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Abstract. The fundamental issue of constructing a nine-point quadric was fre-
quently discussed by mathematicians in the 19th century. They failed to �nd a
simple linear geometric dependence that would join ten points of a quadric (sim-
ilar to Pascal's theorem, which joins six points of a conic section). Nevertheless,
they found di�erent algorithms for a geometrically accurate construction (using
straightedge and compass or even using straightedge alone) of a quadric that passes
through nine given points. While the algorithms are quite complex, they can be
implemented only with the help of computer graphics. The paper proposes a sim-
pli�ed computer-based realization of J.H. Engel's well-known algorithm, which
makes it possible to determine the nine-point quadric and its axes of symmetry.
The proposed graphics algorithm can be considered an alternative to the algebraic
solution of the stated problem.
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1. Introduction

Michel Chasles (1793�1880), a French mathematician, said in 1830: �Despite the important

achievements in the theory of quadratic surfaces, it should be noted that these achievements

are a very small part of what this theory seems to be capable of� [1]. This is still relevant. For
example, the fundamentally important �Problem of the Tenth Point� remains unsolved in the
theory of second-order surfaces (quadrics). It is a matter of a curve which is likely to join
ten points of a quadric (similar to B. Pascal's theorem, which joins six points of a conic
section), but has not been found yet.

If quadrics have such a curve, it can be regarded as a kind of �projective equivalent�
of the algebraic equation of a quadric. The attempts to �nd the general relation between
ten arbitrary points of a quadric undertaken by German and French mathematicians in the
19th century failed to yield any signi�cant results. Much later, the interest in this problem
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completely disappeared. But the e�orts were not futile. Di�erent graphical solutions to the
problem of constructing a nine-point quadric were found [2, 8, 9]. Unfortunately, the algo-
rithms proved to be very complicated (especially in comparison with B. Pascal's algorithm,
which makes it possible to solve a similar problem for conic sections) and practically inap-
plicable. At the end of the 20th century, there were no fundamental changes, but computer
graphics appeared. Computer graphics tools enable making graphical constructions of any
complexity. In particular, second-order curves have become as simple and accurately plotted
as a straight line and a circle [5, 6]. The new tools may revive the interest in the theory of
second-order surfaces.

2. Problem statement

In three-dimensional Euclidean space, let the points 1, 2, . . . , 9 be given. Nine points of
general position determine a single quadric Θ that passes through these points. These points
should not be on the same biquadratic curve, since any number of points if marked on such
a curve does not uniquely determine a second-order surface. Three given points should not
belong to the same straight line, since the entire straight line and all its points belong to the
unknown surface in this case. Six given points should not belong to the same second-order
curve, since all points on this curve belong to the desired surface.

Let us draw a line t of general position through one of the points 1, 2, . . . , 9. The �Problem
of the Tenth Point� is formulated as follows: construct the second point of intersection of the
straight line t with the quadric Θ (�nd the tenth point of the quadric) using straightedge.

The problem can be formulated less strictly: construct the quadric Θ (�nd a graphical
algorithm for constructing a set of quadric points) using compass and straightedge.

The stated problem can be extended with the task to construct the principal diameters of
the desired quadric Θ. The algebraic solution of this subtask is reduced to solving the charac-
teristic equation of third order. The equivalent geometric solution is reduced to constructing
three points of intersection of two conic sections with one common point being known. This
is a third-degree problem which cannot be solved using compass and straightedge.

It is noteworthy that the issue of constructing a nine-point quadric, being of fundamental
importance, was frequently discussed by mathematicians in the 19th century. A brief review
of the solutions is presented in [9]. Let us consider the Rohn and Papperitz' algorithm
(1896) [8] and J.H. Engel's algorithm (1889) [2].

3. Rohn and Papperitz' algorithm

Nine points of general position 1, 2, . . . , 9 are marked in three-dimensional space. The task
is to construct a second-order surface Θ passing through these points.

