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1. Introduction

1.1. Quadrance and spreads for a general bilinear form

In this paper we apply a powerful recent variant of rational trigonometry called vector

trigonometry [10] to establish some fundamental new trigonometric formulae for quadrilater-
als. This theory is well suited to explicit computation and applications involving surveying,
graphics, architecture and design. We will show that this theory is also potentially of impor-
tance in kinematics and robotics, by investigating some fundamental aspects of the four bar
linkage from the point of view of the rotor coordinates that replace polar coordinates.

In this introduction we will first orient the reader towards rational trigonometry, and then
explain how vector trigonometry is built from those ideas, but with an oriented aspect.

Rational trigonometry (RT) was introduced in author’s 2005 book Divine Proportions: Ra-

tional Trigonometry to Universal Geometry [3], with further elaboration given by the YouTube
series WildTrig at the author’s YouTube channel Insights into Mathematics. RT provides a
simple yet powerful alternative to classical trigonometry, eliminating the need for transcen-
dental functions and calculators, simplifying many problems, and allowing a more careful and
logical derivation of Euclidean geometry (see also [5]) which extends in many new directions.
Rational trigonometry uses the entirely algebraic concepts of quadrance and spread instead
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of distance and angle. Hence the theory works over the rational numbers, as well as over
general fields, including finite fields, and notably extends to arbitrary non-degenerate bilinear
forms, embracing also relativistic geometry. Vector trigonometry is not entirely rational in
this sense, as approximate square roots are involved, as we shall see.

The starting point, as described in [4], is an affine space A and the associated vector
space V over a field (preferably not of characteristic two), together with a fixed symmetric
bilinear form. By choosing an ordered basis, we may assume that V contains row vectors
v = (x1, x2, · · · , xn) and that the bilinear form is given in the language of linear algebra by

v ·w = vAw
T

for some non-degenerate (i.e. invertible) symmetric n× n matrix A.
The quadrance of a vector v is then defined to be the number

Q (v) ≡ v · v.

This quantity is an element of the field in which we are working.
The spread between two vectors v and w is defined by

s (v,w) = 1− (v ·w)2

Q (v)Q (w)
.

Since the bilinear form is arbitrary, there is the possibility of having non-zero null vectors v,
that is vectors satisfying Q (v) = 0, in which case a spread involving such a vector is undefined.
Otherwise the spread is also an element of the field. Clearly spread is a symmetrical quantity,
in that

s (v,w) = s (w,v) .

The spread between vectors is unchanged when those vectors are multiplied by non-zero
numbers, so that the spread extends to a well-defined property between lines (crucially not
rays!). If lines l1 and l2 have direction vectors v1 and v2, then it makes sense to define the
spread between them as s (l1, l2) ≡ s (v1,v2). This purely algebraic approach works also for
more general fields, even with finite characteristics, although the case of characteristic two
has special properties and is best regarded somewhat separately.

1.2. Spreads, cross and related quantities in Euclidean geometry

In the special case of planar Euclidean geometry, where we use the familiar Euclidean dot
product, the spread between the two non-zero vectors v1 ≡ (x1, y1) and v2 ≡ (x2, y2), can
also be written as

s (v1,v2) ≡
(x1y2 − x2y1)

2

(x2

1
+ y2

1
) (x2

2
+ y2

2
)
. (1)

This number can also be viewed as the square of the sine of the angle between the vectors,
assuming that we have developed a number system in which these concepts make sense (which
is actually much harder than is usually imagined). But crucially the algebraic nature of
quadrance and spread does not require such a prior theory of “real numbers”, and the theory
makes sense even over the rational numbers (and in fact also over finite fields!)

There are some other secondary quantities that can be defined between lines. If l1 and l2
are lines with direction vectors v1 and v2 then the cross between them is the number

c (l1, l2) ≡
(x1x2 + y1y2)

2

(x2

1
+ y2

1
) (x2

2
+ y2

2
)
= 1− s (l1, l2)
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while the twist between them is

t (l1, l2) ≡
s (l1, l2)

c (l1, l2)
=

(x1y2 − x2y1)
2

(x1x2 + y1y2)
2
.

Since the twist is always a square, we may define also the turn

u (l1, l2) ≡
x1y2 − x2y1
x1x2 + y1y2

which is an oriented quantity; in the sense that

u (l2, l1) = −u (l1, l2) .

