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Abstract. A tetrahedron in which each edge is equal to its opposite is an isosceles
tetrahedron. We will use vectors to prove the following statement: A tetrahedron
OABC! is isosceles if, and only if the centroid of the parallelepiped defined by the
three edges OA, OB, and OC' is an ex-center of the tetrahedron OABC.
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1. Characterization of an isosceles tetrahedron

A tetrahedron in which each edge is equal to its opposite is an isosceles (equifacial) tetra-
hedron. There are many characterizations of an isosceles tetrahedron. Recently, MAZUR |3|
has published two theorems characterizing an isosceles tetrahedron. Many other characteri-
zations are listed on pages 94-102 of [1]. Among them, the most striking theorem to us is the
following.

Theorem 1 (See Theorem 307 of [1], and [2]). A tetrahedron is isosceles if, and only if the
four faces of a tetrahedron have the same area.

In order to introduce other ideas, we need following definitions.

Definition 1. An outside sphere of the tetrahedron OABC' tangent to all the planes OAB,
OAC, OBC, and to the triangle ABC' simultaneously is called an ez-center. A sphere that
circumscribes (inscribed in) a tetrahedron is called a circum-sphere (in-sphere) and its center
a circum-center (in-center).

Note: On pages 74-75 in [1], “truncs” and “escribed” spheres of a tetrahedron are defined.
Please note that escribed spheres in truncs are our definition of ex-spheres. There are exactly
four ex-spheres (see Theorem 250 of [1]), while there is only one in-sphere to a tetrahedron.

Some known equivalent statements to being an isosceles tetrahedron related to this paper
are listed below.
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Theorem 2. The following statements are equivalent.
(1) A tetrahedron is isosceles.

(2) The circum-center and the in-center of a tetrahedron are identical (see |1, Theorem 304];
also, see [2]).

(3) The circum-center and the centroid of a tetrahedron are identical (see [1, Theorem 298].
Also, see the statement at the end of the proof of Theorem 3 in [3]).

It is our purpose to expand Theorem 2 using Theorem 1 in terms of ex-centers and
centroids. We use vectors to prove our results. For this, let us introduce notations.

Notations: Let OABC be a tetrahedron. Let OA = a, OB = l;, OC = & We denote the
parallelepiped defined by the three edges, OA, OB, and OC by I'. Let O’ be the diagonally
opposite vertex of O in I'. Thus 00" = @+ b+ ¢ We denote the volume of T by 7.
Then the volume of the tetrahedron OABC' is éy. Let M be the point defined by OM =

%(OTA +OB+ Ot’) The point M is the centroid (the center of gravity) of the parallelepiped

I'. Let G be the point defined by OG = 1 (0?1 Y OB+ ot*). Then G is the centroid of the

tetrahedron OABC. (For your information, if the point S is defined by the vector equation
OS = 4(@+b+ 7). Then S is the centroid of the triangle ABC')

Theorem 3. The following statements are equivalent.
(1) A tetrahedron OABC' is isosceles.
(2) The centroid G of the tetrahedron OABC' is the in-center of the tetrahedron.
(3) The centroid M of the parallelepiped T is an ex-center of the tetrahedron OABC.

Remark. The equivalence (1) <= (2) in Theorem 3 can be obtained from Theorem 2, or see
Theorems 300 and 303 of [1]. In view of Consequence 305 in [1], the ex-center and the centroid
of I' could have been a part of this statement, but it is not. So it became the motivation of
this paper. We listed three equivalent statements in Theorem 3 because the proofs of these
equivalences are almost identical using the next lemma.

Lemma 1. Let O" be a point defined by OO" = t(@ + b+ &) for some 0 < t < 1. Let
AB=b—d =1 and AC = ¢ —d = U. Then the distance from O" to the planes OAB, OAC,
OBC, and ABC are by ol ol 3¢ = 1y respectively.

l@axb||” laxell” wxe| llaxall’

Proof. The tetrahedron OABO” has the volume

100" ax b = ctl(@+b+¢)-axb| =t axb| =t

| =

Since the area of the triangle OAB is 1||d@ x b|, the distance from O” to the plane OAB is
given by
‘ %tfy _ try
Sllax bl @ x bl

Similarly, we can show that the distances from O” to the planes OAC and OBC to be

t
————— and 474 ,
@ x &l 16 % |
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respectively. Next, let us find the distance from O” to the plane ABC. Note that 4 x U =
bx @—bxd—dxé Since AO" = t(d+b+¢) — @ = th+ t&— (1 — )d, the volume of the
tetrahedron O”ABC' is given by

