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Abstract. In this article, we describe three-dimensional theorems of two tetrahe-
drons intersecting a sphere. These theorems can be considered as generalizations
of the two-dimensional Pascal's hexagon and Steiner's theorems. We �rst restruc-
ture the original version of the two-dimensional Pascal's hexagon theorem, and
prove it synthetically using a simple lemma. In the proving process, we found the
essential nature of Pascal's theorem that leads to the synthetic generalization in
three-dimensional space. In order to focus on visual representations, we only use
a synthetic method in the generalization process.
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1. Introduction

In a Euclidean version, Pascal's hexagon theorem states that if a hexagon is inscribed in a
circle, the intersections of opposite sides are collinear [3, 8]. Because of its beautiful harmonic
properties, this theorem is widely known as one of the greatest theorems in Euclidean geom-
etry. Many mathematicians have examined this theorem, and found additional collinear and
concurrent points [6, 7].

Pascal's theorem may be stated as follows: �If two triangles in inverted position (t and
t′) where six points of intersections lie on a circle, then opposite sides of t and t′ meet in
three collinear points� (Figure 1a). Analogously, Chasles [1] extended Pascal's theorem to
three-dimensional space as follows: �If the four triads of edges of a tetrahedron T passing
through the four vertices are cut by the four planes of a tetrahedron T ′ and the twelve points
of intersections lie on a sphere, then the opposite planes of T and T ′ meet in four lines which
are coplanar or hyperbolic� (Figure 1b). This was proved by Salmon [5] and rediscovered by
Court [2]. Although Pascal's theorem was clearly generalized in three dimensions, something
seems to be missing since a hyperboloid suddenly appears. Notice that in the two-dimensional
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theorem, two triangles t and t′ are in perspective position and opposite sides meet in three
collinear points. Thus, in the completely general three-dimensional theorem, two tetrahedrons
T and T ′ are also expected to be in perspective position and the opposite planes should meet
in four coplanar lines.

t’

t

T’

T

Figure 1: (a) Two triangles t and t′ in inverted position with six points of intersection
on a circle. (b) Four triads of edges of a tetrahedron T passing through the four vertices
are cut by the four planes of inverted tetrahedron T ′.

In this article, we generalize Pascal's and Steiner's theorem to three-dimensional space
in a way that satis�es the above requirements. We �rst restructure the original version of
the two-dimensional Pascal's theorem. The three diagonal segments of the hexagon and the
two triangles in perspective position are the focus of the restructuring process. We will
then prove this restructured theorem using a simple lemma (Lemma 1). In the process
of proving the two-dimensional Pascal's theorem using Lemma 1, we found the essential
nature of Pascal's theorem. This easily leads to a three-dimensional generalization of the
two-dimensional Pascal's and Steiner's theorems.

2. Restructuring the original Pascal's hexagon theorem

An Euclidean version of Pascal's hexagon theorem can be stated as follows: If the six points
P1, Q1, P2, Q2, P3, and Q3 lie on a circle c, the intersections of Q2P1 with Q1P2, P2Q3 with
P3Q2, and Q1P3 with Q3P1 are on a line (see Figure 2a). In order to generalize the theorem,
we restructure the theorem as the following.

Theorem 1. Let l1, l2, and l3 be mutually intersecting chords of a circle c (see Figure 2b).
Let lines a1 and b1 be lines joining the endpoints of l2 and l3 such that they do not intersect
l1. Similarly, let a2 and b2 be lines joining the endpoints of l3 and l1, and let a3 and b3 be
lines joining the endpoints of l1 and l2. Then, a1 ∩ b1 = X1, a2 ∩ b2 = X2, and a3 ∩ b3 = X3

are on a line.

We will prove the theorem later. This restructured Pascal's hexagon theorem is identical
to the original theorem because the segments l1, l2, and l3 in Figure 2b can be considered
as the segments P1Q1, P2Q2, and P3Q3, respectively, in Figure 2a. Here, the line containing
X1, X2, and X3 is called the Pascal line. Steiner's theorem [7], related to Pascal's hexagon
theorem, can be stated as the following.
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Figure 2: (a) Con�guration of Pascal's hexagon and Steiner's theorems. (b) Restruc-
tured form of Pascal's hexagon theorem.

Theorem 2 (Steiner's theorem). For the con�guration of Theorem 1, let A1A2A3 and B1B2B3

be triangles whose sides are denoted by a1, a2, a3 and b1, b2, b3, respectively, as shown in Fig-
ures 2a and 2b. Then, the three lines A1B1, A2B2, and A3B3 are concurrent.