The main laws of rational trigonometry are universal, in that they apply in this general
affine setting. Furthermore, a projective version of the entire theory allows one to introduce
metrical structure also in a projective space over a general field, again with a general quadratic
form (see [4]). This has led to a major new direction for hyperbolic geometry [6, 7, 8, 9].

1.3. Rotor coordinates and floating point numbers

In the paper [10] we have introduced a variant of rational trigonometry, called vector trigonom-

etry, which is well suited for engineering, design, surveying and physics applications in the
plane. This vector trigonometry is geared to problems in which direction figures prominently,
and does not aspire, as rational trigonometry does, to provide a wide theoretical formulation.
It is really an applied mathematical tool, and it rests on an underlying floating point numerical

system. So in this theory when we discuss a quantity such as "
√
10” we mean a finite floating

point decimal number whose square is approximately 10, for example
√
10 ≈ 3. 1623. We will

not take the position that there is an underlying "real number" arithmetic containing infinite
precision objects. Instead we consider the floating point numbers with approximate arith-
metical properties as the actual true objects, even if that introduces an element of ambiguity
in the level of precision, or number of decimal digits, that we are considering.

The main idea is now to replace the usual polar coordinates r and θ of a planar vector
v = (x, y) with rotor coordinates r and h, so that we write also

v = | r, h〉 .

The quantity r ≡ |v| =
√

x2 + y2 is the usual length, or approximate length, of v, so this
trigonometry does have a transcendental aspect in that square roots, or approximate square
roots, will be needed. The key new point is to replace angle not with a spread, but rather
a directed quantity that allows us to deal with rays instead of just lines. We will call this
directed quantity half-slope.

This notion arises naturally from the rational parametrization of the unit circle cU with
equation x2 + y2 = 1, given by

e (h) ≡
(

1− h2

1 + h2
,

2h

1 + h2

)

. (2)

We say that the number h is the half-slope of the vector v = e (h). The quantity h geomet-
rically is the y-coordinate of the point which is the meet of the line joining the points [−1, 0]
and e (h) on the unit circle with the y-axis, as shown in the Figure 1. In the special case
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when e (h) is the point [−1, 0] , this line is taken to be the tangent to the circle at that point
and the quantity h is undefined, or declared to have the value h = ∞.

We then extend this notion to a general vector v by declaring its half-slope h to be equal
to the half-slope of v/r, which lies on the unit circle. It is worthwhile to remark that this
discussion is taking place in the context of applied mathematics, where we are willing to
consider approximate half-slopes on account of the necessarily approximate nature of length.

10-1

1

-1

x

y
r

h

c

h

v=(x,y)

U

Figure 1: Rotor coordinates | r, h〉 for v = (x, y)

Figure 1 shows a general vector v, its half-slope h, and the notation we use to denote it in
a diagram, namely a directed segment at the meet of the x axis and the vector v positioned
at the origin. In terms of the usual polar coordinates, h is the tan of half of the polar angle
θ. Rotor coordinates do not extend to general fields or arbitrary quadratic forms on account
of the inclusion of length, so they should be viewed as tools of applied mathematics, where
we approach geometry from the spirit of rational trigonometry, but allow an orientation to
be defined.

It will be useful to introduce the rational functions

C (h) ≡ 1− h2

1 + h2
, S (h) ≡ 2h

1 + h2
and T (h) ≡ S (h)

C (h)
=

2h

1− h2
.

2. A review of vector trigonometry for triangles

2.1. The half-slope formula and transformations

We now summarize some of the main results from the paper [10] which we will need. The
first formula shows that in fact the half-slope can be easily determined from the Cartesian
coordinates and the length.

Theorem 1 (Half-slope formula). If v ≡ (x, y) has length r ≡
√

x2 + y2 and y 6= 0, then

h (v) =
r − x

y
. (3)

Once we know the half-slope of a vector, we can quickly determine half-slopes of related
vectors.

Theorem 2 (Half-slope transformations). Suppose that the vector v has half-slope h. Then

the reflection of v in the x-axis has half-slope −h, the reflection of v in the y-axis has half

slope h−1, the vector −v has half-slope −h−1, while the reflection of v in the line y = x and
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the rotation of v by a one-quarter of the full circle in the positive direction have respective

half-slopes
1− h

1 + h
and

1 + h

1− h
.

