)2 + 9v′21 + p′21 + q′21
, u2 = u′1 − a,

v0 =
4v′31 (p′21 + q′21 )

(u′1 + 2a)2 + 9v′21 + p′21 + q′21
, v1 = 0, v2 = 0,

p0 = p′1(v
′2
1 + a2)− 4v′21

v′1[(u
′
1 + 2a)q′1 + 3v′1p

′
1] + a[(u′1 + 2a)p′1 − 3v′1q

′
1]

(u′1 + 2a)2 + 9v′21 + p′21 + q′21
, (22)

p1 = −2p′1a+
4v′21 [(u′1 + 2a)p′1 − 3v′1q

′
1]

(u′1 + 2a)2 + 9v′21 + p′21 + q′21
, p2 = p′1,

q0 = q′1(v
′2
1 + a2) + 4v′21

v′1[(u
′
1 + 2a)p′1 − 3v′1q

′
1]− a[(u′1 + 2a)q′1 + 3v′1p

′
1]

(u′1 + 2a)2 + 9v′21 + p′21 + q′21
,

q1 = −2q′1a+
4v′21 [(u′1 + 2a)q′1 + 3v′1p

′
1]

(u′1 + 2a)2 + 9v′21 + p′21 + q′21
, q2 = q′1,

where a, u′1, v
′
1, p

′
1, q

′
1 are free variables with v

′
1 6= 0.

Second Case: `(r′(t)) = 2.
Then B(t) = (t−Q)(t− w), where Q ∈ H \ C and w = c+ i d ∈ C \ R. Now, (19) yields

A(t) = (t−Q)(t− w)(t− z), (23)

where z = a+ i b. If A(t) generates a PH curve of degree 7 with ERF=RMF then item 3 of
Proposition 2 implies that B(t) generates an RRMF quintic curve. Thus, the cubic PH curve
which is generated by t−Q is also an RRMF with ERF=RMF [3]. Let A(t) = α(t) +k β(t)
and B(t) = φ(t) + kψ(t). Then, by (23) and (10), we obtain

Im
(
ᾱ(t)α′(t) + β̄(t)β′(t)

)
|α(t)|2 + |β(t)|2

=
Im
[
(φ̄(t)φ′(t) + ψ̄(t)ψ′(t))|t− w|2|t− z|2

]
(|φ(t)|2 + |ψ(t)|2)|t− w|2|t− z|2

+
Im (|φ(t)|2 + |ψ(t)|2) (|t− w̄||t− z|2 + |t− z̄||t− w|2)

(|φ(t)|2 + |ψ(t)|2)|t− w|2|t− z|2
.

Since the PH curve of degree 7 and the cubic curve have ERF=RMF the above relation is
equal to

Im(|t− w̄||t− z|2 + |t− z̄||t− w|2)
|t− w|2|t− z|2

= Im
1

t+ w
+ Im

1

t+ z
= 0.

By substituting z and w we get d = −b and c = a and thus w and z are conjugate. Hence
A(t) it is not primitive which is a contradiction.

In view of Proposition 2, the above results can be summarized as follows.

Proposition 5. Let r(t) be a RRMF curve of degree 7 with ERF=RMF having `(r′(t)) > 0.
Then, `(r′(t)) = 1, and r(t) is generated only by a quintic RRMF curve r̂(t) of Class II and
conversely. The curve r(t) is planar (true spacial) if and only if r̂(t) is planar (true spacial).
The set of polynomials de�ning the planar curves r(t) is expressed by equations (21) � in
terms of the coe�cients of the r̂(t) � and the set of true spatial curves is represented by
equations (22).
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Example 2. We consider the quaternion polynomial

A(t)=

(
t− 2 +

√
5 +

5 + 2
√
5

20
i +

25− 3
√
5

40
j +

5−
√
5

8
k

)
(
t+

15− 2
√
5

20
i +

15 + 3
√
5

40
j +

3 +
√
5

8
k

)
(t− i).

