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Abstract. In this paper, we define the concept of “a rectangle defined by a circle
that forms Pascal points and a Pascal-points circle” in an orthodiagonal quadri-
lateral. This rectangle is inscribed in the given orthodiagonal quadrilateral. We
show that every orthodiagonal quadrilateral has an infinite set of such rectangles.
We also investigate the properties of this set of rectangles: we show that the angle
between the diagonals is equal in all the rectangles and we find the rectangle with
the smallest area and perimeter, and more. We also examine the intersection of
this set of rectangles with another set of rectangles inscribed in the orthodiagonal
quadrilateral. This second set satisfies the condition that the sides of the rectan-
gles are parallel to the diagonals of the given quadrilateral. Finally, we prove the
uniqueness of the set of rectangles defined by circles that form Pascal points and
Pascal-points circles.
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1. Introduction: General properties and definitions

First, we shall recall some definitions and properties that we shall use in the present paper:
“Pascal points on the sides of a quadrilateral” and “a circle that forms Pascal points”. For a
convex quadrilateral ABC'D in which E is the point of intersection of the diagonals and F
is the point of intersection of the extensions of sides BC' and AD, a circle that forms Pascal
points is any circle that passes through points £ and F' and also through interior points of
sides BC and AD (see Figure 1).

Let w be a circle that forms Pascal points, and let M = w N BC, N =wN AD, and K and
L be the points of intersection of w with the extensions of diagonals BD and AC, respectively
(see Figure 2).
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Figure 1 Figure 2 Figure 3 Figure 4

We further denote P = KN N LM and Q = KM N LN. According to Pascal’s Theorem,
in the crossed hexagon KK NF ML inscribed in the circle w, the points A, P, and B are
collinear and, in addition, it can be proven that P lies between A and B (see [2]). In a
similar manner, we can prove that in the crossed hexagon EK M F N L that is also inscribed
in the circle w, the point @ belongs to the segment C'D. Therefore, the points P and @) are
called “Pascal points” formed by the circle w on the sides AB and C'D. Different circles that
pass through the points £ and F' and through interior points of the sides BC' and AD form
different pairs of Pascal points P and (). We denote this set of circles by {w;}.

For a pair of Pascal points P and @, the “Pascal-points circle opg” is the circle whose
diameter is the segment PQ (see [5]). We denote this set of circles by {opq,}-

In the present paper, we consider the case in which the quadrilateral ABCD is orthodi-
agonal, in other words, its diagonals intersect at a right angle.

General data

Throughout this paper, ABCD is an orthodiagonal quadrilateral in which E is the point of
intersection of the diagonals and F' is the point of intersection of the extensions of sides BC'
and AD.

1. w; is an arbitrary circle (whose center is at O;) that passes through points E and F and
through interior points of sides BC' and AD (we denote M; = w; N BC, N; =w; N AD,
Ki = W; ﬂBD, and Lz = W ﬂAC},

P; and Q; are a pair of Pascal points formed by the circle w; on the sides AB and CD;
op0, is a Pascal-points circle P; and @Q); (see Figure 3).

2. wgr 18 a circle whose diameter is the segment E'F' that passes through the interior points
My and Ny of the sides BC' and AD (we denote My = wgr N BC, Ny =wgrNAD,
K(] = wgr N BD, and LO = wgr N AC),

Py and Qg are a pair of Pascal points formed by the circle wgpr on the sides BC and AD;
TRy, s a Pascal-points circle Py and () (see Figure 4).

Property 1. For an orthodiagonal quadrilateral ABCD, there are an infinite number of
circles that form Pascal points (see [5, Theorem 1]).

Property 2. The Pascal-points circle op,q, intersects the sides BC' and AD at points M,
and V;, N; and W;, respectively (see Figure 5), and there holds (see |5, Theorem 2|)
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(i) the segment V;W; is a diameter of the circle op,g,;
(ii) the quadrilateral P;V;Q;W; is a rectangle.

Note: in a particular case in which one of the sides BC' or AD is tangent to the circle op,q,,
the pairs of points M; and V; or N; and W, coincide. In this case, one of the segments, V;N;
or M;W;, will be a diameter.

From Property 2 follows that for every orthodiagonal quadrilateral ABC D, each Pascal-
points circle defines a rectangle inscribed in this quadrilateral.

Property 3. In addition to item 2 of the general data, let G be the point of intersection of
the sides AB and C'D, and let Ygg be a circle whose diameter is the segment EG. Then there
holds (see |5, Theorems 3-4|)

(i) the circle op,q, intersects the sides of the quadrilateral ABCD at 8 points;

(ii) the angle FEG between the diameters EF and EG of the circles wgp and Ype equals the
angle VoTyQo between the diameters PyQo and VoWy of the circle op,q, (see Figure 6).

Figure 5 Figure 6

We now define precisely the concept of “a rectangle defined by a Pascal-points circle”.

Definition 1. Let PV QW be a rectangle inscribed in the orthodiagonal quadrilateral ABC' D,
where the vertices P and () of the rectangle are Pascal points formed by the circle w on the
sides AB and CD of the quadrilateral. The vertices V' and W of the rectangle are the points
of intersection of the Pascal-points circle opg with the sides BC' and AD. Then we call
PVQW “the rectangle defined by the circle w and the Pascal-points circle opg”.

Note: Under circumstances where it is clear which circle forms the Pascal points P and @), we
can call rectangle PVQW ‘“the rectangle defined by the Pascal-points circle opg”, for short.

