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Characterization of an Isosceles Tetrahedron
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Abstract. A tetrahedron in which each edge is equal to its opposite is an isosceles
tetrahedron. We will use vectors to prove the following statement: A tetrahedron
OABC is isosceles if, and only if the centroid of the parallelepiped de�ned by the
three edges OA, OB, and OC is an ex-center of the tetrahedron OABC.
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1. Characterization of an isosceles tetrahedron

A tetrahedron in which each edge is equal to its opposite is an isosceles (equifacial) tetra-
hedron. There are many characterizations of an isosceles tetrahedron. Recently, Mazur [3]
has published two theorems characterizing an isosceles tetrahedron. Many other characteri-
zations are listed on pages 94�102 of [1]. Among them, the most striking theorem to us is the
following.

Theorem 1 (See Theorem 307 of [1], and [2]). A tetrahedron is isosceles if, and only if the
four faces of a tetrahedron have the same area.

In order to introduce other ideas, we need following de�nitions.

De�nition 1. An outside sphere of the tetrahedron OABC tangent to all the planes OAB,
OAC, OBC, and to the triangle ABC simultaneously is called an ex-center. A sphere that
circumscribes (inscribed in) a tetrahedron is called a circum-sphere (in-sphere) and its center
a circum-center (in-center).

Note: On pages 74�75 in [1], �truncs� and �escribed� spheres of a tetrahedron are de�ned.
Please note that escribed spheres in truncs are our de�nition of ex-spheres. There are exactly
four ex-spheres (see Theorem 250 of [1]), while there is only one in-sphere to a tetrahedron.

Some known equivalent statements to being an isosceles tetrahedron related to this paper
are listed below.
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Theorem 2. The following statements are equivalent.

(1) A tetrahedron is isosceles.

(2) The circum-center and the in-center of a tetrahedron are identical (see [1, Theorem 304];
also, see [2]).

(3) The circum-center and the centroid of a tetrahedron are identical (see [1, Theorem 298].
Also, see the statement at the end of the proof of Theorem 3 in [3]).

It is our purpose to expand Theorem 2 using Theorem 1 in terms of ex-centers and
centroids. We use vectors to prove our results. For this, let us introduce notations.

Notations: Let OABC be a tetrahedron. Let ~OA = ~a, ~OB = ~b, ~OC = ~c. We denote the
parallelepiped de�ned by the three edges, OA, OB, and OC by Γ. Let O′ be the diagonally
opposite vertex of O in Γ. Thus ~OO′ = ~a + ~b + ~c. We denote the volume of Γ by γ.
Then the volume of the tetrahedron OABC is 1

6
γ. Let M be the point de�ned by ~OM =

1
2

(
~OA+ ~OB + ~OC

)
. The point M is the centroid (the center of gravity) of the parallelepiped

Γ. Let G be the point de�ned by ~OG = 1
4

(
~OA+ ~OB + ~OC

)
. Then G is the centroid of the

tetrahedron OABC. (For your information, if the point S is de�ned by the vector equation
~OS = 1

3
(~a+~b+ ~c). Then S is the centroid of the triangle ABC.)

Theorem 3. The following statements are equivalent.

(1) A tetrahedron OABC is isosceles.

(2) The centroid G of the tetrahedron OABC is the in-center of the tetrahedron.

(3) The centroid M of the parallelepiped Γ is an ex-center of the tetrahedron OABC.

Remark. The equivalence (1)⇐⇒ (2) in Theorem 3 can be obtained from Theorem 2, or see
Theorems 300 and 303 of [1]. In view of Consequence 305 in [1], the ex-center and the centroid
of Γ could have been a part of this statement, but it is not. So it became the motivation of
this paper. We listed three equivalent statements in Theorem 3 because the proofs of these
equivalences are almost identical using the next lemma.

Lemma 1. Let O′′ be a point de�ned by ~OO′′ = t(~a + ~b + ~c ) for some 0 ≤ t ≤ 1. Let
~AB = ~b−~a = ~u and ~AC = ~c−~a = ~v. Then the distance from O′′ to the planes OAB, OAC,

OBC, and ABC are
tγ

‖~a×~b ‖
,

tγ

‖~a× ~c ‖
,

tγ

‖~b× ~c ‖
,
|3t− 1|γ
‖~u× ~v ‖

, respectively.

Proof. The tetrahedron OABO′′ has the volume

1

6
| ~OO′′ · ~a×~b | = 1

6
t |(~a+~b+ ~c ) · ~a×~b | = 1

6
t |~c · ~a×~b | = 1

6
tγ.

Since the area of the triangle OAB is 1
2
‖~a ×~b‖, the distance from O′′ to the plane OAB is

given by

3 ·
1
6
tγ

1
2
‖~a×~b ‖

=
tγ

‖~a×~b ‖
.

Similarly, we can show that the distances from O′′ to the planes OAC and OBC to be

tγ

‖~a× ~c ‖
and

tγ

‖~b× ~c ‖
,
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respectively. Next, let us �nd the distance from O′′ to the plane ABC. Note that ~u × ~v =
~b × ~c −~b × ~a − ~a × ~c. Since ~AO′′ = t(~a +~b + ~c) − ~a = t~b + t~c − (1 − t)~a, the volume of the
tetrahedron O′′ABC is given by

1

6
| ~AO′′ · (~u× ~v )| =

1

6

∣∣(t~b+ t~c− (1− t)~a
)
·
(
~b× ~c−~b× ~a− ~a× ~c

)∣∣
=

1

6

∣∣− t~b · ~a× ~c− t~c ·~b× ~a− (1− t)~a ·~b× ~c
∣∣.

