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Abstra
t. A task about spheres and 
ones is solved. The task is about tan-

gent spheres around an x-axis. Three right 
ir
ular 
ones with the same apex on

the x-axis at x = 0 
ontain 
orresponding endpoints of diameters of the spheres,

perpendi
ular to x, and 
entres of the spheres, respe
tively. Any three adja
ent

spheres are mutually tangent. Diameters of the spheres are proportional to x.
The x-axis interse
ts all spheres. The goal of the task is to �nd geometri
 rela-

tions between the involved 
ones and to give rules for plotting the s
heme. The

solution allows a transformation of the sphere sequen
e onto itself by rotation and

homothety. In 2D, the right 
ir
ular 
ones degenerate to angles formed by two

rays starting at the apex, while the 
ones' axis degenerates to the angle bise
tor.

The spheres degenerate to 
ir
les. Therefore, the task has a 2D analogue. If one

of the angles is known, the others 
an be found uniquely. The radii of the 
ir
les

form a geometri
 progression. Nevertheless, the 3D task has more freedom. If the

opening angle of the largest 
one is known, it is possible to �nd the minimum of

the opening angle of the intermediate 
one passing through the sphere 
entres.

This task allows a simpli�ed geometri
 simulation of large eddies in free jets.
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1. Introdu
tion

There is a lot of tasks about 
onta
ting spheres. Most interesting are tasks with pra
ti
al

appli
ation. One of the examples is a sphere pa
king task, whi
h is very important in goods

pa
king, physi
s et
., [1, 2, 3, 7, 8, 10, 11, 14℄. In this work, we will introdu
e a task about

spheres and 
ones, whi
h is appli
able in �uid me
hani
s, espe
ially in jet theory. Jets 
ontain

large-s
ale growing vorti
es, whi
h are self-arranged be
ause of geometri
al 
ompatibility. The

solution of this task provides a dis
rete model of axis-symmetri
 (3D) and �at (2D) free jets. It

is di�erent from the 
lassi
al pa
king tasks be
ause the spheres have di�erent radii, depending

on their position.
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2. De�nition of the task

Let us assume the x-axis starting from a point O (Figure 1a). Let us 
onsider three 
oaxial

right 
ir
ular 
ones (hereinafter referred to as �
ones�) with the same apex O. The 
one b
(boundary) has the greatest opening angle, the 
one s (submerge) has the smallest one, and

the 
one c (
entres) has an intermediate one. There is a sequen
e of externally tangent spheres,

interse
ting the x-axis and numbered by i ∈ Z . The sphere 1 has an arbitrary x-
oordinate.
The sphere sequen
e must be in�nite in both dire
tions. Any three adja
ent spheres (i − 1,
i, and i+1) are tangent to ea
h other. The radius Ri of the sphere with no. i is proportional
to the x-
oordinate xi of the 
entre of the sphere with 
onstant of proportionality ΘR:

Ri = ΘR xi. (1)

The 
ones s and b 
ontain the respe
tive endpoints Si and Bi of diameters normal to the

x-axis of all spheres. The 
one c 
ontains all 
entres Oi of the spheres. The points of 
onta
t

between the spheres i and j will be 
alled Aij (i < j) .

Let us use a 
ylindri
al 
oordinate system around the x-axis. A polar axis r starts from

the point O and is oriented parallel to the diameter B1S1. The angular 
oordinate ϕ 
an be

oriented 
lo
kwise or 
ounter-
lo
kwise. Both 
ases provide two identi
al symmetri
 solutions;

so we will not spe
ify the dire
tion.

The s
heme of spheres 
an be mapped onto itself by appropriate rotations about the x-
axis and s
alings relatively to the apex O. This 
ondition requires two limitations: the angle

di�eren
e |ϕi+1−ϕi| between 
onse
utive spheres must be 
onstant (to ensure a 
oin
iden
e of

angular dire
tions of all old and new diameters BiSi after the rotation), and the 
oordinates

xi must form a geometri
 progression (to ensure s
alability). From the two possibilities

ϕi+1−ϕi = ϕi−ϕi−1 and ϕi+1−ϕi = − (ϕi − ϕi−1) we will 
onsider only the �rst one, whi
h

provides uniformity of sphere allo
ation around the x-axis. The se
ond one 
an provide the

same uniformity only at ϕi+1 − ϕi = ±π. Both signs provide the same result, so there is no

di�eren
e if we use the �rst 
ase.