Corollary 1. For each orthodiagonal quadrilateral ABCD, there exists an infinite set {w;}
of circles that form Pascal points P, and Q;. This set defines an infinite set {op,q,} of Pascal-
points circles, which further defines an infinite set { P,V;Q;W;} of rectangles inscribed in the
quadrilateral ABC'D. We denote this set of rectangles by M.
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The article contains five sections: In Section 2, we study the properties of rectangle set
M. In Section 3, we compare this rectangle set with another set of rectangles inscribed in
the quadrilateral ABC'D, whose sides are parallel to the diagonals of the quadrilateral (we
denote it by M). In Section 4, we examine the case where the sides AB and C'D are also
not parallel (ABNCD = G). In this case, there is another infinite set of circles that pass
through the points £ and G and form Pascal points on the sides BC' and AD (see [5]). We
prove that the set of Pascal-points circles defined using this set defines precisely the same set,
My, of rectangles inscribed in the quadrilateral ABC'D. Thereby we prove that M is the
only set of rectangles defined by circles that form Pascal points and Pascal-points circles.

In Section 5, we use the set M to define a new concept, “two mutually-coordinated circles
with respect to an orthogonal quadrilateral”, and we give properties of the circles that meet
this definition.

2. The properties of set of rectangles M

Theorem 1. For all rectangles from the set My, the angle between the diagonals is the same
and depends only on the quadrilateral ABCD, and not on the choice of the circle w.

Proof. Let wy and wy be two circles that form the Pascal points P, ()1 and P, )2, respectively,
on the sides AB and C'D, and let op,, and op,q, be the corresponding Pascal-points circles.
The circle op, g, intersects the sides BC' and AD at points V; and Wi, respectively, in addition
to the points M; and N; (see Figure 7). The circle op,q, intersects the sides BC' and AD
at points V5 and Wj, respectively, in addition to the points My and N,. In accordance with
item (ii) in Property 2 above, the quadrilaterals P;V;Q1W; and P,V,Q2 W, are rectangles.

We shall prove that the angle between the diagonals P}y and V;W; in the first rectangle
equals the angle between the diagonals P»()s and VoW5 in the second rectangle. Through
point F', which is common to both circle wy and wy, we draw two tangents: F'X is tangent to
the circle wy, and F'Y is tangent to the circle ws. We denote by ¢ the acute angle between
the tangents (angle X F'Y in Figure 7).

Now we shall prove that the angle between the diagonals P;(Q); and P»(Q)s equals . First,
we prove that for any circle w that forms Pascal points P and () there holds: The straight
line PQ is perpendicular to the diameter K L of the circle w (see Figure 8). Since both angle
KML and angle K NL are equal to 90°, the segments KN and LM are altitudes to the sides
QL and QK, respectively, in the triangle QK L. These altitudes intersect at the point P. It
follows that the third altitude, which issues from the vertex ) to the side KL, is contained
in the line QP. Thus, we obtain PQLKL.

Therefore, in our case, P1Q1 LKL, and P,Qsl KoLs (see Figure 7). In the circle wy, the
inscribed angle F'K1 F is equal to the angle X F'E between the tangent X F' and the chord F'E
(see Figure 9). In a similar manner, in the circle wy, the angle FK,E is equal to the angle
Y FE. Therefore there holds

AFK\F — AFKyE =4AXFFE —AYFFE.
Since the angle 'K E is an exterior angle of the triangle F'/(; K5, there holds
AFK\FE — AFKyE = LK \FK,.

On the other hand, A XFE — LAY FE = L XFY = ¢, and therefore LK, F Ky = .
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The quadrilaterals FK1FL, and FK;ELy are inscribed in circles w; and wsy, respectively.
Therefore, the opposite angles of the quadrilaterals satisfy

LAFL1E=180°— LAFK FE and £FLyFE = 180° — L F Ky F.
Hence, for angle L1 F Lo, being an interior angle in triangle L; F'Lo, there holds
AL 1FLy = AFLyFE — AFL1Ly = (180° — LFKsFE) — (180° — LF K1 F)
= AFK\E — AFKyFE = ¢.

We obtained that L K1 F Ky = £L1F Ly. In addition, there holds £ FKsFE = LF LyL; (because
the angle 'Ly L, is the supplementary adjacent of L F Ly FE). Hence it follows that the triangles

.. FL; FK,
FKyK FLyL | herefi = )
5K and oL are similar, and therefore Fl, ~ T,

We now compose the following two geometric transformations (see Figure 9): The first trans-
formation is the counterclockwise rotation by angle ¢ about point F' (we denote this rotation

by R%). The second transformation is the homothety with the center at point F' and a factor

of k = % (we denote this homothety by HE).
1

The rotation RY transforms the point L; to the point L', which belongs to the ray FL,
and satisfies F'L; = FL'. The rotation also transforms the point K; to the point K’, which
belongs to the ray F'K, and satisfies F'K; = FK’'. Therefore the rotation transforms the line
L, K, into the line L'K’.

Rotations satisfy the following property: “the angle between the original straight line and the
image line equals the angle of rotation”. Therefore, since R% (L1K,) = L'K’, it follows that
(le K ') = p.

The homothety H% transforms the point L’ to the point L”, which belongs to the ray F' L, and

: "no__ /A A _FL2
satisfies FIL" = FL'- k= FL, 7T

HE(K') = Ks.
Thus we have obtained that homothety Hp. transforms the line L'K’ into the line LyK>.
From properties of homothety, it follows that the straight lines L' K’ and L, K5 are parallel.
Therefore the angle between the lines L;K; and Ly K> is equal to the angle between the
straight lines L1 K7 and L'K’. In other words, (LlK/I,-EKé) = .
We have shown above that the lines P;(); and P»(), are respectively perpendicular to the
straight lines L; K7 and Ly K5. Therefore there holds that the angle between P;(); and P>
equals ¢. We obtained that the angle between the diagonals P, and P>, of the rectangles
PViQ Wy and PVoQoWs equals . Now we shall calculate the angle between diagonals VW)
and VoWs.
First, we shall prove that the diagonal V;W; is perpendicular to the straight line F'O; (O; is
the center of the circle wy). We use the method of complex numbers in the geometry of the
plane. The principles of the method and formulas that we shall use appear, for example, in
|8, pp. 154-181].
We choose a system of coordinates whose origin is at point O; (the center of circle w;), and
the unit length equals O1FE. In this system w; is the unit circle, and the equation of the
unit circle is z -z = 1, where z and z are the complex coordinate and the conjugate of the
coordinate of an arbitrary point Z that lies on circle w;.
Let e, f, k, [, m, and n be the complex coordinates of the points E, F, Ky, L1, My, and Ny,
respectively. These points lie on the unit circle, and therefore there holds:

