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Abstract. The cevians drawn through a point inside a given triangle intersect
the opposite sides at three points. They form a triangle which subdivides the given
triangle into four parts. The paper focuses on properties of the central triangle

with respect to the other subtriangles.
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1. Introduction

In an arbitrary triangle three cevians were drawn, which meet at a single point in the triangle’s
interior. Their points of intersection with the sides divide the original triangle into a central
triangle containing the common point of the cevians and three corner triangles, each of which
includes a vertex of the original triangle. Thus, the area of the original triangle “is broken”
into four subtriangles (Figure 2). The paper focuses on special and surprising properties of
the central triangle with respect to the other three triangles.

Description of the task. Let AD, BE, CF be cevians passing trough the point O in the

interior of the triangle AABC, as shown in Figure 1. We denote

a:=BD 5 _CE _AC
~pc’ " T EA’ 7T TB

The points D, E, F form four triangles, whose areas are

Sa = Saarr, SB = SaBpr, Sc = SAbpEC,

We look for properties of the central triangle ADEF with respecto to the three corner triangles.

Lemma 1. There holds
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(afBy =1).

So = SADEF-
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Statement (*) is Routh’s Theorem |2, 5, 6].
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Figure 1: The cevians through O Figure 2: The four subtriangles
Proof. SASAABC = % . ﬁ—g . 2122 = e 1)7@ T and the proof is similar for the other
equalities. Routh’s theorem results from the identity Saapc = S = S = S¢ — 5o and
SaaBc SaaBc
the proof of the equalities (1), (2) and (3). O
A first inequality. From (*) follows in the case affy =1
So 2 2 1 1
= < = 7> h S < S ? 4
Soanc @+ DB+ DG = syamy 17 M S0 S g Sanne W

and equality holds only if « = f =~ = 1.

2. The theorems

There are three different means of the areas Sa, Sg and S¢ to distinguish,

. ) S S S
e the arithmetic mean M, = 2A+ OB o0 ,

3
e the geometric mean M, = v/Sa - Sp - Sc, and
3

e the harmonic mean M) = — T -
5x t e tse

Theorem 1. M, > M, > So > M,. (5)

Proof. a) We first prove that M, > So. It was proven that So < iSAABC, therefore Sy +
Sp 4+ Sc > 3 Saapc, hence

Sa + S+ Sc

1
3 > 1 Saasc > So.

b) We prove that M, > So .

_ 3 . . — L3 afy+1 = T !
Mg = \/m— SAABC \/(a+1)2(5+1)2(7+1)2 - SAABC \/(a+1)2(5+1)2(7+1)2-

2
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From So == SAABC .
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c¢) Let us prove that S > T L in other words, 5 + S5 + S0 2 S5
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Using the formulas (1)—(3), one has to prove that

(+DHB+1) n (a+1D(y+1) n B+D(a+1) > Bla+ HB+1)(r+1)

~ Q@ I3 2

After dividing by (a +1)(8 4 1)(vy + 1), one has to prove the inequality

1 1 1
’y(a—i—l)_l_a(ﬂ—i-l)_l_ﬂ(’y—kl) 2 15, (7)

Here we proceed as follow: From Menelaus’ Theorem |1, 3, 4] in the triangle ABD, cut by
COF (see Figure 2), there holds < +1,D0 v

=1 , therefore , and similarly

"O0A 1 OA y(a+1)
OE 1 OF 1
@ = oz(ﬁ—|—1) and % = ﬂ(’}/—l—l). We denote T3 = SAAOB; T = SAAOC; T = SABOC.
Then
OD o I OE xTo OF T3

m_xg—l-xg’ @:xl—kxg’ m:xl—i-xg'
Therefore, one has to prove that

€1 €2 €T3

+ + >1.5.
To + X3 x|+ X3 1+ X2

This is a well-known inequality (Nesbitt’s inequality |7, 8]), but we give a short proof. If
Y1 := X1 + To, Y := x1 + x3 and y3 := xo + x3 then

x1:y1+y2_y3, I2:y3+y1—y27 x3:y2+y3—y17
2 2 2
and hence remains to prove that

y1+y2—y3+y3+y1—y2+y2+y3—y1 >15.
2y3 2y 211

We obtain that

1 3
_<&+%+%+@+&+$)__21.5,
2\y2 YL Y3 Y2 Y3 W1 2
—— e N—

>2 >2 >2
We have thus proven (7) and Theorem (1). O
Important conclusion. So > min{Sy, Sg, Sc }.

Proof. So is not smaller (usually larger) than the harmonic mean of Sy, Sg and Sc. Therefore
it must be larger than or equal to (usually larger than) one of the areas Su, Sg, Sc. Since
So is smaller than or equal to the geometric mean of Sy, S, S¢, it must be smaller than or
equal to one of Sy, Sg, Sc. O

An interesting probability question. If the triangle ABC is broken into four parts by
the points D, E, F, so that AD, BE and CF are cevians, what is the probability that So is the
smallest? Surprisingly, the probability is 0. Similarly, what is the probability that So is the
largest? The answer is: 0 again.
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Figure 3: Comparing the perimeters of the subtriangles

Theorem 2. Let D, E, F be points on BC, CA and AB, respectively, so that BE, AD and CF

meet at the point O. We denote o := —; — and 7y = where affy =1.

ﬁ;
We also denote the perimeters of the triangles AAFE, ACDE, AFBD by Pa, Py, Pc, re-
spectively, and the perimeter of ADEF by Po. Then there holds

PO Z min (PA, PB, Pc)

Proof. Without detracting from the generality, we can assume o < 1, § > 1, v < 1; the cases
a=1,3=1o0r~ =1 are easy to prove in a similar manner.

In our case the harmonic points of D, E, F are the points Dy, E1 and F1 respectively, which
are positioned, as shown in Figure 3, on a single straight line, the polar line of O. We draw
from E a parallel to AB, and from F a parallel to AC. These parallels intersect at the point O
(inside ADEF). It is now clear that Papo,g = Pa and Papo,r < Po, therefore Po > Py, O
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