We mark planes α(123), β(456) and γ(789). The straight lines m = α∩ β, n = β ∩ γ and
l = α ∩ γ intersect at the point P . According to [8], the solution is reduced to constructing
conic sections a2(1, 2, 3), b2(4, 5, 6) and g2(7, 8, 9) that intersect mutually on the straight lines
m, n and l. These conic sections completely determine the desired surface Θ (Figure 1).

Let us simultaneously consider the planes α and β. We mark arbitrary points M,N on
the straight line m = α ∩ β. Then, we construct the conic sections a2 through the points
1, 2, 3,M,N in the plane α and b2 through the points 4, 5, 6,M,N in the plane β (Figure 2).
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Figure 1: Conics a2, b2, g2 determine
the quadric Θ(1, 2, . . . , 9)

Figure 2: Conjugate conics a2 ∼ b2 and
conjugate polars pa ∼ pb

De�nition. Two conic sections a2, b2 lying in the respective planes α and β are called conju-

gate (symbol a2 ∼ b2) if they intersect at the points lying on the straight line m = α ∩ β.
For any point P ∈ m let pa, pb be the polars of P with respect to the conic sections a2, b2.
Then the polars of conjugate conic sections are also called conjugate (symbol pa ∼ pb).

Two conjugate polars intersect at a point on the line m. The set of conjugate conic
sections a2 ∼ b2 corresponds to the set of conjugate polars pa ∼ pb.

After specifying arbitrary points M,N on the straight line m, we can draw three pairs
of conjugate conic sections a2 ∼ b2, a′ 2 ∼ b′ 2, a′′ 2 ∼ b′′ 2 in the planes α, β. The three
pairs of conjugate conic sections correspond to three pairs of conjugate polars pa ∼ pb, p

′
a ∼

p′b, p
′′
a ∼ p′′b . The pairs of conjugate polars intersect on the line m and form a Desargues

con�guration with the center Oαβ and the axis m. The center Oαβ is the intersection of the
straight lines which join the corresponding points (pa ∩ p′a)↔ (pb ∩ p′b), (p′a ∩ p′′a)↔ (p′b ∩ p′′b ),
and (pa ∩ p′′a)↔ (pb ∩ p′′b ).

The pairs of planes α↔ γ (with the center Oαγ and the axis l = α∩ γ) and β ↔ γ (with
the center Oβγ and the axis n = β ∩ γ) are perspectively related in a similar way. Thus, we
obtained the following important result.

Let an arbitrary plane δ pass through one of the centers, for example, through the center
Oαβ. The plane δ intersects the planes α, β along the lines pα = δ ∩ α, pβ = δ ∩ β. These
straight lines can be considered as conjugate polars (with respect to a pole P ) of two conjugate
conic sections d2

α(1, 2, 3) ∼ d2
β(4, 5, 6). The conic section d2

α passing through the points 1, 2,
3 is completely determined by the pole P and the polar pα. The conic section d2

β passing
through the points 4, 5, 6 is completely determined by the pole P and the polar pβ.

Thus, the arbitrary plane δ incident to the center Oαβ generates a pair of conjugate conic
sections passing through the given points (1, 2, 3) and (4, 5, 6) in the planes α, β. Consequently,
the plane ∆(OαβOαγOβγ) generates three pairs of conjugate conic sections a2 ∼ b2, a2 ∼ g2,
b2 ∼ g2 passing respectively through the given points (1, 2, 3), (4, 5, 6), and (7, 8, 9) in the
planes α, β, and γ. These conic sections determine the desired surface Θ. The problem is
solved.
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4. J.H. Engel's algorithm

Nine points of general position 1, 2, . . . , 9 are marked in the three-dimensional space. The
task is to construct a second-order surface Θ0 passing through these points.