1 1 1 1

st 1 g 1 51 - 1 Tt
e=-, f—f, k:—k, l—l, m=_— and n=—. (1)

= FLy. In other words, L” is the point L,. Similarly,
1
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In this chosen system, one can express the coordinates v and w of points V4 and W; (and their
conjugates) using the coordinates f, m, and n of the points I, M;, and N; (which belong to
the unit circle) as follows (see the proof of Theorem 2 in |[5]):

2mn — fm+ fn . 2f—n+4+m

v = and 7= ————,
m+n f(m+n)

2mn — fn+ fm . 2f—m+n

w = and W= -—————.
m+n f(m+n)

The straight lines VW, and F'O; are perpendicular if there holds
(w =) (F~0) + (@ —7) (f — 0) = 0. 2)

For the origin O; holds = 0 = 0. Let us substitute the corresponding expressions for f, f,
v, U, w, and W in the left-hand side of (2):

(2mn—fn+fm_2mn—fm+fn) 1 +(2f—m—|—n_2f—n+m) iy

m+n m+n f f(m+n) f(m+n)
_ =2fn+2fm 1 -2m+2n , 2(m-n) 2(n-m)
B m+n .?+f(m+n).f_ m+n * m+n =0

In other words, (2) is satisfied and therefore V11, L FOy, as we set out to prove.

Note too, that the line F'.X is also perpendicular to the line F'O; (because F'X is tangent to
the circle wy at the point F, and FO; is a radius at the point F'). Therefore the lines V; W)
and F'X are parallel. Similarly we prove that the line V5W, is parallel to the line F'Y', which
is tangent to the circle wo at the point F. Therefore the angle between the line V; W, and the
line V5W5 equals the angle between the tangents F'X and F'Y, which is equal to .

We obtained that the angle between the two diagonals, V;W; and VW5, of the rectangles
PViQWy and PVo@Qo.Wsy equals . Let H be the point of intersection of the diagonals
P1@Qy and P>, and let U be the point of intersection of the diagonals V;W; and VoW; (see
Figure 10). The counterclockwise rotation by angle ¢ about the point H transforms the line
PQq into the line P»()-, and the counterclockwise rotation by angle ¢ about the point U
transforms the line V; W) into the line V4W,. Therefore there holds that the angle between
the diagonals of the rectangle P;ViQW; is equal to the angle between the diagonals of the
rectangle PoVoQoWs. O

The following corollary follows from Theorem 1 and item (ii) of Property 3 above:

Corollary 2. Given the general data (see above), then

1. in the case where the extensions of the sides AB and CD intersect at the point G, the
angle V;T;Q); between the diagonals in every rectangle P;V;Q;W; from the set My is equal
to the angle FEG (see Figure 11);

2. in the case where the sides AB and C'D are parallel (in other words, the quadrilateral
ABCD is a trapezoid), the angle V;T;Q; between the diagonals is equal to the angle FEJ,
where J € BC and EJ || AB (see Figure 12).

Explanation: In the case where the sides AB and C'D are parallel, we consider the point of
their intersection, GG, as a point at infinity. Therefore, every straight line that is parallel to
AB and CD (and in particular, line £.J) passes through the point G. Therefore, in this case,
it holds that LK FEJ = LV;T;Q);.
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Let P V;Q;W; be an arbitrary rectangle from the set M. We denote the angle £ P,T;V;
between the diagonals of the rectangle by « (see Figures 11 and 12).

The ratio PM between adjacent sides equals tan %a. Therefore, for every two rectangles,
PViQ Wy and PVoQoWsy, from the set M, there holds that 5122/1 = 5222/2 In other words,
11 22

every two rectangles from the set M, are similar. Thus, we may conclude the following

Corollary 3. Every two rectangles from the set M, are similar.

From Corollary 2 follows that if the segments EF and FEG are perpendicular
({LFEG = 90°), then in each rectangle from the set M one of the angles between the diago-
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nals equals 90°. In other words, in this case all rectangles from the set M are squares. This
leads to the following corollary:

Corollary 4. Let ABCD be an orthodiagonal quadrilateral in which the diagonals intersect
at the point E and the extensions of the sides BC' and AD intersect at the point F. Then
each of the following two conditions is sufficient for the set Mg to be a set of squares inscribed

in the quadrilateral ABCD:

1. The extensions of the sides AB and CD intersect at the point G, and the angle FEG is
equal to 90° (see Figure 13).

2. ABCD 1is an isosceles trapezoid.

Figure 13

Item 2 of Corollary 4 follows from item 2 of Corollary 2 and from the fact that in the
isosceles trapezoid the straight line E'F is perpendicular to the bases AB and C'D, and
therefore also perpendicular to the line E.J, which is parallel to the bases.

Theorem 2. Given the general data (see above), then among all the rectangles of the set
Mg, the one with the minimal perimeter and area is the rectangle defined by the circle wpp
and the Pascal-points circle op,g, .

Proof. Let w; be an arbitrary circle that forms the Pascal points P; and @);. We first prove
that the length of the segment P;(Q); depends only on the length of the diameter of circle w;
and the angle of viewing of the diameter K;L; from the point @Q; (see Figure 14).