2.2. Projective formulation and the circle sum

Since the half-slope h parametrizes points on the unit circle, it also parametrize rotations, as
explained in more detail in [10]. For a number h we define the rotation matrix

σh ≡ 1

(1 + h2)

(

1− h2 2h
−2h 1− h2

)

along with σ∞ ≡
(

−1 0
0 −1

)

.

Such rotations act on a (row) vector v = (x, y) on the right by v → v σh, and clearly the
image of (1, 0) is e (h) . The multiplicative structure of rotations is then given in terms of
half-slopes by the following, which is clearly closely related to the addition formula for tan θ,
but is logically independent of any transcendental interpretations.

Theorem 3 (Circle sum). For any numbers h1 and h2

σh1
σh2

= σh where h ≡ h1 ⊕ h2 =
h1 + h2

1− h1h2

.

Proof. We compute that

σh1
σh2

=
1

(1 + h2

1
) (1 + h2

2
)

(

1− h2

1
2h1

−2h1 1− h2

1

)(

1− h2

2
2h2

−2h2 1− h2

2

)

=
1

(1 + h2

1
) (1 + h2

2
)

(

(1− h1h2)
2 − (h1 + h2)

2 2 (1− h1h2) (h1 + h2)

−2 (1− h1h2) (h1 + h2) (1− h1h2)
2 − (h1 + h2)

2

)

=
(1− h1h2)

2

(1 + h2

1
) (1 + h2

2
)

(

1− h2 2h
−2h 1− h2

)

= σh

where

h ≡ h1 ⊕ h2 =
h1 + h2

1− h1h2

.

Define h1 ⊕ h2 to be the circle sum of the numbers h1 and h2. We allow our number
system to be extended to include ∞, in which case this circle sum operation extends to values
of ∞ by limiting arguments, or by going back to a more fundamental projective formulation
as described in [10]. The identity is h = 0, and the inverse of h is −h.

The extension of the circle sum to more than two inputs is also interesting, for example
one can verify that

h1 ⊕ h2 ⊕ h3 =
h1 + h2 + h3 − h1h2h3

1− (h1h2 + h2h3 + h1h3)
.

The Circle sum theorem of [10] generalizes this to more than three values.

Example 1. The half-slope that corresponds to an angle of 45◦ + 30◦ = 75◦ is

h =
(√

2− 1
)

⊕
(

2−
√
3
)

=

(√
2− 1

)

+
(

2−
√
3
)

1−
(√

2− 1
) (

2−
√
3
) =

√
3 +

√
6−

√
2− 2.
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2.3. Relative half-slopes

The notion of the half-slope of a single vector can be extended to the relative half-slope

h (v1,v2) between two vectors v1 ≡ (x1, y1) = | r1, h1〉 and v2 ≡ (x2, y2) = | r2, h2〉 by

h (v1,v2) ≡ h2 ⊕ (−h1) =
h2 − h1

1 + h1h2

.

For an oriented triangle
−−−−−→
A1A2A3 with side lengths r1, r2 and r3, and corresponding half-slopes

h1 ≡ h
(−−−→
A1A2,

−−−→
A1A3

)

, h2 ≡ h
(−−−→
A2A3,

−−−→
A2A1

)

and h3 ≡ h
(−−−→
A3A1,

−−−→
A3A2

)

we use the pictorial conventions of (2).

A

h

r
h

r
r

h

A

A

A

2

1

2

2

1

1

3

3

3

Figure 2: Lengths and relative half-turns of an oriented triangle
−−−−−→
A1A2A3

The Relative half-slope formula gives h (v1,v2) in terms of the Cartesian coordinates
x1, y1, x2, y2 and lengths r1 ≡ |v1| and r2 ≡ |v2| :

h (v1,v2) =
y1 (r2 − x2)− y2 (r1 − x1)

y1y2 + (r1 − x1) (r2 − x2)
.

What makes this notion important is that it is rotationally invariant.

Theorem 4 (Half-slope invariance). For vectors v1 and v2 and any number l

h (v1,v2) = h (v1σl,v2σl) .

Once we have relative notions, we can study the geometry of (oriented) triangles from a
vector trigonometry point of view.

