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Abstrat. The evians drawn through a point inside a given triangle interset

the opposite sides at three points. They form a triangle whih subdivides the given

triangle into four parts. The paper fouses on properties of the entral triangle

with respet to the other subtriangles.
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1. Introdution

In an arbitrary triangle three evians were drawn, whih meet at a single point in the triangle's

interior. Their points of intersetion with the sides divide the original triangle into a entral

triangle ontaining the ommon point of the evians and three orner triangles, eah of whih

inludes a vertex of the original triangle. Thus, the area of the original triangle �is broken�

into four subtriangles (Figure 2). The paper fouses on speial and surprising properties of

the entral triangle with respet to the other three triangles.

Desription of the task. Let AD, BE, CF be evians passing trough the point O in the

interior of the triangle △ABC, as shown in Figure 1. We denote

α :=
BD

DC
, β :=

CE

EA
, γ :=

AC

FB
(αβγ = 1).

The points D,E,F form four triangles, whose areas are

SA = S△AEF, SB = S△BDF, SC = S△DEC, SO = S△DEF.

We look for properties of the entral triangle△DEF with respeto to the three orner triangles.

Lemma 1. There holds

(1)
SA

S△ABC

=
γ

(γ + 1)(β + 1
, (3)

SC

S△ABC

=
β

(β + 1)(α + 1)
,

(2)
SB

S△ABC

=
α

(α + 1)(γ + 1)
, (∗) SO

S△ABC

=
αβγ + 1

(α+ 1)(β + 1)(γ + 1)
.

Statement (*) is Routh's Theorem [2, 5, 6℄.
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Figure 1: The evians through O
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Figure 2: The four subtriangles

Proof.

SA

S△ABC

=
AF

AB
· AE
AC

· sinA
sinA

=
γ

(γ + 1)(β + 1)
, and the proof is similar for the other

equalities. Routh's theorem results from the identity

S△ABC − SA − SB − SC

S△ABC

=
SO

S△ABC

and

the proof of the equalities (1), (2) and (3).

A �rst inequality. From (*) follows in the ase αβγ = 1

SO

S△ABC

=
2

(α+ 1)(β + 1)(γ + 1)
≤ 2

8
√
αβγ

=
1

4
, hene SO ≤ 1

4
S△ABC , (4)

and equality holds only if α = β = γ = 1.

2. The theorems

There are three di�erent means of the areas SA, SB and SC to distinguish,

• the arithmeti mean Ma =
SA + SB + SC

3
,

• the geometri mean Mg =
3
√
SA · SB · SC , and

• the harmoni mean Mh =
3

1
SA

+ 1
SB

+ 1
SC

.

Theorem 1. Ma ≥ Mg ≥ SO ≥ Mh. (5)

Proof. a) We �rst prove that Ma ≥ SO . It was proven that SO ≤ 1
4
S△ABC, therefore SA +

SB + SC ≥ 3
4
S△ABC, hene

SA + SB + SC

3
≥ 1

4
S△ABC ≥ SO.

b) We prove that Mg ≥ SO .

Mg =
3

√

SA · SB · SC = S△ABC· 3

√
αβγ + 1

(α+ 1)2(β + 1)2(γ + 1)2
= S△ABC· 3

√
1

(α+ 1)2(β + 1)2(γ + 1)2
.

From SO = S△ABC · 2

(α+ 1)(β + 1)(γ + 1)
follows

SO

Mg

= 2 ((α + 1)(β + 1)(γ + 1))−
1

3 =
2

3
√

(α+ 1)(β + 1)(γ + 1)
≤ 2

3
√
8
= 1. (6)

) Let us prove that SO ≥ 3
1

SA
+ 1

SB
+ 1

SC

, in other words,

1

SA

+
1

SB

+
1

SC

≥ 3

SO

.



M. Stupel: A Triangle �Broken� into Four Triangles 255

Using the formulas (1)�(3), one has to prove that

(γ + 1)(β + 1)

γ
+

(α+ 1)(γ + 1)

α
+

(β + 1)(α + 1)

β
≥ 3(α+ 1)(β + 1)(γ + 1)

2
.

After dividing by (α+ 1)(β + 1)(γ + 1), one has to prove the inequality

1

γ(α + 1)
+

1

α(β + 1)
+

1

β(γ + 1)
≥ 1.5 . (7)

Here we proeed as follow: From Menelaus' Theorem [1, 3, 4℄ in the triangle ABD, ut by

COF (see Figure 2), there holds

α+ 1

α
· DO

OA
· γ
1
= 1 , therefore

OD

OA
=

1

γ(α+ 1)
, and similarly

OE

OB
=

1

α(β + 1)
and

OF

OC
=

1

β(γ + 1)
. We denote x3 := S△AOB, x2 := S△AOC, x1 := S△BOC.

Then

OD

OA
=

x1

x2 + x3
,

OE

OB
=

x2

x1 + x3
,

OF

OC
=

x3

x1 + x2
.

Therefore, one has to prove that

x1

x2 + x3
+

x2

x1 + x3
+

x3

x1 + x2
≥ 1.5 .

This is a well-known inequality (Nesbitt's inequality [7, 8℄), but we give a short proof. If

y1 := x1 + x2, y2 := x1 + x3 and y3 := x2 + x3 then

x1 =
y1 + y2 − y3

2
, x2 =

y3 + y1 − y2

2
, x3 =

y2 + y3 − y1

2
,

and hene remains to prove that

y1 + y2 − y3

2y3
+

y3 + y1 − y2

2y2
+

y2 + y3 − y1

2y1
≥ 1.5 .

We obtain that

1

2

(
y1

y2
+

y2

y1
︸ ︷︷ ︸

≥2

+
y2

y3
+

y3

y2
︸ ︷︷ ︸

≥2

+
y1

y3
+

y3

y1
︸ ︷︷ ︸

≥2

)

− 3

2
≥ 1.5 .

We have thus proven (7) and Theorem (1).

Important onlusion. SO ≥ min{SA, SB, SC}.

Proof. SO is not smaller (usually larger) than the harmoni mean of SA, SB and SC. Therefore

it must be larger than or equal to (usually larger than) one of the areas SA, SB, SC. Sine

SO is smaller than or equal to the geometri mean of SA, SB, SC, it must be smaller than or

equal to one of SA, SB, SC.

An interesting probability question. If the triangle ABC is broken into four parts by

the points D,E,F, so that AD, BE and CF are evians, what is the probability that SO is the

smallest? Surprisingly, the probability is 0. Similarly, what is the probability that SO is the

largest? The answer is: 0 again.
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Figure 3: Comparing the perimeters of the subtriangles

Theorem 2. Let D,E,F be points on BC, CA and AB, respetively, so that BE, AD and CF

meet at the point O. We denote α :=
BD

DC
, β :=

CE

EA
and γ :=

AC

FB
, where αβγ = 1 .

We also denote the perimeters of the triangles △AFE, △CDE, △FBD by PA, PB, PC, re-

spetively, and the perimeter of △DEF by PO. Then there holds

PO ≥ min (PA, PB, PC).

Proof. Without detrating from the generality, we an assume α < 1, β > 1, γ < 1; the ases
α = 1, β = 1 or γ = 1 are easy to prove in a similar manner.

In our ase the harmoni points of D, E, F are the points D1, E1 and F1 respetively, whih

are positioned, as shown in Figure 3, on a single straight line, the polar line of O. We draw

from E a parallel to AB, and from F a parallel to AC. These parallels interset at the point O1

(inside △DEF). It is now lear that P△FO1E = PA and P△FO1E < PO, therefore PO > PA.
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