14 D. Fraivert: A Set of Rectangles Defined by Pascal-Points Circles

Let the angle of viewing of the segment K;L; from point Q); be LK;Q;L; = [ , and let
LL;Q;Z =~. Therefore {K;Q;Z =p—~, LN;K;L; =+, and {K;L;M; =3 —~. In the
right-angled triangles K;L;N; and P;Q;N; holds

N;L; = K;L; -siny and Q;N; = P;Q; - cos~.
Hence, we obtain for the segment Q;L;: Q;L; = P,Q; - cos~y + K;L; - sin~y.

Figure 14 Figure 15

In a similar manner, in the right-angled triangles K;L;M; and P;Q;M; holds
M;K; = K;L; -sin(8 —v) and @Q;M; = P,Q; - cos(8 — ),

and hence Q;K; = P,Q; - cos(f — ) + K;L; - sin(5 — 7).
Q; K; and Q;L; are two secants of the circle w; that issue from the point ();. Therefore, there
holds Q;N; - Q;L; = Q;M; - Q; K.
We substitute the expressions for the four segments in this equality, to obtain
PQ; - cosy - (P,Q; - cosy + K;L; - sinvy)
= P,Q;cos(B —7) - (PQ; - cos(f —7) + K;L; - sin(f — 7)) .

From this, by using known trigonometric identities, we obtain, in stages,
PQi (cos®y — cos*(B — 7)) = KiL; (sin®(8 —7) —sin®~)
PO, (1 +cos2y 1+ cos(28 —2y) — KL (s1n(26 —27) 511127) ’

‘ 2 2 2 2
PiQ; (cos2y — cos(26 — 2v)) = K;L; (sin(2f — 2v) — sin27y),,
PQ; (—2sinfsin(2y — 8)) = K;L; (2sin(f — 27) cos 3),
PQ;sin 3 = K;L;cos B = P,(Q); = K;L;cot 3,
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and finally

Formula (3) is satisfied for every circle w; that forms Pascal points on the sides of an orthodi-
agonal quadrilateral, and in particular, it is satisfied for the circle wgr, whose diameter is the
segment EF' (see Figure 15). In other words, there holds that PyQo = KoLg cot £LKoQoLo.

Let us now compare the lengths of the diameters K;L; and KyLy. The sides of the angles
A KoQoLy and £ K;Q);L; are parallel in the same direction, therefore £ K;Q;L; = £ KyQoLyo.

F

Figure 16

In the circle wgp, there holds KoLy = E'F (equal diameters). In the circle w;, the segment
FEis a chord that is not a diameter, therefore K;L; > EF. Therefore K;L; > KyLj, meaning
that there exists a number A\ > 1, for which there holds K;L; = X - KyLy. Hence,

PZQZ = KZLZ cot KKZQZLZ =\ K()LO cot KK()Q()LO =X\ P()Qo.

In other words:
PQ; = X - FQo. (4)

Recall that, in accordance with Theorem 1, the following holds for the orthodiagonal quadrilat-
eral ABC'D: In all rectangles defined by Pascal-points circles, the angle between the diagonals
is a fixed value (we denote it by «). In addition, in every rectangle, it holds that the angle
between the large side and the diagonal is equal to one half of the acute angle between the
diagonals, that is to say, %.

Therefore, for a rectangle P,V;Q;W;, defined by the circles w; and op,g, (see Figure 16), there
holds: the angle between the diagonal P;(); and the large side P;V; equals %. Therefore we
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obtain for the right-angled triangle P;Q;V; and the sides P;V; and V;Q); of the rectangle
PV;=PQicos3 and ViQ; = PQising. (5)

In particular, for two adjacent sides of the rectangle PyVoQoWy, defined by the circle wgr and
the Pascal-points circle opq,, there holds

PV = PyQo cos% and  VpQo = FPyQo sin %. (6)

Let us now consider the perimeter of the rectangle P;V;Q;W;. From the formulas (4), (5), and
(6) follows

Ppy.qw, = 2PV, + 2V,Q; = 2P,Q); cos % +2PQ; sin%
= )\ (2POQ0 COS % —|— 2P0Q0 sin %) = )\ (QP()VE) —|— 2%@0) = )‘PPOVOQOWO‘

Thus, we have obtained that Ppy,q,w, = APp,vioow, When A > 1 and consequently
Ppyv.o.w: > Pryvegow,- Let us compare the areas of the rectangles FyVoQoWy and B V,Q;W;.

SPiViQiWi = %PZQZ : V;WZ sina = % (PZQZ>2 sina = %)\2 (P0Q0)2 sin o

1 .
_ 5)\2P0Q0 - VoWpsina = AzSPoVoQoWO'

Therefore Spv,0,w; > SpryveQows- -

Theorem 3. Given the general data (see above). Then, among all the rectangles of the set
My, the only one whose sides are parallel to the diagonals of the quadrilateral ABCD s the
rectangle defined by the circle wgp and the Pascal-points circle op,q, .

Proof. Let w; be an arbitrary circle, and let P;V;Q;W; be a rectangle defined by the circles
w; and op,g,. Let us check which additional conditions will guarantee that the sides of the
rectangle P;V;Q;W; will be parallel to the diagonals of the quadrilateral ABCD.

