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Abstract. We give an elementary proof of the following theorem: The maximum
number of points which one can choose in the unit four-dimensional cube so that
all mutual distances are at least one is 17.
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1. Introduction

Denote by f(n) the maximum number of points which one can choose in the unit n-dimensional
cube so that all mutual distances are at least 1. Such placing of points we call permissible
placing. Trivially, f(n) = 2n for n = 1, 2, 3. A �rst reliable proof of the result f(4) = 17 can
be found in the paper [1] (see [5]). In higher dimensions there are only estimates, see, e.g.,
[2, 3, 4, 7, 10].

This problem appears in [8] as problem 41, and was repeated besides others in [6, p. 244],
[9] and some others.

2. The theorem

Theorem. f(4) = 17 .

Proof. Let us consider the 4-dimensional unit cube C = 〈0, 1〉4. So, point (x1, x2, x3, x4) ∈ C
if and only if xi ∈ 〈0, 1〉 for i = 1, 2, 3, 4. The coordinates of 24 vertices of C are all ordered
quadruples consisting of zeros and ones. The centre of C has the coordinates (h, h, h, h),
where h = 1

2
. If we consider the 16 vertices and the centre of C, we get f(4) ≥ 17.

We dissect the unit cube C into 16 congruent small cubes ci. Each ci contains exactly
one vertex of the cube C, so the small cube ci is uniquely determined by this vertex. The
ordered quadruple (x1, x2, x3, x4) is a vertex of some small cube if and only if xi ∈ {0, h, 1}
for i = 1, 2, 3, 4. So, our small cubes have exactly 34 = 81 vertices. From every small cube
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we remove all its vertices and then we add exactly the speci�ed vertices. So, we get the
undermentioned set of 16 adapted small cubes.

M1 : (0, 0, 0, 0), (0, 0, 0, h), (0, 0, h, 0), (0, 0, h, h), (0, h, 0, 0);

M2 : (0, 0, 0, 1), (0, 0, h, 1), (0, h, 0, h), (0, h, 0, 1), (0, h, h, h);

M3 : (0, 0, 1, 0), (0, 0, 1, h), (0, h, h, 0), (0, h, 1, 0), (0, h, 1, h);

M4 : (0, 0, 1, 1), (0, h, h, 1), (0, h, 1, 1), (h, 0, h, 1), (h, 0, 1, 1);

M5 : (0, 1, 0, 0), (0, 1, 0, h), (0, 1, h, 0), (0, 1, h, h), (h, 1, 0, 0);

M6 : (0, 1, 0, 1), (0, 1, h, 1), (h, h, 0, 1), (h, h, h, 1), (h, 1, 0, h);

M7 : (0, 1, 1, 0), (0, 1, 1, h), (h, h, 1, 0), (h, h, 1, h), (h, 1, h, 0);

M8 : (0, 1, 1, 1), (h, h, 1, 1), (h, 1, h, h), (h, 1, h, 1), (h, 1, 1, h);

M9 : (1, 0, 0, 0), (h, 0, 0, 0), (h, 0, 0, h), (h, 0, h, 0), (h, 0, h, h);

M10 : (1, 0, 0, 1), (h, 0, 0, 1), (h, h, 0, h), (1, 0, 0, h), (1, 0, h, h);

M11 : (1, 0, 1, 0), (h, 0, 1, 0), (h, 0, 1, h), (h, h, h, 0), (1, 0, h, 0);

M12 : (1, 0, 1, 1), (1, 0, h, 1), (1, 0, 1, h), (1, h, h, h), (1, h, h, 1);

M13 : (1, 1, 0, 0), (h, h, 0, 0), (1, h, 0, 0), (1, h, 0, h), (1, h, h, 0);

M14 : (1, 1, 0, 1), (h, 1, 0, 1), (1, h, 0, 1), (1, 1, 0, h), (1, 1, h, h);

M15 : (1, 1, 1, 0), (h, 1, 1, 0), (1, h, 1, 0), (1, h, 1, h), (1, 1, h, 0);

M16 : (1, 1, 1, 1), (h, 1, 1, 1), (1, h, 1, 1), (1, 1, h, 1), (1, 1, 1, h).

E.g., the adapted small cube M3 containing the vertex (0, 0, 1, 0) contains from its 15 other
vertices only four vertices (0, 0, 1, h), (0, h, h, 0), (0, h, 1, 0) and (0, h, 1, h).

Let us denote M17 = (h, h, h, h). It is not hard to ascertain that
⋃17

i=1 = C. Further, one
can permissible place maximally 1 point into each of the adapted small cubes.

Now, the pigeon-hole principle gives f(4) ≤ 17.

Remark. Let us note that the authors in [1] proved not only f(4) = 17, but � besides others
� also the fact that the only con�guration with f(4) = 17 consists of 16 vertices of the cube
C and its centre.

References

[1] V. Bálint, V. Bálint jr.: On the number of point at distance at least one in the unit

cube. Geombinatorics 12, 157�166 (2003).
[2] V. Bálint, V. Bálint jr.: On the maximum number of points at least one unit away

from each other in the unit n-cube. Period. Math. Hungar. 57(1), 83�91 (2008).
[3] V. Bálint, V. Bálint jr.: Placing of points into the 5-dimensional unit cube. Period.

Math. Hungar. 65(1), 1�16 (2012).
[4] V. Bálint, V. Bálint jr.: Packing of points into the unit 6-dimensional cube. Contrib.

Discrete Math. 7(1), 51�57 (2012).
[5] K. Böröczky Jr.: Finite Packing and Covering. Cambridge Univ. Press, 2004.
[6] R.K. Guy: Problems. The Geometry of Linear Metric Spaces. Lecture Notes in Math.,

Vol. 490, Springer, Berlin 1975, pp. 233�244
[7] A. Joós: On the number of points at distance at least 1 in the 5-dimensional unit cube.

Acta Sci. Math. 76(1-2), 217�231 (2010).



P. Adamko: Number of Points at Distance at Least 1 in the Unit Four-Dimensional Cube 3

[8] L. Moser: Poorly formulated unsolved problems of combinatorial geometry.
Mimeographed, 1963.

[9] W. Moser, J. Pach: Research Problems in Discrete Geometry. Privately published
collection of problems, 1994.

[10] I. Talata: Covering the dimensional unit cube by n rectangular boxes of smaller diam-

eter. Studies of the University of �ilina, Math. Series 24, 65�76 (2010).

Received October 24, 2018; �nal form June 03, 2019