2.4. Vector trigonometry for triangles

There are rotor analogs for most of the usual trigonometric laws. These are taken from [10].
For example the Cosine law is replaced by:

Theorem 5 (Cross law – rotor form). In an oriented triangle
−−−−−→
A1A2A3 with side lengths r1, r2

and r3, and corresponding half-slopes

h1 ≡ h
(−−−→
A1A2,

−−−→
A1A3

)

, h2 ≡ h
(−−−→
A2A3,

−−−→
A2A1

)

and h3 ≡ h
(−−−→
A3A1,

−−−→
A3A2

)

we have that

r2
3
= r2

1
+ r2

2
− 2r1r2C (h3) .
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Corollary 6. From this we can also deduce that

h2

3
=

r2
3
− (r1 − r2)

2

(r1 + r2)
2 − r2

3

=
(r1 − r2 − r3) (r2 − r1 − r3)

(r1 + r2 + r3) (r1 + r2 − r3)
.

The Sine law is replaced by:

Theorem 7 (Sine law – rotor form). With notation as above,

S (h1)

r1
=

S (h2)

r2
=

S (h3)

r3
.

We also get a relation between the half-slopes of three general vectors:

Theorem 8 (Triple half-slope formula). For any three vectors v1, v2 and v3, suppose that

h12 ≡ h (v1,v2) , h23 ≡ h (v2,v3) and h31 ≡ h (v3,v1) .

Then

h12 + h23 + h31 = h12h23h31.

A variant of that gives us the relations between the half-slopes of an oriented triangle:

Theorem 9 (Triangle half-slope formula). Suppose that
−−−−−→
A1A2A3 is an oriented triangle with

half turns

h1 ≡ h
(−−−→
A1A2,

−−−→
A1A3

)

, h2 ≡ h
(−−−→
A2A3,

−−−→
A2A1

)

and h3 ≡ h
(−−−→
A3A1,

−−−→
A3A2

)

.

Then

h1h2 + h1h3 + h2h3 = 1.

3. Quadrilateral formulas

We now move to the novel formulas of the present paper, which concern four points or four
vectors. While the previous two theorems have different formulas, the situation for four points
is more symmetric.

Theorem 10 (Quadruple half-slope formula). For any four vectors v1,v2,v3 and v4, suppose

that

h12 ≡ h (v1,v2) , h23 ≡ h (v2,v3) , h34 ≡ h (v3,v4) , and h41 ≡ h (v4,v1) .

Then

h12 + h23 + h34 + h41 = h12h23h34 + h12h23h41 + h12h34h41 + h23h34h41.

Proof. We suppose that v1,v2,v3 and v4 have half-slopes h1, h2, h3 and h4 respectively. Then
the corresponding relative half-slopes are

h12 =
h2 − h1

1 + h1h2

, h23 =
h3 − h2

1 + h2h3

, h34 =
h4 − h3

1 + h3h4

, h41 =
h1 − h4

1 + h4h1

.
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Then a computation shows that

h12 + h23 + h34 + h41

=
h2 − h1

1 + h1h2

+
h3 − h2

1 + h2h3

+
h4 − h3

1 + h3h4

+
h1 − h4

1 + h4h1

=
(h1 − h3) (h2 − h4) (h1 − h2 + h3 − h4 + h1h2h3 − h1h2h4 + h1h3h4 − h2h3h4)

(h1h2 + 1) (h2h3 + 1) (h3h4 + 1) (h1h4 + 1)
.

But a similar computation shows that

h12h23h34 + h12h23h41 + h12h34h41 + h23h34h41

=
h2 − h1

1 + h1h2

h3 − h2

1 + h2h3

h4 − h3

1 + h3h4

+
h2 − h1

1 + h1h2

h3 − h2

1 + h2h3

h1 − h4

1 + h4h1

+
h2 − h1

1 + h1h2

h4 − h3

1 + h3h4

h1 − h4

1 + h4h1

+
h3 − h2

1 + h2h3

h4 − h3

1 + h3h4

h1 − h4

1 + h4h1

=
(h1 − h3) (h2 − h4) (h1 − h2 + h3 − h4 + h1h2h3 − h1h2h4 + h1h3h4 − h2h3h4)

(h1h2 + 1) (h2h3 + 1) (h3h4 + 1) (h1h4 + 1)
.