We introduce a pencil of second-order surfaces (quadrics) passing through the points 1,
2, . . . , 8. Following J.H. Engel, let us refer to this pencil of quadrics as �pencil no. 1�. All
the quadrics of pencil no. 1 intersect along a biquadratic curve passing through the points 1,
2, . . . , 8. The desired quadric Θ0 belongs to this pencil no. 1.

Let us intersect the pencil no. 1 with the plane α(129). We obtain a pencil ψ of second-
order curves with base points 1, 2, S, T (the position of the points S, T is yet unknown). The
pencil ψ contains a conic section c2 = Θ0 ∩ α passing through the point 9 and through the
base points 1, 2, S, T of the pencil ψ. If we �nd the unknown base points S, T of the pencil
ψ, we will completely de�ne the conic section c2. Then the task of constructing the quadric
Θ0 will be almost solved, since the conic c2 belongs to the desired quadric Θ0.

Thus, the problem of constructing the quadric Θ0 is reduced to �nding the base points
S, T of the pencil ψ. To construct the points S, T , two arbitrary quadrics Θ and Θ′

0 have to be
selected from the pencil of quadrics no. 1 and the conic sections θ2 = Θ∩ α and θ′ 2 = Θ′ ∩ α
have to be found. The conics θ2 and θ′ 2 intersect at the known points 1, 2 and at the desired
points S and T .

The pencil of quadrics no. 1 is completely determined by the points 1, 2, . . . , 8. How can
we select an arbitrary quadric Θ from this pencil and how we �nd its intersection with the
plane α(129)? Let us consider an auxiliary problem, following J.H. Engel.

Figure 3: Initial data for Engel's algorithm

Auxiliary problem. Construct an arbitrary quadric Θ passing through eight given points
1, 2, . . . , 8 and �nd the conic section θ2 = Θ ∩ α.

Solution of the auxiliary problem. We select the planes α(129), β(345), γ(678) and draw
a straight line a = 12 (Figure 3). We mark two arbitrary points F,G on the straight line
g = β ∩ γ. Temporarily, we exclude point 2 from the consideration. A single quadric ΦG

passes through the nine points 1, 3, . . . , 8, F,G.
After we have �xed the position of the point F , we change the position of the point G

on the line g. We obtain a pencil of quadrics {ΦG} passing through eight of the �xed points
1, 3, 4, 5, 6, 7, 8, F and through the ninth moving point G. Following J.H. Engel, we refer
to this pencil of quadrics as �pencil no. 2�. To solve the auxiliary problem, a quadric passing
through the excluded point 2 has to be selected from the pencil no. 2.
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Let the moving point G take successive positions G,G′, G′′, . . . on the straight line g. The
quadrics ΦG, ΦG′ , ΦG′′ of pencil no. 2 pass respectively through the points G, G′, G′′, . . . and
intersect the straight line a in the �xed point 1 and in the points A, A′, A′′, . . . We establish
a projective correspondence

g(G,G′, G′′, . . . ) ∧− a(A,A′, A′′, . . . )

between the ranges of points g and a (Theodor Reye's theorem; the proof of the theorem is
considered in Section 7). In this projective correspondence, the point 2 on the straight line a
corresponds to a certain point G2 on the straight line g. The quadric of pencil no. 2, which
passes through the point G2, also passes through the point 2.

To establish the projective correspondence between the ranges of points g and a, we
need to select three arbitrary quadrics from pencil no. 2 and mark the points of intersec-
tion of these quadrics with the straight lines g and a. Let us select an arbitrary quadric
ΦG(1, 3, 4, 5, 6, 7, 8, F,G) of pencil no. 2 by marking an arbitrary point G on the straight line
g. We obtain conics k2

β(3, 4, 5, F,G) and k2
γ(6, 7, 8, F,G) on the quadric when we intersect it

with the planes β(345) and γ(678). The conic sections k2
β, k

2
γ intersect the plane α(129) at

the points {N1, N2} = n ∩ k2
β and {M1,M2} = m ∩ k2

γ (Figure 4, left). The conic section
k2
α = ΦG∩α is completely determined by the points 1, N1, N2,M1,M2. The conic k

2
α intersects

the line a at the points 1 and A (Figure 4, right). The point A on the straight line a and the
point G on the straight line g are corresponding in the projective correspondence g ∧− a.