Alternatively, instead of de�ning the 
one c and the 
ondition above, we 
an say that the


entres of the spheres are on a 
oni
al helix around the x-axis with the same opening angle

as the 
one c. Nevertheless, the sphere 1 has an arbitrary x-
oordinate; so the spiral is not

�xed. If we 
hange the 
oordinate freely (whi
h happen in jets), the spiral will rotate forming

the 
one c (whi
h is very 
lose to the half-velo
ity surfa
e in jets). For di�erent tasks, it is

possible to use both de�nitions.

As it will be shown, we 
an introdu
e the fourth (t) and �fth (u) 
ones tangent to all

spheres. We 
an restate the task repla
ing the 
ones b and s by t and u. This is interesting
be
ause it 
an redu
e the task to the pa
kaging one and, possibly, widen the appli
ation

range. Nevertheless, this 
auses a more di�
ult analysis in jets.

It is ne
essary to �gure out the relations (if possible) between the opening angles of the


ones. In addition, we need rules for plotting the s
heme.

The task has a 2D analogue: A sphere degenerates to a 
ir
le in a plane. A right 
ir
ular


one is a 3D �gure that tapers from a 
ir
le to a point on the normal to the 
ir
le plane,


rossing through its 
entre. In 2D, the 
one's axis and the apex do not degrade, but the


one's base 
an degrade to a line segment normal to the axis. The axis 
rosses the midpoint

of this segment. Thus, a 
one degrades to an angle �- two rays, symmetri
 with respe
t to

the axis, start from the apex.
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a) b) 
)

d)

Figure 1: Cal
ulation s
heme: a) 3D; b) 2D; 
) fragment for solution of the tangent

lines t and u; d) example of 2D 
ase at Θb = 2 and βt = (0.518906353122758 . . . ) · π

Therefore, the task may be restated from 3D to 2D as follows. Let us assume the x-axis
starting from the point O (Figure 1b, 
). Let us 
onsider three angles with the same bise
tor x
and vertex O. The angle b (boundary) is the greatest, the angle s (submerge) is the smallest,

and the angle c (
entres) is intermediate. There is a sequen
e of tangent 
ir
les interse
ting
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the x-axis. The radius Ri of the 
ir
le i is proportional to the x-
oordinate (abs
issa) xi of

the 
entre of the sphere by (1). The 
ir
le sequen
e must be in�nite in both dire
tions. Any

three adja
ent spheres (i− 1, i, and i+ 1) are tangent to ea
h other.

The angles s (the value is 2βs) and b (the value is 2βb) 
ontain the respe
tive endpoints Si

and Bi of diameters normal to the x-axis of all 
ir
les. The angle c (the value is 2βc) 
ontains

all 
entres Oi of the 
ir
les. The point of 
onta
t between the 
ir
les i and j (i < j) will be

alled Aij . The points Ai are the interse
tion points of the diameters BiSi and the x-axis.

Remark. No 
ondition of spiral transformation is ne
essary in this 
ase. We will prove that

the transformation is provided by the 
onditions above (see Corollary 2 hereinafter).

It is ne
essary to �nd relations between the angles. In addition, we need rules for plotting

the s
heme.

3. Limitations

At �rst, there is a limitation for the 2D and 3D tasks: In both 
ases, the 
ones (lines) 
ould

be 
ontinued in the negative x half-spa
e (half-plane). We will obtain the same pi
ture but in

opposite x-dire
tion. Therefore, we will 
onsider only the half-spa
e (half-plane) with positive
x. If βb > π/2, the lines b will pass through the opposite half-plane, relatively to the r-axis.
Therefore, the �gure at the angles βb and π− βb is the same, and we 
an restri
t the angle to

βb ≤ π/2 without losses.

In the 
ase βb = π/2, the 
one (lines) b degenerates to the plane (line) x = 0. In the

2D 
ase, the lines AiBi 
oin
ide with the r-axis, and only two externally tangent 
ir
les are

possible. In 3D 
ase, the lines AiBi are at the plane x = 0. The lines should pass through

the point O and the point should be inside the spheres. Thus, the point should be a point of


onta
t, and only one pair of spheres 
an be present at a time. In both 
ases, the task has no

solution.

As a 
on
lusion, there is a limitation, whi
h allows obtaining all possible solutions:

βb <
π

2
. (2)

The limitation allows using tangents of the angles βb, βc, and βs be
ause βb is the greatest.

Remark. This angle βt between the tangent line t and the x-axis 
an be greater than π/2.
The example at Θb = tan βb = 2 has been built using the following 
al
ulation results in

Figure 1d.

