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Abstra
t. The 
evians drawn through a point inside a given triangle interse
t

the opposite sides at three points. They form a triangle whi
h subdivides the given

triangle into four parts. The paper fo
uses on properties of the 
entral triangle

with respe
t to the other subtriangles.
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1. Introdu
tion

In an arbitrary triangle three 
evians were drawn, whi
h meet at a single point in the triangle's

interior. Their points of interse
tion with the sides divide the original triangle into a 
entral

triangle 
ontaining the 
ommon point of the 
evians and three 
orner triangles, ea
h of whi
h

in
ludes a vertex of the original triangle. Thus, the area of the original triangle �is broken�

into four subtriangles (Figure 2). The paper fo
uses on spe
ial and surprising properties of

the 
entral triangle with respe
t to the other three triangles.

Des
ription of the task. Let AD, BE, CF be 
evians passing trough the point O in the

interior of the triangle △ABC, as shown in Figure 1. We denote

α :=
BD

DC
, β :=

CE

EA
, γ :=

AC

FB
(αβγ = 1).

The points D,E,F form four triangles, whose areas are

SA = S△AEF, SB = S△BDF, SC = S△DEC, SO = S△DEF.

We look for properties of the 
entral triangle△DEF with respe
to to the three 
orner triangles.

Lemma 1. There holds

(1)
SA

S△ABC

=
γ

(γ + 1)(β + 1
, (3)

SC

S△ABC

=
β

(β + 1)(α + 1)
,

(2)
SB

S△ABC

=
α

(α + 1)(γ + 1)
, (∗) SO

S△ABC

=
αβγ + 1

(α+ 1)(β + 1)(γ + 1)
.

Statement (*) is Routh's Theorem [2, 5, 6℄.
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Figure 1: The 
evians through O
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Figure 2: The four subtriangles

Proof.

SA

S△ABC

=
AF

AB
· AE
AC

· sinA
sinA

=
γ

(γ + 1)(β + 1)
, and the proof is similar for the other

equalities. Routh's theorem results from the identity

S△ABC − SA − SB − SC

S△ABC

=
SO

S△ABC

and

the proof of the equalities (1), (2) and (3).

A �rst inequality. From (*) follows in the 
ase αβγ = 1

SO

S△ABC

=
2

(α+ 1)(β + 1)(γ + 1)
≤ 2

8
√
αβγ

=
1

4
, hen
e SO ≤ 1

4
S△ABC , (4)

and equality holds only if α = β = γ = 1.

2. The theorems

There are three di�erent means of the areas SA, SB and SC to distinguish,

• the arithmeti
 mean Ma =
SA + SB + SC

3
,

• the geometri
 mean Mg =
3
√
SA · SB · SC , and

• the harmoni
 mean Mh =
3

1
SA

+ 1
SB

+ 1
SC

.

Theorem 1. Ma ≥ Mg ≥ SO ≥ Mh. (5)

Proof. a) We �rst prove that Ma ≥ SO . It was proven that SO ≤ 1
4
S△ABC, therefore SA +

SB + SC ≥ 3
4
S△ABC, hen
e

SA + SB + SC

3
≥ 1

4
S△ABC ≥ SO.

b) We prove that Mg ≥ SO .

Mg =
3

√

SA · SB · SC = S△ABC· 3

√
αβγ + 1

(α+ 1)2(β + 1)2(γ + 1)2
= S△ABC· 3

√
1

(α+ 1)2(β + 1)2(γ + 1)2
.

From SO = S△ABC · 2

(α+ 1)(β + 1)(γ + 1)
follows

SO

Mg

= 2 ((α + 1)(β + 1)(γ + 1))−
1

3 =
2

3
√

(α+ 1)(β + 1)(γ + 1)
≤ 2

3
√
8
= 1. (6)


) Let us prove that SO ≥ 3
1

SA
+ 1

SB
+ 1

SC

, in other words,

1

SA

+
1

SB

+
1

SC

≥ 3

SO

.
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Using the formulas (1)�(3), one has to prove that

(γ + 1)(β + 1)

γ
+

(α+ 1)(γ + 1)

α
+

(β + 1)(α + 1)

β
≥ 3(α+ 1)(β + 1)(γ + 1)

2
.