Figure 4: Left: Quadric ΦG of pencil no. 2 determined by point 1 and the conics k2
β, k

2
γ ;

Right: section k2
α of the quadric ΦG with the plane α(129)

Having selected three arbitrary quadrics ΦG, ΦG′ , ΦG′′ from pencil no. 2, we �nd three
pairs of projectively corresponding points A,A′, A′′ and G,G′, G′′ on the straight lines a and g.
In the projectivity g(G,G′, G′′, . . . ) ∧− a(A,A′, A′′, . . . ), we �nd the point G2 on the straight
line g corresponding to the point 2 on the straight line a. The quadric of pencil no. 2 passing
through the points 1, 3, 4, 5, 6, 7, 8, F,G2 also passes through the point 2; therefore it is the
quadric Θ of the pencil no. 1. The quadric Θ is completely determined by points 1, 2, 3, . . . , 8
and point F on the straight line g.

In order to �nd the section θ2 = Θ∩α, we have to construct the conics d2
β(3, 4, 5, F,G2) =

Θ ∩ β and d2
γ(6, 7, 8, F,G2) = Θ ∩ γ and mark their intersection points with the plane α :

{NΘ1, NΘ2} = n ∩ d2
β and {MΘ1,MΘ2} = m ∩ d2

γ.

The conic θ2 passes through the points 1, 2 and NΘ1, NΘ2,MΘ1,MΘ2. The auxiliary problem
is solved.
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Having marked another arbitrary point F ′ 6= F on the straight line g, we solve the
auxiliary problem again. We select another arbitrary quadric Θ′(1, 2, . . . , 8, F ′) from pencil
no. 1 and �nd its section θ′ 2 = Θ′∩α. The conics θ2, θ′ 2 intersect at the base points 1, 2, S, T
of the pencil ψ. The conic section c2 that belongs to the desired quadric Θ0 passes through
the points 1, 2, 9 and the points S and T . The main problem is solved.

5. Simpli�ed computer version of J.H. Engel's algorithm

Nine points of general position 1, 2, . . . , 9 are marked in three-dimensional space. The
task is to construct a second-order surface Φ9 passing through these points. We propose to
use a computer program to simplify the design solution of the problem [6]. The program
creates a geometrically accurate (= �with a compass and straightedge�) construction of data
like center, principal diameters, asymptotes, and foci of a second-order curve determined by
i points and j tangents, where i+ j = 5. Having determined these data, the program plots a
smooth second-order curve which passes through the given points and is tangent to the given
tangents.

We select the planes α(123), β(456), and γ(789) and mark the lines m = α∩β, n = β ∩ γ
and l = α ∩ γ.

Operation 1. Fix an arbitrary point F on the straight line m. Mark another arbitrary
point G that does not coincide with the point F on the line m. Plot the conic sections
k2
α(1, 2, 3, F,G) and k2

β(4, 5, 6, F,G) in the planes α, β. The conic sections k2
α, k

2
β and the

point 7 determine the quadric ΦG. The quadric ΦG passes through the points F,G and
through all given points, except the points 8, 9. Plot the intersection k2

γ of the quadric ΦG

and the plane γ : k2
γ = ΦG ∩ γ. The conic section k2

γ is completely determined by the point 7
and by two pairs of points {L1, L2} = k2

α ∩ l and {N1, N2} = k2
β ∩ n (Figure 5, left).

