Addendum to Pohlke's Theorem, a Proof of Pohlke-Schwarz's Theorem

Renato Manfrin

Dipartimento di Culture del Progetto, Università IUAV di Venezia Dorsoduro 2196, Cotonificio Veneziano, 30123 Venezia, Italy email: manfrin@iuav.it

Abstract. This is a short proof of Pohlke-Schwarz's theorem, based on the results of the previous paper on Pohlke's theorem. Furthermore, explicit formulae for the solution are provided.

Key Words: Pohlke-Schwarz's theorem, oblique axonometry

MSC 2010: 51N10, 51N05

1. Introduction

In 1864 H.A. Schwarz published the proof of the following generalisation of Pohlke's fundamental theorem on oblique axonometry:

Three arbitrary straight line segments OP_1 , OP_2 , OP_3 in a plane, originating from a point O and not contained in a line, can be considered as the parallel projections of three edges OQ_1 , OQ_2 , OQ_3 of a tetrahedron that is similar to a given tetrahedron.

Several purely geometric proofs and, in a few instances, analytic proofs were given. See, among the others, the references in [1]. Here, we give a straightforward proof of the above statement together with explicit formulae for the edges OQ_1 , OQ_2 , OQ_3 of the reference tetrahedron and the direction of the parallel projection onto the image plane.

As we did in [1] for Pohlke's theorem, we reformulate the Pohlke-Schwarz theorem as a result of linear algebra for square matrices. For this reason, and to avoid repetitions, all the matrices that we consider from now on are real 3×3 matrices. If A is such a matrix, we denote with A^i for $1 \le i \le 3$ the column vectors of A, and with A_i the row vectors.

1.1. Reformulation of the problem

Throughout the paper we use a fixed coordinate frame for both, the preimages in space as well as for the planar images. More precisely, we introduce a cartesian system of coordinate

axes x, y, z such that

$$O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{and} \quad P_i = \begin{pmatrix} x_i \\ y_i \\ 0 \end{pmatrix} \text{ for } 1 \le i \le 3$$
 (1)

are points of the image plane $\{z=0\}$. Furthermore, we define the matrix

$$S = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 0 & 0 & 0 \end{pmatrix} = (S^1, S^2, S^3).$$
 (2)

In the same way, we represent a given tetrahedron with vertices O, Q_1, Q_2, Q_3 (i.e., with a vertex at the origin O) by an invertible matrix $T = (T^1, T^2, T^3)$ whose columns T^1, T^2, T^3 are the coordinates of Q_1, Q_2 and Q_3 . After this, if the matrices T and \widetilde{T} represent two given tetrahedrons, we say,

Definition 1.1. T and \widetilde{T} are geometrically similar if $T=H\widetilde{T}$ with H being a nonzero multiple of an orthogonal matrix, i.e., $HH^t=\rho\,I$ for some $\rho>0$.

Pohlke-Schwarz's theorem can now be stated as follows:

Theorem 1.2. Assume that $\operatorname{rank}(S) = 2$, and let \widetilde{T} be an invertible matrix. Then, there exists a matrix T, geometrically similar to \widetilde{T} ,

$$T = \begin{pmatrix} x'_1 & x'_2 & x'_3 \\ y'_1 & y'_2 & y'_3 \\ z'_1 & z'_2 & z'_3 \end{pmatrix} = (T^1, T^2, T^3),$$
 (3)

and a parallel projection Π onto the plane $\{z=0\}$ such that $\Pi(T^i)=S^i$ for $1\leq i\leq 3$.

2. Proof of Theorem 1.2

Since \widetilde{T} is invertible, we can define the matrix

$$A = S \widetilde{T}^{-1} = \begin{pmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{x}_3 \\ \tilde{y}_1 & \tilde{y}_2 & \tilde{y}_3 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix} = (A^1, A^2, A^3). \tag{4}$$

Noting that $\operatorname{rank}(A) = 2$ and $A_3 = (0,0,0)$, we can apply to the matrix A Pohlke's theorem in the form stated in [1, Theorem 1.1]. This means that there exist a matrix B, with orthogonal columns of equal norm, and a parallel projection Π onto the image plane $\{z = 0\}$ such that

$$\Pi(B^i) = A^i, \quad 1 \le i \le 3. \tag{5}$$

Hence, there exists a column vector U, where $U \not | \{z = 0\}$, and $\mu_i \in \mathbb{R}$ such that

$$B^i - A^i = \mu_i U, \quad 1 \le i \le 3.$$
 (6)

In other words, introducing the row vector $\mu = (\mu_1, \mu_2, \mu_3)$, we have

$$B - A = U\mu. (7)$$

Then, setting

$$T = B\widetilde{T}, \tag{8}$$

from (7) we immediately find

$$T - S = (B - A)\widetilde{T} = U \mu \widetilde{T} = ((\mu \widetilde{T}^1) U, (\mu \widetilde{T}^2) U, (\mu \widetilde{T}^3) U).$$

$$(9)$$

That is, $T^i - S^i = (\mu \widetilde{T}^i) U$ for $1 \le i \le 3$.