Since ~b · ~a× ~c = −~a ·~b× ~c and ~c ·~b× ~a = −~a ·~b× ~c, we have the volume of the tetrahedron
O′′ABC is

1

6
| ~AO′′ · (~u× ~v)| =

1

6

∣∣t~a ·~b× ~c+ t~a ·~b× ~c− (1− t)~a ·~b× ~c
∣∣

=
1

6
|3t− 1| |~a ·~b× ~c | = 1

6
|3t− 1|γ.

Hence the distance from O′′ to the plane ABC is given by

3
1
6
|3t− 1|γ

1
2
‖~u× ~v ‖

=
|3t− 1|γ
‖~u× ~v ‖

.

Proof of Theorem 3. Suppose the tetrahedron OABC is isosceles. Then we have

‖~u× ~v ‖ = ‖~a×~b ‖ = ‖~c× ~c ‖ = ‖~a× ~c ‖.

Let O′′ de�ned by ~OO′′ = t(~a +~b + ~c) as in Lemma 1. Suppose O′′ is equidistant from the
planes OAB, OAC, OBC, and ABC. Then we have

tγ

‖~a×~b ‖
=

tγ

‖~a× ~c ‖
=

tγ

‖~b× ~c ‖
=
|3t− 1|γ
‖~u× ~v ‖

.

This implies that t = |3t− 1|. Then t = 1
2
or t = 1

4
.

Suppose t = 1
2
. Then ~OO′′ = 1

2
(~a+~b+~c ) = ~OM so thatM is an ex-center of the tetrahedron

OABC.

Suppose t = 1
4
. Then ~OO′′ = 1

4
(~a+~b+~c ) = ~OG so that G is the in-center of the tetrahedron

OABC.
Therefore (1) implies (2) and (3).

Conversely, suppose M , given by ~OM = 1
2
(~a + ~b + ~c ), is an ex-center of the tetrahedron

OABC. By Lemma 1, we have

γ

2‖~u× ~v ‖
=

γ

2‖~a× ~v ‖
=

γ

2‖~b× ~c ‖
=

γ

2‖~a× ~c ‖

so that ‖~u×~v ‖ = ‖~a×~b ‖ = ‖~b×~c ‖ = ‖~a×~c ‖. Similarly, if G is given by ~OG = 1
4
(~a+~b+~c )

is the in-center of the tetrahedron OABC, then we have

γ

4‖~u× ~v ‖
=

γ

4‖~a× ~v ‖
=

γ

4‖~b× ~c ‖
=

γ

4‖~a× ~c ‖

by Lemma 1. Again, we have that ‖~u× ~v ‖ = ‖~a×~b ‖ = ‖~b× ~c ‖ = ‖~a× ~c ‖. By Theorem 1,
we know that �(3) implies (1)� and �(2) implies (1)�.
This proves Theorem 3.
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Corollary 3.1. Let α be the volume of an isosceles tetrahedron. Let β be the area of a face
of the isosceles tetrahedron.

(1) An ex-sphere of the isosceles tetrahedron has the radius
3α

β
.

(2) The in-sphere of the tetrahedron OABC has the radius
3α

2β
.

Proof. From the proof of the theorem, the ex-radius and inradius of the isosceles tetrahedron

OABC are
γ

2‖~a×~b ‖
=

6α

2β
=

3α

β
and

γ

4‖~a×~b ‖
=

6α

4β
=

3α

2β
, respectively.

Lemma 2. Recall that O′ is the diagonally opposite point of O of the parallelepiped Γ. Let Ω
be the parallelepiped having O′A, O′B, and O′C as edges. Then O is the centroid of Ω.

Proof. Let T be the centroid of the parallelepiped Ω. Note that ~O′A = −(~b + ~c ), ~O′B =

−(~a+~c ), ~O′C = −(~b+~a ). Hence, ~OT = ~OO′ + 1
2
b ~O′A+ ~O′B+ ~O′Cc = ~OO′− (~a+~b+~c ) = ~0.

So T = O, i.e., O is the centroid of Ω.

Corollary 3.2. The point O is an ex-center of the tetrahedron ABCO′ if, and only if the
parallelepiped Γ is a rectangular box. (If Γ is a cube, then the tetrahedron ABCO′ is a regular
tetrahedron.)

Proof. Suppose O is an ex-center of the tetrahedron ABCO′. Hence, the tetrahedron ABCO′

is isosceles by Lemma 2 and Theorem 3. So O′A = BC, O′B = AC, and O′C = AB. If we
let A′, B′, C ′ be the diagonally opposite points of A,B,C in Γ respectively. Then O′A = OA′,
O′B = OB′, and O′C = OC ′. So we have OA′ = BC, OB′ = AC, and OC ′ = AB. But the
quadrilateral OBA′C is a parallelogram, and the diagonals OA′ = BC implies that OBA′C
is a rectangle. Similarly, OAC ′B, and OCB′A are rectangles. Therefore, Γ is a rectangular
box.
Conversely, suppose Γ is a rectangular box. Then the tetrahedron ABCO′ is isosceles. By
Lemma 2, O is the centroid of Ω. By Theorem 3, O is an ex-center of the tetrahedron
ABCO′.
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