Figure 5: Construction of the quadrics ΦG (left) and ΦG′ (right)

Operation 2. We mark another arbitrary point G′ on the straight line g that does not
coincide with the points F,G. We plot conic sections k′ 2α (1, 2, 3, F,G′), k′ 2β (4, 5, 6, F,G′) in
the planes α and β. These conic sections and point 7 determine the quadric ΦG′ . The quadric
ΦG′ passes through the points F,G′ and through all given points, except the points 8, 9. We
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plot the intersection k′ 2γ of the quadric ΦG′ with the plane γ : k′ 2γ = ΦG′∩γ. The conic section
k′ 2γ is completely determined by the point 7 and by two pairs of points {L′

1, L
′
2} = k′ 2α ∩ l and

{N ′
1, N

′
2} = k′ 2β ∩ n (Figure 5, right).

The quadrics ΦG and ΦG′ determine a pencil of quadrics {ΦG,ΦG′ , . . . } that intersect
along the biquadratic curve f(F, 1, 2, . . . , 7). The conic sections k2

γ and k′ 2γ span a pencil γF
of conic sections γF (k2

γ, k
′ 2
γ , . . . ) in the plane γ. There is a one-to-one correspondence between

the quadrics of the pencil {ΦG,ΦG′ , . . . } and the conics of the pencil γF .

Operation 3. Mark the base points 7, U, V,W of the pencil γF at the intersection of the conic
sections k2

γ and k
′ 2
γ . The construction of the intersection points U, V,W of the conic sections

k2
γ and k′ 2γ with the known common point 7 is a third-degree problem that cannot be solved
using straightedge and compass. The simpli�ed computer version of J.H. Engel's algo-
rithm is based on a computer program [6] which plots the smooth curves k2

γ(7, L1, L2, N1, N2),
k′ 2γ (7, L′

1, L
′
2, N

′
1, N

′
2) and marks their intersection points U, V,W (Figure 6).

Figure 6: Construction of the conic g2
8 of the pencil γF (7, U, V,W )

Select the conic g2
8 that passes through point 8 from the pencil γF (7, U, V,W ) (Figure 6).

The single quadric Φ8 of the pencil {ΦG,ΦG′ , . . . } corresponds to the conic section g2
8. The

quadric Φ8 passes through the �xed point F and through all given points other than point 9.
Thus, an arbitrary quadric Φ8 passing through the eight given points 1, 2, ..., 8 is selected

from the pencil {ΦG,ΦG′ , . . . }. The section g2
8 = Φ8 ∩ γ passing through the points 7, 8 is

found.

Operation 4. Having marked another arbitrary point F ′ that does not coincide with the
point F on the line m, repeat the operations 1, 2 and 3. Obtain a quadric Φ′

8 passing through
the �xed point F ′ and through the eight given points 1, 2, . . . , 8. Find the intersection g′ 28 of
the quadric Φ′

8 with the plane γ. The conic g′ 28 passes through points 7, 8.
The quadrics Φ8 and Φ′

8 determine a pencil of quadrics {Φ8,Φ
′
8, . . . } that intersect along

a biquadratic curve passing through the points 1, 2, ..., 8. The conic sections g2
8 and g′ 28 form

a pencil of conic sections ψ(g2
8, g

′ 2
8 , . . . ) with base points 7, 8, S, T in the plane γ. The points

S and T are determined as the points of intersection of the conics g2
8 and g′ 28 with the known

common points 7, 8. There is a one-to-one correspondence between the quadrics of the pencil
{Φ8,Φ

′
8, . . . } and the conics of the pencil ψ .

Operation 5. Pass a conic g2
9 through point 9 and through the base points 7, 8, S, T of the

pencil ψ. This conic belongs to the desired quadric Φ9. The problem is solved.



190 V. Korotkiy: Construction of a Nine-Point Quadric Surface

6. Construction of principal axes and symmetry planes

A quadric Θ is determined by nine points of general position. The task is to construct the
principal axes of this quadric.

Following one of the above algorithms, we �nd a conic section θ2 of the quadric Θ. The
presence of a smooth conic θ2 makes it possible to perform auxiliary constructions that are
necessary to construct the principal axes of the quadric.