In order to prove that the sides of the rectangle P;V;Q;W; are parallel to the diagonals of the
quadrilateral ABCD, it is sufficient to prove, for example, that P;V; || AC. The satisfaction
of this property is equivalent to the satisfaction of the proportion

AP, CV;

In order to prove the proportion (7), we return to the method of complex numbers in the
geometry of the plane. We choose a system of coordinates in which w; is the unit circle, in
other words, the origin is at the center O; of the circle w; and the length unit is equal to the
radius O;F. Using the complex coordinates of the points A, P;, B, C', and V;, one can write

the proportion (7) as follows:
p—a v—c

(8)

We express the two sides of the equation (8), using the complex coordinates of the points £,
F, K;, L;, M;, and N; that belong to the unit circle w;.

b—p b—u

Since the ratios P B and VB are real numbers, it therefore holds that
p—a p—a p—a v—c Vv—¢C U—¢C
= == and =—— == .
b—p b—p b-—D b—v b—v b-7T
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In order to obtain expressions for the numbers @, b, ¢, and p, we shall make use of the following
property:
Let U (u), X (z), Y (y), and Z (2) be four points on the unit circle, and let S (s) be the point
of intersection of the straight lines UX and Y Z. Then, for the conjugate s of the complex
coordinate s holds:

U+xr—y—=z

§=—" 9
° ur — Yz ()

Using (9), one can express @, b, ¢, and p as follows: A = FN N EL and therefore @ =
Jtnze=l. p_ pMAEK and therefore b = 22™=¢ =% o _ FAr A EL and therefore

fn—el fm—ek
c= % P =KNNLM, and in addition K;L; is a diameter and therefore, in this
. . —k— 20+m —n
case, k = —I[, and therefore the expression for p is p = [tm-k-n _ . In the
Im — kn [(m+n)
proof of Theorem 1, the expression we used for ¥ was 7 = w
f(m+n)

If we substitute the expressions for p, @, and b in the left-hand side of the equation (8), we

obtain
20+m-n _ f+n—e—lI

p—a p—a  Im+lin fn—cel
b—p o 5_]—9  fAm—e+l 20+m-—n’
fm+el Im+in

This can be transformed into the following form:

(fln + fmn + 2eln — 2el®> — lmn — fn? — In? + Pm + >n — flm) (fm + el)
(—efm+12m+ 2n+ fln — flm +Imn + fmn — flm — elm — 2el?) (fn —el)

After factoring the parentheses in the numerator and the denominator, we obtain

(l—n)(fn— fm—2el+Im+In)(fm+el)
(I4+m)(=2el — fm+Im+ fn+1n)(fn—el)’

and finally, after cancellations,

p—a (I—n)(fm+el)

b—p (I+m)(fn—el)

If we substitute the expressions for b, ¢, and o in the right-hand side of the equality (8), we
obtain

2f+m—-n _ f4+m—-e—I

U—C_@—E_ fm+fn fm—el
b—v p—7y [frtm—et+l 2f+m-n
fm+el fm+ fn

(f?m —2fmn —2fel —elm + eln + fem + flm — f>n+ fen + fln) (fm + el)
(—=f*m — fem+ flm+ f>n+2fmn — fen+ fin —2fel —elm + eln) (fm —el)

We substitute the obtained expressions in equality (8), cancel the factor fm + el and obtain
[—n
(l+m)(fn—el)
f?m —2fmn — 2fel —elm + eln + fem + flm — f*n+ fen + fin
(—=f*m — fem+ flm+ f>n+2fmn — fen+ fin —2fel —elm + eln) (fm —el)
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After cross-multiplication, collection of terms on the left-hand side, and collection of similar
terms, we obtain the following equality:
Fim? — £3In® + f22n% — fF2Pm? 4 21Pm? — 21*n® — fe*lm? + fe*in* = 0.
The left-hand side of the last equality can be factored as follows:
(fP=fAL+el— fe*) 1 (m*> —n?) = 0.

In the unit circle w; the chord M;N; is not a diameter, therefore m # 4+n; in addition [ # 0.
Thus, we obtain

P=ri+ell—fel=0 = (f?=€e)(f-1)=0. (10)

Finally, since f # [ and f # e, it follows that (10) will be satisfied only when the condition
f = —e holds. In other words, it will only hold in the case where the points ' and F' are the
ends of a diameter in the unit circle w;.

Hence, it follows that the equalities (7) and (8) are satisfied only for the circle wgp. O

3. Comparison of the set of rectangles M and M

3.1. Properties of the set M

Let ABC'D be an orthodiagonal quadrilateral. It is easy to prove that for each point P, that
is an interior point of side AB, there exists a rectangle PXZY, where X € BC, Y € AD,
Z € CD, and the sides PX and PY are respectively parallel to the diagonals AC and BD
of the quadrilateral (see Figure 17). Therefore, there exists a set of rectangles inscribed in
the quadrilateral ABCD whose sides are parallel to the diagonals of the quadrilateral. We
denote this set by M.

Figure 17

We denote by S the point of intersection of the diagonals of rectangle PXZY. For the
angle PSX between the diagonals there holds that
PX

tan (% APSX) =5y
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In other words, the magnitude of the angle depends on the location of point P on the side
AB. Namely, when the point P = P, approaches point A (see Figure 17), the length of the
side P, X; of the rectangle P, X; 7Y increases and approaches the length of the diagonal AC,
and the length of the side PY; decreases and approaches 0. In this case, the magnitude of the
angle P;S1.X; tends to 180°. When the point P = P approaches point B (see Figure 17), then
the length of the side Y5 of the rectangle P, X575Y5 increases and approaches the length of
the diagonal BD, and the length of the side P, X, decreases and approaches 0. In this case,
the magnitude of the angle PS5, X5 tends to 0°.

To summarize, when point P moves from point A to point B on the segment AB, the angle
PSX increases monotonically and scans all the values between 0° and 180°. In particular,
there is a location of the point P for which £ PSX = 90°. At this point, the rectangle PXZY
is a square. Therefore, the set of rectangles M includes a single rectangle that is a square.

