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Abstract. We give an elementary proof of the following theorem: The maximum
number of points which one can choose in the unit four-dimensional cube so that
all mutual distances are at least one is 17.
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1. Introduction

Denote by f(n) the maximum number of points which one can choose in the unit n-dimensional
cube so that all mutual distances are at least 1. Such placing of points we call permissible
placing. Trivially, f(n) = 2" for n = 1,2,3. A first reliable proof of the result f(4) = 17 can
be found in the paper [1] (see [5]). In higher dimensions there are only estimates, see, e.g.,
12,3, 4, 7, 10).

This problem appears in [8] as problem 41, and was repeated besides others in [6, p. 244|,
[9] and some others.

2. The theorem
Theorem. f(4) =17.

Proof. Let us consider the 4-dimensional unit cube C' = (0, 1)*. So, point (21, z, z3,14) € C
if and only if x; € (0,1) for i = 1,2,3,4. The coordinates of 2% vertices of C are all ordered
quadruples consisting of zeros and ones. The centre of C' has the coordinates (h,h,h,h),
where h = % If we consider the 16 vertices and the centre of C, we get f(4) > 17.

We dissect the unit cube C' into 16 congruent small cubes ¢;. Fach ¢; contains exactly
one vertex of the cube C', so the small cube ¢; is uniquely determined by this vertex. The
ordered quadruple (z1, s, x3,24) is a vertex of some small cube if and only if x; € {0, h, 1}
for i = 1,2,3,4. So, our small cubes have exactly 3* = 81 vertices. From every small cube
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we remove all its vertices and then we add exactly the specified vertices. So, we get the
undermentioned set of 16 adapted small cubes.

M: (0,0,0,0), (0,0,0,h), (0,0, h,0), (0,0,h,h), (0,h,0,0);
M,: (0,0,0,1), (0,0, h,1), (0,h,0,h), (0,h,0,1), (0,h, h,h);
Ms: (0,0,1,0), (0,0,1,h), (0,h,h,0), (0,h,1,0), (0,h,1,h);
My: (0,0,1,1),(0,h,h,1),(0,h,1,1), (h,0,h,1), (h,0,1,1);
Ms: (0,1,0,0), (0,1,0,h), (0,1, h,0), (0,1,h,h), (h,1,0,0);
Ms: (0,1,0,1),(0,1,h,1), (h,h,0,1), (h,h,h,1), (h,1,0,h);
M- (0,1,1,0), (0,1,1,h), (h,h,1,0)
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,(h,1,1,1), (1,h,1,1), (1,1,h,1), (1,1,1,R).

E.g., the adapted small cube M3 containing the vertex (0,0,1,0) contains from its 15 other
vertices only four vertices (0,0,1,h), (0,h,h,0), (0,h,1,0) and (0, h, 1, h).

Let us denote M7 = (h, h, h,h). Tt is not hard to ascertain that Ull; = C. Further, one
can permissible place maximally 1 point into each of the adapted small cubes.

Now, the pigeon-hole principle gives f(4) < 17. O

Remark. Let us note that the authors in [1] proved not only f(4) = 17, but — besides others
— also the fact that the only configuration with f(4) = 17 consists of 16 vertices of the cube
C and its centre.
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