After dividing by (α+ 1)(β + 1)(γ + 1), one has to prove the inequality

1

γ(α + 1)
+

1

α(β + 1)
+

1

β(γ + 1)
≥ 1.5 . (7)

Here we pro
eed as follow: From Menelaus' Theorem [1, 3, 4℄ in the triangle ABD, 
ut by

COF (see Figure 2), there holds

α+ 1

α
· DO

OA
· γ
1
= 1 , therefore

OD

OA
=

1

γ(α+ 1)
, and similarly

OE

OB
=

1

α(β + 1)
and

OF

OC
=

1

β(γ + 1)
. We denote x3 := S△AOB, x2 := S△AOC, x1 := S△BOC.

Then

OD

OA
=

x1

x2 + x3
,

OE

OB
=

x2

x1 + x3
,

OF

OC
=

x3

x1 + x2
.

Therefore, one has to prove that

x1

x2 + x3
+

x2

x1 + x3
+

x3

x1 + x2
≥ 1.5 .

This is a well-known inequality (Nesbitt's inequality [7, 8℄), but we give a short proof. If

y1 := x1 + x2, y2 := x1 + x3 and y3 := x2 + x3 then

x1 =
y1 + y2 − y3

2
, x2 =

y3 + y1 − y2

2
, x3 =

y2 + y3 − y1

2
,

and hen
e remains to prove that

y1 + y2 − y3

2y3
+

y3 + y1 − y2

2y2
+

y2 + y3 − y1

2y1
≥ 1.5 .

We obtain that

1

2

(
y1

y2
+

y2

y1
︸ ︷︷ ︸

≥2

+
y2

y3
+

y3

y2
︸ ︷︷ ︸

≥2

+
y1

y3
+

y3

y1
︸ ︷︷ ︸

≥2

)

− 3

2
≥ 1.5 .

We have thus proven (7) and Theorem (1).

Important 
on
lusion. SO ≥ min{SA, SB, SC}.

Proof. SO is not smaller (usually larger) than the harmoni
 mean of SA, SB and SC. Therefore

it must be larger than or equal to (usually larger than) one of the areas SA, SB, SC. Sin
e

SO is smaller than or equal to the geometri
 mean of SA, SB, SC, it must be smaller than or

equal to one of SA, SB, SC.

An interesting probability question. If the triangle ABC is broken into four parts by

the points D,E,F, so that AD, BE and CF are 
evians, what is the probability that SO is the

smallest? Surprisingly, the probability is 0. Similarly, what is the probability that SO is the

largest? The answer is: 0 again.
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Figure 3: Comparing the perimeters of the subtriangles

Theorem 2. Let D,E,F be points on BC, CA and AB, respe
tively, so that BE, AD and CF

meet at the point O. We denote α :=
BD

DC
, β :=

CE

EA
and γ :=

AC

FB
, where αβγ = 1 .

We also denote the perimeters of the triangles △AFE, △CDE, △FBD by PA, PB, PC, re-

spe
tively, and the perimeter of △DEF by PO. Then there holds

PO ≥ min (PA, PB, PC).

Proof. Without detra
ting from the generality, we 
an assume α < 1, β > 1, γ < 1; the 
ases
α = 1, β = 1 or γ = 1 are easy to prove in a similar manner.

In our 
ase the harmoni
 points of D, E, F are the points D1, E1 and F1 respe
tively, whi
h

are positioned, as shown in Figure 3, on a single straight line, the polar line of O. We draw

from E a parallel to AB, and from F a parallel to AC. These parallels interse
t at the point O1

(inside △DEF). It is now 
lear that P△FO1E = PA and P△FO1E < PO, therefore PO > PA.
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