It is easy to see that the area function of the rectangle PXZY is a continuous function
of the location of the point P on the segment AB. When P approaches the endpoint A or
B, the area PXZY approaches zero. Therefore the maximum area is obtained when P is at

some interior point of the segment AB.
AP

AB
therefore % =1 —t. From the similarity of triangles AAPY ~ AABD follows that

Let us prove that in the set M, there is a rectangle with a maximal area. Let t,

PY
— =t = PY =tBD.
BD

From the similarity of the triangles ABPX ~ ABAC follows that

PX

Therefore, we obtain for the area of rectangle PXZY

Spxzy = PY -PX =tBD-(1—1t)AC = (t —t*)BD - AC = 2(t — t*)Sapcp.
The function S(t) = 2(t — ¢*)Sapcp has a maximum at the point ¢ = . Therefore for P
located at the middle of the segment AB, the rectangle PXZY has a maximal area.
To summarize, in the set M, the rectangle with the maximal area is the one whose
vertices are the midpoints of the sides of the quadrilateral ABCD.

3.2. Comparing the sets M and M|

In every orthodiagonal quadrilateral ABC'D there are two sets of inscribed rectangles: the set
Mg — rectangles defined by Pascal-points circles, and the set M| — rectangles whose sides
are parallel to the diagonals AC' and BD. The sets M and M contain different rectangles.
The only rectangle that belongs to both set M, and set M is the rectangle PyV5QoW)y, which
is defined by the circle wgr and the Pascal-points circle opq,.

Table 1 shows a comparison between the properties of the rectangles from each of the sets
M@ and M”:

Corollary 5. Let ABCD be an orthodiagonal quadrilateral in which E s the point of inter-
section of the diagonals, and F' is the point of intersection of the rays CB and DA. FEvery
interior point P of the side AB is a vertex of two rectangles inscribed in the quadrilateral.
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Table 1: Comparison of the rectangles in M, and M

Property

In M”

In M@

The sides of the rectangle
are parallel to the diago-
nals of the quadrilateral.

In every rectangle, the sides
are parallel to the diagonals of
the quadrilateral ABC'D.

There is but a single rectangle
whose sides are parallel to the diag-
onals of the quadrilateral ABCD.
This is the rectangle defined by the
circles wer and opyq,-

The corresponding sides
of two rectangles are par-
allel.

The corresponding sides of ev-
ery two rectangles are parallel.

There are no two rectangles whose
corresponding sides are parallel.

The value of the angle be-
tween the diagonals of the
rectangle.

The angle varies, and gets
all the values in the range
(0°,180°).

The angle is fixed for all rectangles,
and is determined by the quadrilat-
eral ABCD.

There exists a rectangle
that is a square.

There exists a single rectangle
that is a square.

If {FEG # 90°, then there are no
squares in the set M.
If {FEG = 90°, then all rectangles
in the set are squares.

Similarity of rectangles

There is an infinite number of
pairs of similar rectangles.

Every two rectangles in the set are
similar.

Rectangle with maximal
or minimal area

There exists a rectangle with
maximal area. This is the rec-
tangle whose vertices are the
midpoints of the sides of the
quadrilateral ABCD.

There exists a rectangle with mini-
mal area. This is the rectangle de-
fined by the circles wpr and opyg,.

The first rectangle is a rectangle whose sides are parallel to the diagonals of the quadrilateral,
and the second rectangle is a rectangle defined by the Pascal-points circle opg (see Figure 18).
The point Py (the Pascal point formed by the circle whose diameter is the segment EF') is the
only point on the side AB for which the two rectangles coincide.

Figure 18
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We have seen above, that for rectangles of the set M| the angle PSX between the diagonals
of the rectangle (the angle for which B is an interior point) increases monotonically and obtains
values between 0° and 180°. Therefore, the following corollary holds:

Corollary 6. Let ABCD be an orthodiagonal quadrilateral; Mg, is the set of rectangles in-
seribed in ABCD and defined by Pascal-points circles; v is the fived value of the angles PT;V;
between the diagonals of the rectangles of the set M.

Then the point Py is the only point on the side AB which is a vertex of a rectangle inscribed
in the quadrilateral ABC'D for which the following two conditions hold simultaneously:

() the sides of the rectangle are parallel to the diagonals of the quadrilateral, and

(ii) the angle between the diagonals of the rectangle (the angle for which B is an interior
point) equals a.

4. Uniqueness of the set M, as a set of rectangles defined by circles
that form Pascal points and Pascal-points circles

Let G be the point of intersection of the sides AB and C'D. For circles 1;, that pass through
the points £ and G and form the Pascal points P; and @); on the sides BC' and AD, the
following properties are satisfied:

Corollary 7. Below are properties of circles 1;, which are the result of Property 3 (above)
and of the Theorems 1 and 3:

Property (a): For every orthodiagonal quadrilateral ABCD, there is an infinite set {1;}
of circles that pass through the points E and G and form Pascal points P; and Q; on the
sides BC' and AD. This set defines the infinite set {aijj} of Pascal-points circles. This
set of Pascal-points circles defines an infinite set {P;V;Q;W;} of rectangles inscribed in the
quadrilateral ABCD.

Property (b): Among all rectangles in set {P;V;Q;W;}, the only rectangle whose sides are
parallel to the diagonals of the quadrilateral ABCD is the one defined by both of the following
circles: by the circle Vg, whose diameter is the segment EG, and by the Pascal-points circle
0p,Qy - i which Py and Qy are Pascal points formed by g (see Figure 19).

Property (c): The angle FEG between the diameters EF and EG of the circles wgp and Ypa
equals the angle Vo' Ty Qo between the diameters PyQo and Vo Wy of the circle op,q, (see
Figure 19).

Property (d): For every rectangle of the set {P;V;Q;W,}, the value of the angle between the

diagonals is constant and depends only on the quadrilateral ABC'D and not on the choice of
the circle ;.

It is therefore natural to ask what relation exists between the rectangle PyVyQoWy, defined
using the circles wpr and op,q,, and the rectangle Py Vi Qo Wy, defined using the circles ¢ g
and op,q,- A more general question is: What is the relation between the set of rectangles
M and the set of rectangles { P;V;Q;W;} defined using the circles 1; and op,q, 7

In the following Theorem 4 we answer the first question, in Theorem 5 the general one.