Theorem 11 (Quadrilateral turn formula). Suppose that
−−−−−−−→
A1A2A3A4 is an oriented quadri-

lateral with half-slopes

h1 ≡ h
(−−−→
A1A2,

−−−→
A1A4

)

, h2 ≡ h
(−−−→
A2A3,

−−−→
A2A1

)

,

h3 ≡ h
(−−−→
A3A4,

−−−→
A3A2

)

and h4 ≡ h
(−−−→
A4A1,

−−−→
A4A3

)

.

Then

h1 + h2 + h3 + h4 = h1h2h3 + h1h2h4 + h1h3h4 + h2h3h4.

Proof. Apply the previous result to the vectors v1 ≡ −−−→
A1A2, v2 ≡ −−−→

A2A3, v3 ≡ −−−→
A3A4 and

v4 ≡
−−−→
A4A1, so that h12 = −1/h2, h23 = −1/h3, h34 = −1/h4 and h41 = −1/h1. Then

− 1

h2

− 1

h3

− 1

h4

− 1

h1

=
1

h1h2h3h4

(−h2 − h3 − h4 − h1)

and after clearing denominators we get the result.

Example 2. Suppose that v1 ≡ (3, 4), v2 ≡ (5, 1), v3 ≡ (1, 3), and v4 ≡ (−1, 2). Then the
respective half-slopes are, by the Half-slope formula,

h1 =
5− 3

4
=

1

2
, h2 =

√
26− 5

1
=

√
26− 5, h3 =

√
10− 1

3
, h4 =

√
5 + 1

2
.

Then we can verify that

h12 + h23 + h34 + h41 =
√
2− 1

2

√
5− 5

17

√
26 +

1

7

√
65 +

11

238

and also

h12h23h34 + h12h23h41 + h12h34h41 + h23h34h41 =
√
2− 1

2

√
5− 5

17

√
26 +

1

7

√
65 +

11

238
.
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4. A four bar linkage

4.1. Classical and rotor forms

The theoretical framework for viewing quadrilaterals above can be applied to a famous config-
uration from mechanical engineering. Four bar linkages have a rich history in kinematics and
play an important role also in the foundations of robotics. This is a four-revolute mechanical
linkage which consists of a fixed base OC, two arms OA and CB which are free to rotate
about the ends of this fixed base OC, and a coupler arm AB connecting the two moveable
ends A and B. These kinds of configurations have been used to transfer power for centuries,
and then were adopted by Watt to generate (approximately) linear motion from circular
motion [2].

We assume the arms have specified fixed lengths, and are interested in the possible range
of motions as the arms move around the base. It is known that there are in fact a variety of
possible movements, depending on the relative lengths of the four segments comprising the
mechanism. It is common to consider the locus of the midpoint of the coupler arm AB to
form a coupler curve, but in more general circumstances a specified point on a plate afixed
to the arm AB is also considered.

The usual analysis of such four bar linkages is traditionally expressed in terms of the
polar coordinates of the three moveable arms as vectors, following current practice to base
robotic analysis on angles. This analysis can be found in many places, for example the above
reference or [1].

If the arms are given by the vectors
−→
OC,

−→
OA,

−→
AB and

−−→
CB with polar coordinates

−→
OC = (u, 0) ,

−→
OA = (r, φ) ,

−→
AB = (t, θ) ,

−−→
CB = (s, ϕ)

then there is, for example, an important relation between the angles φ and ϕ involving inverse
circular functions.

With the advent of rational trigonometry, and now vector trigonometry, some new op-
portunities for analysing robotics arise. For example we can replace the polar coordinate
description of the four bar linkage above with an equivalent rotor coordinate description.

A

B

CO

r

t

f j

q s

u

Figure 3: A 4 bar linkage in polar coordinates

A

B

CO

r

t

h l

k s

u

Figure 4: A 4 bar linkage in rotor coordinates

Assume then that we have a four bar linkage with horizontal base
−→
OC and arms

−→
OA,

−→
AB

and
−−→
CB, described now with rotor coordinates

−→
OC = |u, 0〉 , −→

OA = | r, h〉 , −→
AB = | t, k〉 , −−→

CB = | s, l〉

as in Figure 4.
The relation between the two possible revolute motions at O and C can now be expressed

in the language of rotor coordinates.
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Theorem 12 (Four bar half-slope relation). The relation between the half-slopes h and l in

the above four bar linkage is given by:

0 = (r − s+ t+ u) (r − s− t + u)h2l2 + (r + s+ t+ u) (r + s− t+ u)h2

+ (−8rs)hl + (r + s+ t− u) (r + s− t− u) l2 + (r − s+ t− u) (r − s− t− u) .