Thus, we may conclude that the projection Π verifies

$$\Pi(T^i) = S^i, \quad 1 \le i \le 3. \tag{10}$$

Besides, since B is a nonzero a multiple of an orthogonal matrix, $T = B\widetilde{T}$ is geometrically similar to \widetilde{T} . This concludes the proof of Theorem 1.2.

As a by-product, we can state a simple generalization, for oblique system of coordinate-axes, of the Gauss' fundamental theorem of orthogonal axonometry. More precisely, denoting with Π_{\perp} the orthogonal projection onto the image plane $\{z=0\}$, we have:

Corollary 2.1. Let \widetilde{T} be invertible and let S and A be the matrices defined in (2) and (4). Then, there exists a matrix T, geometrically similar to \widetilde{T} , such that $\Pi_{\perp}(T^i) = S^i$ for $1 \leq i \leq 3$ if and only if

$$||A_1|| = ||A_2|| \neq 0 \quad with \quad A_1 \perp A_2 \,.$$
 (11)

Proof. Taking into account (8), (10), it is enough to apply [1, Proposition 1.2] to the rows of the matrix $A = S \widetilde{T}^{-1}$.

2.1. Reference tetrahedron and direction of projection

Following the steps of the proof of Theorem 1.2, we can now determine the explicit expressions of T, geometrically similar to \widetilde{T} , and of Π such that $\Pi(T^i) = S^i$ for $1 \le i \le 3$.

We begin by setting:

$$A_1 = S_1 \widetilde{T}^{-1}, \quad A_2 = S_2 \widetilde{T}^{-1}.$$
 (12)

That is $A_1 = (\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)$, $A_2 = (\tilde{y}_1, \tilde{y}_2, \tilde{y}_3)$ as in (4). Besides, as in formulae (3.6), (3.10), (3.21), (3.22) of [1], we define the quantities:

$$\gamma = \arccos\left(\frac{A_1 \cdot A_2}{\|A_1\| \|A_2\|}\right), \quad \lambda = \frac{\|A_1\|}{\|A_2\|},$$
(13)

$$\eta = \frac{\lambda^2 + 1 + \sqrt{(\lambda^2 + 1)^2 - 4\lambda^2 \sin^2 \gamma}}{2\lambda^2 \sin^2 \gamma}, \qquad (14)$$

$$\nu = \pm \varrho \quad \text{with} \quad \varrho = \frac{\|A_1\|}{\lambda \sqrt{\eta}} = \frac{\|A_2\|}{\sqrt{\eta}},$$
(15)

and, finally,

$$(\alpha, \beta) = \pm \left(\sqrt{\eta \lambda^2 - 1}, \operatorname{sgn}(\cos \gamma)\sqrt{\eta - 1}\right)$$
 (16)

with the "signum" function:

$$\operatorname{sgn}(t) := \begin{cases} 1 & \text{if } t \ge 0, \\ -1 & \text{if } t < 0. \end{cases}$$
 (17)

Then, by the results of [1, Chapter 4], the matrix B and the direction U of the projection Π satisfying (5) are given by the relations:

$$B = \frac{1}{1 + \alpha^2 + \beta^2} \begin{pmatrix} 1 + \beta^2 & -\alpha\beta & -\alpha \\ -\alpha\beta & 1 + \alpha^2 & -\beta \\ \alpha & \beta & 1 \end{pmatrix} \begin{pmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{x}_3 \\ \tilde{y}_1 & \tilde{y}_2 & \tilde{y}_3 \\ \frac{\tilde{x}_2\tilde{y}_3 - \tilde{y}_2\tilde{x}_3}{\nu} & \frac{\tilde{y}_1\tilde{x}_3 - \tilde{x}_1\tilde{y}_3}{\nu} & \frac{\tilde{x}_1\tilde{y}_2 - \tilde{y}_1\tilde{x}_2}{\nu} \end{pmatrix}, \quad (18)$$

$$U = \begin{pmatrix} -\alpha \\ -\beta \\ 1 \end{pmatrix}. \tag{19}$$

Summarizing up eqs. (12)–(19) and taking into account (8) and (10), we conclude:

Corollary 2.2. Under the conditions of Theorem 1.2, the matrix T and the parallel projection Π are given by

$$T = B\widetilde{T}$$
 and $\Pi \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + \alpha z \\ y + \beta z \\ 0 \end{pmatrix}$. (20)

Acknowledgments

The author is indebted to the referee who has given many valuable suggestions for improving the presentation of this article.

References

[1] R. Manfrin: A Proof of Pohlke's Theorem with an Analytic Determination of the Reference Trihedron. J. Geometry Graphics 22, 195–205 (2018).

Received May 22, 2018; final form March 20, 2019