Theorem 4. In addition to item 2 in the general data, it is given that PyVoQoWy is the
rectangle defined by the circles wgp and op,q,, and that Ve s a circle whose diameter is the
segment EG, where G is the point of intersection of the extensions of the sides AB and CD.
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Figure 19

Then the rectangle defined by the circles Ypg and op,q, coincides with the rectangle
PoVoQoWy. In particular, the Pascal points formed by the circle Ygg on the sides BC' and
AD coincide with the points Vo and Wj.

Proof. From Property (b) in Corollary 7 follows that the sides of the rectangle Py Viy Qo Wy
are parallel to the diagonals of the quadrilateral ABC'D. From item (ii) in Property 3, above,
and Property (c) of Corollary 7 follows that £ViToQo = LFEG = £VyTyQy. The angles

PyToVy and Py'Ty Viy are, respectively, the supplementary adjacent angles to the equal angles
VoToQo and Vo Tyy Q. Therefore there also holds £ PyToVy = £ PyTy V.

Let a be the fixed value of the angles P,/T;V; between the diagonals of the rectangles of the
set M, and, in particular, £ PyT,Vy = . Therefore, angle PyTy V(y is also equal to a. We
also note that point B is an interior point of the angle Fy/Ty Viy.

To summarize, we have obtained that the sides of the rectangle Py Vi Qo Wy are parallel to
the diagonals of the quadrilateral ABC' D, that the angle Py Ty Vi between the diagonals of
the rectangle equals «, and that the point Vi belongs to the side AB.

According to Corollary 6, point F is the only point on the side AB that is a vertex of a
rectangle that satisfies at the same time: (i) the sides of the rectangle are parallel to the
diagonals of the quadrilateral, and (ii) the angle between the diagonals of the rectangle (the
angle for which B is an interior point) equals a. Therefore, it must hold that the points F
and Vjy coincide, and therefore the points Py, Wy and Q¢ coincide with the points Vy, Qg
and Wy, respectively. O

Theorem 5. In addition to item 1 in the general data, it is given that the extensions of the
sides AB and CD intersect at the point G.

Then for every circle w;, that passes through the points E and F and defines a rectangle
PV;Q;W;, there is a circle 1}, that passes through the points E and G and defines a rectangle
P;V;Q;W; that coincides with the rectangle P,V;Q;W; (see Figure 20).

Proof. Let wgr be a circle whose diameter is the segment EF, that forms Pascal points F
and Qo on the sides AB and CD, respectively. op,q, is a Pascal-points circle, PyVoQoW) is
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F

Figure 20

the rectangle defined by the circles wgr and op,g,, and ¥ gq is a circle whose diameter is the
segment EG. Also, let LEFO; = ¢, where O; is the center of the circle w;.

Without loss of generality, we can assume that the counterclockwise rotation by the angle ¢
about point F' (we denote this by R%) transforms the straight line F'E into the line F'O; (see
Figure 21). We rotate ray GE counterclockwise about point G by the angle ¢ and obtain the
ray GZ. We denote by O; the point of intersection of the ray GZ and the midperpendicular
to segment FG.

The rotation RY transforms the tangent to the circle wgp at point F into the tangent to the
circle w;. As we saw at the end of the proof of Theorem 1, in this case there holds:

(i) The rotation R%, transforms the line PyQ)y into the line P,@;, where H is the point of
intersection of the straight lines PyQo and P;Q; (see Figure 21);

(ii) the rotation Rf; transforms line VoW, (which passes through the diagonal of the rectangle
PyVoQoWy) into the line V;W;, (which passes through the diagonal of rectangle P;V;Q;W;),
where U is the point of intersection of the straight lines VoW, and V;WW;.

Let 1; be a circle whose center is at point O; and whose radius is O;E; let P; and @); be
Pascal points formed by v, on the sides BC' and AD; and let P;V;Q;W; be the rectangle
defined by the circles ¢; and op,q, (see Figure 22).

In order to show that the rectangles P;V;Q;W; and P;V;Q;W; coincide, it is enough to show
that the Pascal points P; and @); respectively coincide with the points V; and W; or, alterna-
tively, to prove that the points V; and W, respectively coincide with the Pascal points F; and
Qi. (For example, in Figure 21, we see that the segment K;N; intersects the side BC' at the
point V; and that the ray K;M; intersects the side AD at the point W;.) In both cases, it is
assured that the Pascal-points circles op,g, and op,q, intersect, and therefore the rectangles
PV;Q;W; and P;V;Q;W; coincide.

Consider now the counterclockwise rotation by angle ¢ about the point G' (we denote this
by RE). This rotation transforms the line GE (which contains the diameter of the circle
Ype) into the straight line GO; (which contains the radius of the circle ;) (see Figure 22).
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Figure 21

Therefore, the tangent to the circle ¢ gg at point G is transformed into the tangent to the
circle ;. It thus follows that for the rotation R claims similar to (i) and (ii) of the rotation
RY% above will also hold true. In other words:

(iii) The rotation Ry, transforms the line VuWj into the line P;Q);; recall that Py Qo = VoW
is the straight line of Pascal points formed by the circle ¥ gg, where U’ is the point of
intersection of the straight lines VoWy and P;Q; (see Figure 22);

(iv) the rotation RY, transforms the line PyQ)y into the line V;W;, which contains the second
diagonal of the rectangle P;V;Q;W;, where H' is the point of intersection of the straight
lines POQO and ‘/]WJ

From Properties (i) and (iv) follows that the lines P,(); and V;W; form equal corresponding
angles with the line PyQo (see Figure 23). Therefore P;Q; || V;W;. Similarly, from Proper-
ties (ii) and (iii) follows that the straight lines V;I¥; and P;Q; form equal corresponding angles
with the line VoW (see Figure 24). Therefore, VW, || P;Q;.