Theorem 2 can be easily deduced from Theorem 1. If X1, X2, and X3 are collinear the
two triangles A1A2A3 and B1B2B3 share the same center of perspective. This center is called
the Steiner point. In the case shown in Figure 2b, we also have the following corollary.

Corollary 1. For the con�guration of Theorem 2, the following triples of lines {l2, l3, A1B1},
{l3, l1, A2B2}, and {l1, l2, A3B3} are concurrent (see Figure 2b).

The following lemma will be very important for synthetic proofs of the theorems and
corollary given above, and further of generalizations to three dimensions.

Lemma 1. Let ca and cb be intersection circles of a sphere S and two planes. If ca and
cb intersect each other, then there exist two cones TO and TU which include ca and cb (see
Figure 3).

Proof. On the sphere S, let P1, Q1, P2, and Q2 be points on the great circle cg, and further-
more ca and cb be circles orthogonal to cg with P1, Q1 ∈ cb and P2, Q2 ∈ ca (Figure 4). Let O
be the intersection of the lines P1P2 and Q1Q2, and consider the additional sphere SO which
includes cb and O. Let O′ (South pole) be the point of the sphere diametrically opposite to
the point of O (North pole), and σ be the plane tangent to sphere SO at O′.
We now consider the inverse stereographic projection of the sphere SO with center O into
the plane σ. If we suppose that P1, Q1, and cb are projected onto P ′

1, Q
′
1, and c′b in σ

then we know that c′b is a circle in σ because of the properties of inverse stereographic



222 K. Morita: Theorems on Two Tetrahedrons Intersecting a Sphere
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Figure 3: Two cones TO and TU includ-
ing the intersection circles Ca and Cb

between the sphere and two planes.
Figure 4: Figure for the proof of Lemma 1

projection. Furthermore, from properties of the angles of circumference we know that
]OO′Q1 = ]OP1Q1 = ]OQ2P2. We also learn from similar triangles OQ1O

′ and OO′Q′
1

that ]OO′Q1 = ]OQ′
1O

′. Thus, we have ]OQ2P2 = ]OQ′
1O

′, which indicates that ca is
parallel to σ.
Since ca and c

′
b are circles with respective diameters Q2P2 and Q

′
1P

′
1 in parallel planes, we see

that the projection of ca from O into σ gives a circle c′b. This shows that there exists a cone
TO with vertex O which passes through ca and cb. Similarly, there also exists a second cone
TU with vertex U which includes ca and cb (see Figure 3), where U is the point of intersection
between Q2P1 with Q1P2). This completes the proof of Lemma 1.

Remark 1. Lemma 1 holds also in the case when ca and cb do not intersect. However, we do
not discuss the case since it will not be applied in the theorems in this paper. In addition,
notice that each plane which is tangent to both circles must be a tangent plane of one of these
cones.

De�nition 1. Let c1, c2, and c3 be intersection circles of the sphere S with three planes such
that the circles are mutually intersecting at six points. Let {G1, G

′
1} = c1 ∩ c3, {G2, G

′
2} =

c1 ∩ c2 and {G3, G
′
3} = c2 ∩ c3, as shown in Figure 5.

Notice that two types of con�gurations can be considered. One is the Type I con�guration
where the common point of the three planes, which is the intersection point of the lines G1G

′
1,

G2G
′
2 and G3G

′
3, is inside of S (Figure 5a), while the other is the Type II con�guration where

this point is outside of S or at in�nity (Figure 5b).
Now, we de�ne circular triangles on S with sides de�ned by three mutually intersection circles,
not necessarily great circles. For example, the circular triangles G1G2G3 and G′

1G
′
2G

′
3 have

the curved sides c1, c2, c3 and the incircles α and α′, which are shown in the Figures 5a and
5b.

Remark 2. Note that the circular triangles G1G2G3 and G′
1G

′
2G

′
3 as well as α and α′ are

opposite pairs of triangles and incircles, and there exist four such pairs of circular triangles
G1G2G3 and G

′
1G

′
2G

′
3, G1G2G

′
3 and G

′
1G

′
2G3, G1G

′
2G3 and G

′
1G2G

′
3, and the pair G′

1G2G3 and
G1G

′
2G

′
3, i.e., in total eight circular triangles, who share the circular sides c1, c2, c3. Therefore,

there exist eight incircles of the circular triangles de�ned by c1, c2, c3. Each plane spanned by
any incircle is tangent to all three circles c1, c2, c3.
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Figure 5: (a) Three mutually intersecting circles c1, c2, c3 on the sphere S in Type I
con�guration, and (b) in Type II con�guration, together with one pair of opposite
incircles.