It is easily seen that A(t) satis�es (18) and thus it generates an RRMF curve of degree 7 with
ERF=RMF. The components x′(t), y′(t), z′(t) of r′(t) and the parametric speed σ(t) are:

x′(t) = t6 + (2
√

5− 4) t5 +
40− 21

√
5

5
t4 +

14
√
5− 30

5
t3

+
78− 39

√
5

5
t2 +

4
√
5− 10

5
t+

43− 18
√
5

5
,

y′(t) = 2 t5 +
13
√
5− 15

5
t4 +

10− 2
√
5

5
t3 +

12
√
5− 14

5
t2 − 2

√
5

5
t+

1−
√
5

5
,

z′(t) = −2 t5 + (6− 2
√

5) t4 +
14
√
5− 30

5
t3

+
55− 21

√
5

5
t2 +

14
√
5− 20

5
t+

25− 11
√
5

5
,

σ(t) = t6 + (2
√

5− 4) t5 +
60− 21

√
5

5
t4 + (4

√
5− 8) t3

+
105− 42

√
5

5
t2 + (2

√
5− 4) t+

50− 21
√
5

5
.

The hodograph r′(t), which is generated by A(t), is non-primitive since A(t) has a right
complex factor and the curve r(t) is generated by another curve r̂(t) with its hodograph r̂′(t)
de�ned by the polynomial

B(t) =

(
t− 2 +

√
5 +

5 + 2
√
5

20
i +

25− 3
√
5

40
j +

5−
√
5

8
k

)
(
t+

15− 2
√
5

20
i +

15 + 3
√
5

40
j +

3 +
√
5

8
k

)
.

Since [r′(t)× r′′(t)] · r′′′(t) 6= 0, for each t, r(t) is a true space curve.

The next example shows how by using equations (21) and (22), we may generate planar
or true space RRMF curves of degree 7 with ERF=RMF.

Example 3. Putting a = 1, u′1 = 2, v′1 = −1, p′1 = 0, q′1 = 1 in (22), we get

u0 =
80

13
, u1 = −54

13
, u2 = 1, v0 = − 2

13
, p0 =

2

13
,

p1 =
6

13
, p2 = 0, q0 =

12

13
, q1 = −16

13
, q2 = 1,

and hence we have:

u(t) = t3 + t2 − 54

13
t+

80

13
, v(t) = − 2

13
, p(t) =

6

13
t+

2

13
, q(t) = t2 − 16

13
t+

12

13

which satisfy (12). The resulting hodograph components are

x′(t) = t6 + 2 t5 − 108

13
t4 +

84

13
t3 +

4392

169
t2 − 8280

169
t+

6256

169
,

y′(t) = 2 t5 − 6

13
t4 − 116

13
t3 +

4120

169
t2 − 50080

2197
t+

24976

2197
,

z′(t) = −12

13
t4 − 16

13
t3 +

604

169
t2 − 9800

2197
t− 4064

2197
,
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and the hodograph de�nes a true space curve since the torsion of the curve is not zero, for each
t. The relations (23) of [12, Proposition 2] imply that the polynomials de�ning the quintic
curve are

u′(t) = t2 + 2t− 41

13
, v′(t) = −t− 3, p(t) = − 7

13
, q(t) = t− 5

13
.

7. Conclusion

In this paper a characterization of regular PH curves with non-primitive hodographs which
are generated by a primitive quaternion polynomial has been given. As it is proved, these are
the curves having an associated quaternion polynomial with a right complex root. Through
this work it turns out that there exist RRMF curves r(t) which are produced by others r′(t)
of lower degree. The geometrical properties of these two sets of curves r(t) and r′(t) are
studied, as well. Finally, the characterization of the case of RRMF curves of 7 degree with
non-primitive hodograph and having the ERF as an RMF is presented. Since the above set
of RRMF curves of degree 7 produced by RRMF quintics is of Class II, this last set of curves
is also studied.
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