Now we shall prove that the segments P;(); and V;W; lie on a single straight line, and that
the segments V;IW; and P;@); also lie on a single straight line. We check each of the possible
cases:

1. We assume that the segments P;Q); and V;W; are of equal length and lie on two different
parallel straight lines. In this case, the quadrilateral V; P,Q;W; is a parallelogram. There-
fore, the segments F;V; and Q;WW; are parallel.

Therefore, since P;, V; € AB and Q);,W; € CD, we obtain that the straight lines AB and
C'D are parallel. This is contrary to the datum that states that the straight lines AB and
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Figure 24

Figure 22

CD intersect (at point G).

2. In a similar manner, we can prove that it is impossible that the segments V;IW; and P;Q);
lie on two different parallel straight lines together with V;W; = P;Q);.

3. We assume that the segments P;Q; and V;W; lie on different parallel straight lines and
P,Q; # V;W;, and also that the segments V;W; and P;(@); lie on different parallel straight
lines and V;W; # P;Q);.

Without losing generality, we assume that V;W; > P,Q; and P;Q); > V;W;, as described

F
A
Yip.
Wi 3
Q SE_
il AT
Pj
D W, Q C G

Figure 25



26 D. Fraivert: A Set of Rectangles Defined by Pascal-Points Circles

in Figure 25. We denote by 7; the point of intersection of the diagonals of the rectangle
P,V;Q;W;, and by Tj the point of intersection of the diagonals of the rectangle P;V;Q;W;.
In the triangle GV;W; there holds: the segment P;(); (whose ends lie on sides GV; and
GW;) is parallel to the third side V;W;. Therefore, the straight line 7;7;, which passes
through the midpoints of the segments P;Q); and V;W;, also passes through the vertex G.
Similarly, in the triangle F'P;Q; there holds: the segment V;WW; (whose ends lie on sides
FP; and F(Q),) is parallel to the side P;();. Therefore, the straight line 7;7;, which passes
through the midpoints of the segments P;(); and V;W;, also passes through the vertex F'.
Hence, it follows that the points F' and G belong to the straight line 775, or equivalently,
points 7; and T belong to the straight line /'G. On the other hand, the points 7; and T}
are interior points of the plane angle ABC, the angle whose boundaries are the rays BA
and BC.

The points F' and G belong to rays BF and BG, or, in other words, to the sides of the
angle F'BG, which is vertically opposite to the angle ABC'. Therefore, the straight line
FG and the plane angle ABC' do not intersect, and in particular, the points 7; and 7} do
not belong to the straight line F'GG. We obtained a contradiction concerning the location
of points T; and Tj relative to straight line F'G.

[t has now been proven that the cases (1) —(3) are impossible. Therefore, it must necessarily
hold true that the pair of segments P;(); and V;W; lies on a single straight line or the pair of
segments V;WW; and P;Q); lies on a single straight line.

In the case that the segments V;W; and P;Q); lie on a single straight line, there holds for
the ends of these segments V;, P; € BC and W;,Q; € AD. In this case, the points P; and V;
coincide and the points ); and W; coincide and the theorem holds.

In the case that the segments F;Q); and V;W; lie on a single straight line, there holds for the
ends of these segments P;,V; € AB and @);, W; € CD. Thus, the points V; and W; coincide
respectively with the Pascal points P; and (); and, in this case as well, the theorem holds. [

The following corollary follows from the Theorems 1, 4 and 5, and from Corollary 7.

Corollary 8. The set of circles {w;} that form Pascal points on the sides AB and CD, and
the set of circles {1;} that form Pascal points on the sides BC' and AD define the same set
My, of rectangles inscribed in the orthodiagonal quadrilateral ABCD.

5. Circles mutually coordinated relative to a quadrilateral

Definition 2. Let ABC'D be an orthodiagonal quadrilateral in which the diagonals intersect
at the point F, the extensions of opposite sides BC' and AD intersect at the point F', and
the extension of opposite sides AB and C'D intersect at the point G; w; is a circle that passes
through the points £ and F and forms Pascal points P; and @Q; on the sides AB and CD,
respectively; and 1, is a circle that passes through the points £ and G, and forms Pascal
points P; and ; on the sides BC and AD, respectively.

Then any pair of circles (w;, 1;), for which the quadrilateral P, P;Q;Q); is a rectangle, is called
a “pair of circles mutually coordinated relative to the quadrilateral ABC'D”.

For example, the circles wgr and Yo are mutually coordinated relative to the quadrilateral
ABCD.
Based on this definition, one can restate Theorem 5 as follows:
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Corollary 9. For any circle w; that forms Pascal points on the sides AB and C'D, there
exists a circle ¢; that forms Pascal points on the sides BC' and AD and which is coordinated
with w; relative to the quadrilateral ABCD.

For any pair of circles (w;, ;) that are mutually coordinated relative to the quadrilateral
ABCD, the following properties hold:

Property (i): In addition to the general data, let Vg be a circle whose diameter is EG, and
let O, O', O;, and O; be the centers of circles wpp, Via, wi, and 1, respectively. Then the
angles OFO; and O'GOj are oriented in the same direction and are equal in magnitude.
Property (ii): The circles w; and 1; define the same Pascal-points circle o (using two different
pairs of Pascal points). Each pair of the circles, w; and 1;, intersects the two opposite sides

of the quadrilateral at the same points through which also passes the Pascal-points circle o
defined by them.

For example, in the Figures 20 and 21, where the circles w; and v; are coordinated with
respect to the quadrilateral ABCD, it can be seen that w; intersects the sides BC' and AD
at points M; and NV;, that the circle ¢; intersects the sides AB and C'D at points M; and Nj,
and that the circle op,g, passes through the four points M;, N;, M;, and N;.
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