We we use Lemma 1 in order to prove Theorem 1.

Proof of Theorem 1. Assume that all the elements (circles, lines, etc.) in Figure 2b lie in
the plane π. In Figure 6, let S be a sphere centered in π, and let c be the great circle that
is the intersection of S and π. Let c1, c2, and c3 be intersection circles of S with planes
orthogonal to π. Let l1, l2, and l3 be the segments de�ned by the intersections of c1, c2,
and c3, respectively, with π. Applying Lemma 1, we know that there exist cones T1, T2, and
T3 with external apices X1, X2, and X3 , which include c2, c3, c3, c1, and c1, c2, respectively,

Figure 6: Three circles on the sphere together with three cones, each connecting two
circles out of the three. For simplicity, the complete intersections between the cones are
not displayed in the �gure.
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as shown in Figure 6. For simplicity, the complete intersections between the cones are not
desplayed in the �gure.
Now, let us consider the circular triangles on S de�ned by c1, c2, and c3, which lie completely
on one side of π. The con�guration of c1, c2, and c3 is of Type II, and there are two circular
triangles that satisfy this condition. Consider one of the circular triangles and its incircle
denoted by α. As mentioned in Remark 2, the plane spanned by α is tangent to c1, c2, and
c3. Notice that the plane of α is also tangent to T1, T2, and T3, and it includes the generators
g1, g2, and g3 of T1, T2, and T3 which pass through the vertices X1, X2, and X3, respectively.
Here, for example, g1 is the line which passes through the points of contact between the plane
of α and c2 and c3 and through the apex X1. Thus, the vertices X1, X2, and X3 are on
the intersection line of π with the plane spanned by α. It follows that X1, X2, and X3 are
collinear, which completes the proof of Theorem 1.

Proof of Theorem 2 and Corollary 1. Applying the converse of Desargues' theorem, we notice
that A1B1, A2B2, and A3B3 are concurrent since the two triangles A1A2A3 and B1B2B3 are in
perspective position with respect to (w.r.t. in brief) the Pascal line X1X2X3. We also notice
that the lines l2, l3 and A1B1 are concurrent since the two triangles A1P2Q3 and B1Q2P3 are
also perspective w.r.t. the Pascal line X1X2X3, which automatically proves the concurrency
of l3, l1 and A2B2, and of l1, l2 and A3B3, due to the permutation symmetry. This completes
the proofs of Theorem 2 and Corollary 1.

One must notice above, that Lemma 1 and Desargues' theorem in two dimensions are quite
important and essential for Pascal's and Steiner's theorems and the corollary.

3. Extension of Pascal's hexagon theorem and Steiner's theorem to

three dimensions

Theorem 3 (Extension of Pascal's theorem to three dimensions).
Let c1, c2, c3, and c4 be the circles of intersection between a sphere S and four planes such
that the circles are mutually intersecting, and let all triads of the circles out of {c1, c2, c3, c4}
be arranged in Type I con�gurations.

Let αk, βk be pairs of intersection circles of S with planes tangent to cl, cm and cn, where
(k, l,m, n) is any permutation of (1, 2, 3, 4). Let the triad of circles αl, αm, αn be on the same
side of the plane of ck, while the triad of circles βl, βm, βn is on the other side of the plane
ck. That is, (α1, β1), (α2, β2), (α3, β3), and (α4, β4) are pairs of incircles of circular triangles
de�ned by (c2, c3, c4), (c3, c4, c1), (c4, c1, c2), and (c1, c2, c3), respectively (Figures 7a and 7b).

Now we consider the two tetrahedrons whose planes are spanned by the circles α1, α2, α3, α4

and by β1, β2, β3, β4. If the plane spanned by αi, i = 1, . . . , 4 , intersects the opposite plane
spanned by βi along a line denoted by pi (see Figure 7c) then all lines p1, . . . , p4 lie in the
same plane (see Figure 7).

Proof. Due to Lemma 1, we know that there exist two external tangent cones, denoted by
Tkl, which include the pair of circles (ck, cl). The cone Tkl is tangent to the pairs of circles
(αm, βm) and (αn, βn), and not tangent to the pairs of circles (αk, βk) and (αl, βl). That is,
when we specify k = 2 and l = 3, for example, then T23 is a cone passing through c2 and c3,
which is tangent to both pairs (α1, β1) and (α4, β4), but not tangent to the pairs (α2, β2) and
(α3, β3.
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Figure 7: (a) Con�guration of the extension of Pascal's theorem to three dimensions.
(b) View from a di�erent angle. (c) Lines of intersections of planes with the opposite
faces of the tetrahedron.