Proof. We may suppose that OC is horizontal with O = [0, 0] and C = [u, 0] in a usual
Cartesian coordinate system. This means that the moveable ends of the arms are

A = [rC (h) , rS (h)] and B = [u+ sC (l) , sS (l)]

so that −→
AB = (u+ sC (l)− rC (h) , sS (l)− rS (h)) .

The fact that the quadrance of
−→
AB is by definition t2 means that

(u+ sC (l)− rC (h))2 + (sS (l)− rS (h))2 = t2.

When these terms are expanded out, and suitably factored, we get a quartic relation between
the half-spreads h and l.

Clearly the relative values of the lengths u, r, s, and t will determine properties of this
motion, and in particular situations where some of these linear factors appearing here are
zero can be expected to play an important role.

Example 3. While it is not possible for r − s+ t+ u = 0 without the quadrilateral becoming
linear, it is possible for r + u = s + t. In this case the relation reduces to a quadratic one
between h and l:

2 (rs+ su)h2 − 4rshl + r (r − u) l2 = u (r − u) .

The discriminant of the quadratic form on the left is

(4rsl)2 − 4 (2 (rs+ su)) (r (r − u)) = 8rs
(

u2 + 2sr − r2
)

.

4.2. The coupler half-slope

Theorem 13 (Four bar coupler half-slope). The half-slope of the coupler arm AB, as in

Figure 4, is given in terms of h and l by

k =
(s− r − t+ u)h2l2 + (u− s− t− r)h2 + (r + s− t+ u) l2 + (r − s− t + u)

2 (−sh2l + rhl2 + rh− sl)
.

Proof. Using the above notation, we have that
−→
AB = (u+ sC (l)− rC (h) , sS (l)− rS (h))

has assumed length t. So by the Half-slope formula the half-slope k of
−→
AB is

k =
t− u+ sC (l)− rC (h)

sS (l)− rS (h)
.

When we substitute and simplify we get the quantity in the theorem.
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4.3. Coupler curves

When we choose a point X on AB, or on a plate rigidly affixed to AB, then the locus of that
point traces a coupler curve. For simplicity we will stick to the simplest case, when the point
X is the midpoint of AB, namely

X =
1

2
([rC(h), rS(h)] + [u+ sC(l), sS(l)]) (4)

=

[

(u− s− r) h2l2 + (s− r + u)h2 + (r − s+ u) l2 + (r + s + u) ,
2 (sh2l + rhl2 + rh+ sl)

]

2 (h2 + 1) (l2 + 1)
. (5)

In rotor coordinates, the quadrance of
−−→
OX turns out to be, rather remarkably, the quantity

(u− s− r)2 h2l2 + (s− r + u)2 h2 + 8rshl + (r − s+ u)2 l2 + (r + s+ u)2

4 (h2 + 1) (l2 + 1)
.

Another interesting case is when the point X is chosen to be the reflection of A in B,
namely

X = − [rC(h), rS(h)] + 2 [u+ sC(l), sS(l)]

=

[

(r − 2s+ 2u)h2l2 + (r + 2s+ 2u)h2 + (2u− 2s− r) l2 + (2s− r + 2u) ,
2 (2sh2l − rhl2 − rh+ 2sl)

]

(h2 + 1) (l2 + 1)
.

In this case the quadrance of
−−→
OX is

(r − 2s+ 2u)2 h2l2 + (r + 2s+ 2u)2 h2 + (−16rs)hl + (2u− 2s− r)2 l2 + (2s− r + 2u)2

(h2 + 1) (l2 + 1)
.

Such formulas are intriguing due to the pleasant symmetries they contain, and the sug-
gestion of further remarkable algebraic relations. So perhaps rotor coordinates and vector
trigonometry can shed some new light on this old topic, and contribute to the modern devel-
opment of robotics as well.
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