We �nd the center O of the quadric and select a bundle of lines and planes O(d,Σ) that
are conjugate with respect to Θ. The diametral plane Σ which is conjugate to an arbitrary
diameter d passes through the midpoints of the chords parallel to d. In the bundle O(d,Σ),
there are three pairs of orthogonal diameters d and three pairs of respectively orthogonal
diametral planes Σ. These are the desired principal axes and symmetry planes of the quadric
Θ.

In addition, let us consider the orthogonal correspondence in the bundle O: for each plane
Σ there is a perpendicular n passing through the point O. Hence, we obtain in the bundle
O a projective correspondence ΛO between the two-parameter set of straight lines d and the
lines n. Three pairs of coincident straight lines d ≡ n indicate the three principal diameters
of the quadric Θ.

Let us plot four pairs of straight lines d1 ∼ n1, d2 ∼ n2, d3 ∼ n3, d4 ∼ n4 corresponding in
ΛO. We pass an arbitrary secant plane Π. The plane Π intersects the corresponding straight
lines at the corresponding points D1 ∼ N1, D2 ∼ N2, D3 ∼ N3, D4 ∼ N4. We obtain
superimposed point �elds Π = ΠD = ΠN . Four pairs of points determine the collineation
∆(ΠD ↔ ΠN). The task is to �nd the three double points of this collineation.

According to [4], we mark an arbitrary point D0 in the plane ΠD to construct the double
collineation points ∆. Let us plot a pencil of linesD0(D0D1, D0D2, D0D3, D0D4). In the plane
ΠN , we �nd the point N0 that corresponds to the point D0 in the collineation ∆. We plot a
pencil of straight lines N0(N0N1, N0N2, N0N3, N0N4). The pencils D0 and N0 are projective.
The intersection points of the corresponding pencil rays form a certain conic section h2.

Let us assume that the curve h2 belongs to the �eld ΠD. In the �eld ΠN , we �nd the
conic h2

N corresponding to the conic h2 in the collineation ∆. The curves h2 and h2
N intersect

at the point N0 and at the three double points X, Y, Z of the collineation ∆(ΠD ↔ ΠN).
The points {X, Y, Z} ⊂ h2 ∩h2

N cannot be constructed using straightedge and compass, since
this is a third-degree problem. A computer program is used to solve it in a constructive way
[6]. The principal axes of the quadric Θ pass through the center O and through the points
X, Y, Z. The symmetry planes are orthogonal to the principal axes. The problem is solved.

7. T. Reye's theorem

Theorem (T. Reye). There is a pencil of quadrics Φ{ϕ1, ϕ2, ϕ3, . . . } that intersect along

a biquadratic curve f . Let us mark two arbitrary points A,B on the curve f . We pass an

arbitrary straight line a of general position through the point A. We pass a line b of general
position through the point B. The line a intersects the quadrics of the pencil Φ at the point A
and at the points A1, A2, A3, . . . The line b intersects the quadrics of the pencil Φ at the point

B and at the points B1, B2, B3, . . .

Then the ranges a(A1, A2, A3, . . . ) and b(B1, B2, B3, . . . ) are projective.
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Figure 7: To the proof of T. Reye's theorem

Proof. Let us pass a straight line b′ parallel to the straight line b through the point A. The
quadrics ϕ1, ϕ2, ϕ3, . . . of the pencil Φ intersect the plane b‖b′ along a pencil β of conic sections
b2

1, b
2
2, b

2
3, . . . The straight lines b and b′ can be regarded as a degenerate conic section passing

just through two base points A,B of the pencil β. The conics of the pencil β form point
ranges b(B1, B2, B3, . . . ) and b

′(B′
1, B

′
2, B

′
3, . . . ) when intersecting the lines b, b′. According to

the generalized Theorem of Desargues [4, p. 130], the pairs of corresponding points B1 ∼ B′
1,

B2 ∼ B′
2, B3 ∼ B′

3, . . . of these ranges belong to the same involution with the center S
(Figure 7). Consequently, the quadrics of the pencil Φ intersect the straight lines b‖b′ along
the perspective point ranges

b(B1, B2, B3, . . . ) ∧= b′(B′
1, B

′
2, B

′
3, . . . ).