Let Dkl denote the vertex of Tkl. Then, we know (note Remark 2) that D23 is coplanar with
α1, β1, α4 and β4. Therefore, D23 lies on the lines p1 and p4 where the planes spanned by
the respective pairs (α1, β1) and (α4, β4) intersect. Consequently, we �nd that D23 = p1 ∩ p4.
Similarly, we have D34 = p1∩p2, D24 = p1∩p3, D12 = p3∩p4, D14 = p2∩p3, and D13 = p2∩p4.
This indicates that the lines p1, p2, p3, and p4 intersect each other at six points, all in the
same plane. This completes the proof of Theorem 3.

Remark 3. In the proof of Theorem 3 we proved the coplanarity of six lines. This argument
is valid only when the four lines p1, p2, p3, p4 mutually intersect at six di�erent points. Note
that the three points D12, D13, D23 lie on p4, and they must be mutually di�erent, since each
point is on a line joining two points out of three points of contact between α4 and the circles
c1, c2, c3. Also, p1 and p4 must be di�erent lines meeting at D23, since the planes spanned
by α1 and α4 are di�erent. These two facts show that the four lines p1, p2, p3, p4 intersect
mutually at six di�erent points.

Theorem 4 (Extension of Steiner's theorem to three dimensions).
Following the notation in Theorem 3, let A1A2A3A4 and B1B2B3B4 be two tetrahedrons whose
faces lie in the planes spanned by α1, α2, α3, and α4 as well as β1, β2, β3, and β4 (see Figure 8).

Then, the lines A1B1, A2B2, A3B3, and A4B4 are concurrent.

The plane through p1, . . . , p4, as described in Theorem 3, can be considered as an extension
of the Pascal line in Theorem 1; so we refer to this plane as a Pascal plane. Furthermore, the



226 K. Morita: Theorems on Two Tetrahedrons Intersecting a Sphere

B1

B2
B3

A1

A2A3

B4

Figure 8: Steiner's theorem extended to three dimensions.

point of concurrency in Theorem 4 can be considered as an extension of the Steiner point in
Theorem 2; so we refer to this point as an extended Steiner point. The extension of Steiner's
theorem to three dimensions in Theorem 4 can be automatically proved by using the following
lemma.

Lemma 2 (Desargues' theorem in three dimensions).
If two tetrahedrons share a center of perspectivity, then the lines of intersection between corre-
sponding faces lie in the same plane. Conversely, if two tetrahedrons have lines of intersection

Figure 9: Extended theorem of Desargues applied to the red and the blue tetrahedron.
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between corresponding faces in the same plane, then the tetrahedrons share a center of per-
spectivity.

The above lemma, which is illustrated in Figure 9, is quite easy to prove; a proof was
given in our previous paper in this journal [4]. Note that the concurrency at the Steiner
point, as stated in Theorem 2, can be proved by the two-dimensional Desargues' theorem,
while the concurrency at the extended Steiner point, stated in Theorem 4, can be proved by
the three-dimensional Desargues' theorem (Lemma 2).

In Corollary 1, we saw that A1B1 passes through the point of intersection between l2 and
l3, as depicted in Figure 2b. Thus, one may wonder whether A1B1 passes through point of
intersection between the three planes spanned by circles c2, c3, and c4 (Figure 8). In fact, it
does not, since Lemma 2 cannot be applied to this con�guration. Instead, applying Lemma 2,
we have the following result, which is a three-dimensional extension of Corollary 1.

Corollary 2. Referring to the con�guration of Theorem 4, let A12, A13, and A14 be the points
where the lines A1A2, A1A3, and A1A4 intersect the plane B2B3B4, and let B12, B13, and B14

be the points where the lines B1B2, B1B3, and B1B4 intersect the plane A2A3A4. Analogously,
we de�ne the new points A21, A23, A24, B21, B23, B24, A31, A32, A34, B31, B32, B34, A41,
A42, A43, B41, B42, and B43.

Then all pairs of lines taken out from the four-line sets {A1B1, A12B12, A13B13, A14B14},
{A2B2, A21B21, A23B23, A24B24}, {A3B3, A31B31, A32B32, A34B34}, and {A4B4, A41B41,
A42B42, A43B43} are concurrent.
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