LAD" (@ % B)| = L |(th+1E— (1= 0)@) - (bx E=Fxa—adx7)
= | —thax e bxa—(1-1a-Fx?|
Since b-@x &= —ad-bx cand - b x d’:—(i-gxawe have the volume of the tetrahedron

O"ABC is L X B B B
g 140" (i@ x v)] :6}ta.bx5+ta.bx5—(1—t)a-bx5\

1 I T
—6|3t—1||a-bxc|—6|3t 1]ry.

Hence the distance from O” to the plane ABC'is given by

g3t =1y 3t —1Jy
slaxall  [lax 7]

Proof of Theorem 3. Suppose the tetrahedron OABC' is isosceles. Then we have
[@x 7| = [[@x bl = [[¢x | =llax].

Let O" defined by 00" = #(@ + b+ @) as in Lemma 1. Suppose O” is equidistant from the
planes OAB, OAC, OBC, and ABC. Then we have

by ty ty  [3t—1]y
l@axb| laxel oxe)|  laxv|

This implies that ¢ = |3t —1|. Then ¢t =1 or t = 1

Suppose t = L. Then 00" = %(6—1—5—1— ¢)= OM so that M is an ex-center of the tetrahedron
OABC.

Suppose t =

OABC.
Therefore (1) implies (2) and (3).

N

. Then OO" = H@+b+¢) = OG so that G is the in-center of the tetrahedron

=

Conversely, suppose M, given by OM = %( +b+ ¢), is an ex-center of the tetrahedron
OABC. By Lemma 1, we have
2 _ 2 Y Y
2||u x 7| ﬂMva ﬂwxd\ Naxﬂ
so that ||@x @|| = |@x b|| = ||bx &|| = [|@ x &||. Similarly, if G is given by OG = L(@+b+¢)

is the in-center of the tetrahedron OABC, then we have

Y Y Y Y
dlax o] 4alaxv  4pxa  4llax 7l
by Lemma 1. Again, we have that |7 x 7| = [|@ x b = ||b x &|| = ||@ x &||. By Theorem 1,

we know that “(3) implies (1)” and “(2) implies (1)”.
This proves Theorem 3. O
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Corollary 3.1. Let o be the volume of an isosceles tetrahedron. Let 3 be the area of a face
of the 1sosceles tetrahedron.

(1) An ex-sphere of the isosceles tetrahedron has the radius sa,

B

(2) The in-sphere of the tetrahedron OABC' has the radius Z—g.
Proof. From the proof of the theorem, the ex-radius and inradius of the isosceles tetrahedron
OABC' are 7 _ So 3% nd i _ o 3704’ respectively. O

Maxb| 28 B Alaxb| 48 28

Lemma 2. Recall that O is the diagonally opposite point of O of the parallelepiped T'. Let €
be the parallelepiped having O'A, O'B, and O'C as edges. Then O is the centroid of €.

Proof. Let T be the centroid of the parallelepiped €). Note that O'A = —(5—1— é), O'B

—(@+¢), 0'C = —(b+@). Hence, OT = OO’ + 1| O"A+O'B+0'C| = 00’ — (@+b+¢) = 0.
So T = O, i.e., O is the centroid of €. O

Corollary 3.2. The point O is an ex-center of the tetrahedron ABCO' if, and only if the
parallelepiped T is a rectangular box. (If T is a cube, then the tetrahedron ABCO' is a reqular
tetrahedron.)

Proof. Suppose O is an ex-center of the tetrahedron ABCO’. Hence, the tetrahedron ABCO’
is isosceles by Lemma 2 and Theorem 3. So O’'A = BC, O'B = AC, and O'C' = AB. If we
let A, B',C" be the diagonally opposite points of A, B, C in I respectively. Then O’A = OA,
O'B =0B', and O'C = OC’". So we have OA" = BC, OB’ = AC, and OC’" = AB. But the
quadrilateral OBA'C' is a parallelogram, and the diagonals OA’" = BC' implies that OBA'C
is a rectangle. Similarly, OAC'B, and OCB’A are rectangles. Therefore, I' is a rectangular
box.

Conversely, suppose I' is a rectangular box. Then the tetrahedron ABCO’ is isosceles. By
Lemma 2, O is the centroid of 2. By Theorem 3, O is an ex-center of the tetrahedron
ABCO'. ]
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