We obtain a pencil of conics α(a2
1, a

2
2, . . . ) in the section of the pencil of quadrics Φ cut by the

plane ab′. The conics of α form point ranges a(A1, A2, A3, . . . ) and b′(B′
1, B

′
2, B

′
3, . . . ) when

intersecting the straight lines a and b′. Let us show that the ranges a and b′ are projective.

We pass an arbitrary straight line a′ through a base point of the pencil α (not coinciding
with the point A) in the plane ab′. According to the generalized Theorem of Desargues,
all the conics of the pencil α intersect with the straight lines a, a′ along the perspectively
corresponding ranges of points a ∧= a′. This theorem is also true for the straight lines a′ and
b′ : a′ ∧= b′. Consequently, the point ranges a(A1, A2, A3, . . . ) and b′(B′

1, B
′
2, B

′
3, . . . ) located

on the straight lines a and b′ that pass through the same base point of the pencil of conics
are projective (but not perspective).

Thus, the quadrics of the pencil Φ intersect the lines a and b′ along projective
ranges of points a(A1, A2, A3, . . . ) ∧− b′(B′

1, B
′
2, B

′
3, . . . ). It has been shown that the

ranges b(B1, B2, B3, . . . ) and b′(B′
1, B

′
2, B

′
3, . . . ) are perspective. Hence, the point ranges

a(A1, A2, A3, . . . ) and b(B1, B2, B3, . . . ) are projective, too. T. Reye's theorem is proved.
J.H. Engel's algorithm (see Section 4) is based on this theorem.
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8. Conclusion

The development of computer graphics at the end of the 20th century resulted in a �projective
computational� method of geometric modeling that combines the advantages of synthetic and
analytic research methods. The new method combines the high accuracy of computers, whose
operations are based on coordinate calculations, and the geometric simplicity of projective
algorithms, where only the incidences of points and straight lines are important. This com-
bination may put an end to the �ideological confrontation� between Analytic Geometry (R.
Descartes, 1596�1650) and Projective Geometry (G. Desargue, 1591�1661).

Modern computer graphics software allows us to constructively implement complex graph-
ics algorithms, including projective algorithms for constructing a nine-point quadric. The
algebraic solution to this problem consists in calculating the coe�cients in the quadratic
equation of the desired quadric, starting from a system of nine linear equations for nine un-
known coe�cients. The equivalent geometric solution must also be linear, that is, it must be
obtained with a straightedge alone and even without a compass. The Rohn and Papperitz'
algorithm [8] meets this requirement. J.H. Engel's algorithm fails to completely meet the
requirement [2], while the simpli�ed computer version of J.H. Engel's algorithm fails to
meet it at all (Section 5).

It is noteworthy that [2] not only considers the algorithm based onT. Reye's theorem, but
also proposes two alternate problem solutions with the help of a straightedge alone. Obviously,
these alternate solutions are not the simplest. These are very complex constructions that
meet the scienti�cally justi�ed requirement of equivalence between graphical and algebraic
solutions.

The simpli�ed algorithm for the quadric's construction is implemented using a computer
program [6]. This program performs a geometrically accurate compass-and-straightedge con-
struction of a second-order curve metric determined by a set of �ve linear incidences (points
or tangents) [5]. The points and tangents can be either real or imaginary [3]. Having deter-
mined the metric, the program plots a smooth second-order curve that satis�es the speci�ed
incidence conditions. The application of such a program does not contribute to solving the
theoretical �Problem of the Tenth Point�, but it makes it possible to compile a relatively
simple graphical algorithm for quadric construction, which is an alternative to the algebraic
solution.
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