4. 2D solution

At �rst, the 2D 
ase may be 
onsidered: From the 
ir
le sequen
e, let us 
hoose the 
ir
le

no. 1. The previous 
ir
le (
loser to the apex O) is no. 0. The next one (farther from apex

O) is 2, and so on.

Lemma 1. All tangen
y points Aij are lo
ated on the x-axis.

Proof. There is a line E01E12 parallel to x 
rossing the point O1. The points E01 and E12

are the interse
tion points with diameters B0S0 and B2S2, respe
tively. As the x-axis is the
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bise
tor of the angle c, the length of the line segments |OiAi| is proportional to the respe
tive
lengths |OAi| = xOi with the proportionality 
onstant Θc = tan(βc), hen
e

rOi = |OiAi| = Θc x. (3)

The angle b provides a similar proportionality between the line segments |OAi| = xOi and

rBi = |BiAi|. The 
orresponding proportionality 
onstant is Θb = tan(βb), hen
e

rBi = |BiAi| = Θb x. (4)

Finally, for the angle s there is a proportion between |OAi| = xOi and rSi = |SiAi| with the

proportionality 
onstant Θs = tan(βs), 
onsequently

rSi = |SiAi| = Θs x. (5)

We otain the 
ir
le radius Ri = |OiBi| = |BiSi| − |OiSi| = |OiSi| = |OiAi| + |SiAi|. Using

eqs. (3), (4), and (5),

Ri = xi (Θb −Θc) = xi (Θc +Θs) . (6)

By eqs. (3) and (6) there is a proportion |O0A0|/|O0A01| = |A0E01|/|A01O1|, be
ause the

denominators are the radii. It 
an be transformed to the following proportion:

|O0A0|
|O0A01|

=
|O0E01|
|O0O1|

.

By the SAS theorem, △A0O0A01 ∼ △E01O0O1. Thus, A01A0 ⊥ O0E01. Sin
e A01A0 ⊥ x and

x 
rosses the point A0, the line A01A0 is 
ollinear with the x-axis. Therefore, all tangen
y

points Aij are on the x-axis, whi
h was to be proved.

The following right-angled triangles are also similar: △A0O0A01 ∼ △A2O2A12, be
ause

of proportional radii and distan
es from the 
entres to the x-axis (hypotenuse-leg similarity).

Thus, |O0A0|/|O0A01| = |O2A2|/|O2A12|. Therefore, using the a
ute angle similarity,

△O0E01O1 ∼ △O0A0A01 ∼ △O1A1A01 = △O1A1A12 ∼ △O2A2A12 ∼ △O2E12O1. (7)

Lemma 2. There is a s
aling fa
tor, with whi
h s
aling or mirroring in the x-axis and s
aling
with respe
t to the 
entre O, 
onverts Figure 1b onto itself.

Proof. It is possible to de�ne a system of equations that allows obtaining Figure 1b for

di�erent values of parameters. In [9℄, there was a �rst attempt to solve the task. It was

very simpli�ed, believing without proof, that A01 ∈ x, and skipping some of the following

equations �by analogy�, whi
h 
ause oversimpli�ed assumptions.

From the right-angled triangle △O0A0A01, using (3) and (4),

cosα = cos∠A0O0A01 =
rO0

R0

=
Θc

Θb −Θc

. (8)

From the right-angled triangle △O0E01O1 we obtain

R0 +R1 =
x1 − x0

sinα
. (9)
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Using eqs. (1), (3), and (4) and introdu
ing the relative x-
oordinate as

x̃i =
xi

x1

, (10)

we 
an transform (9) as follows:

(x̃0 + 1) (Θb −Θc) =
1− x̃0

sinα
. (11)

From the right-angled triangle △O2E12O1 we obtain

R1 +R2 =
x2 − x1

sinα
. (12)

Using eqs. (1), (3), (4), and (10), we 
an transform (9) as follows:

(1 + x̃2) (Θb −Θc) =
x̃2 − 1

sinα
. (13)

The equations (11) and (13) are very similar, but the third �analogous� equation with x̃0 and

x̃2 is the oversimpli�ed assumption of [9℄. The third equation 
an be written from the right

triangle △O2E02O0, where O2E02 is the perpendi
ular from the point O2 to the line O0S0.

Therefore, O2E02 ‖ x, and the angle ∠E02O2O0 = βc. Thus,

R0 +R2 =
x2 − x0

cos βc

. (14)

Using eqs. (1), (3), (4), and (10), we 
an transform (14) as follows:

(x̃0 + x̃2) (Θb −Θc) =
x̃2 − x̃0

cos βc

= (x̃2 − x̃0)
√

1 + Θ2
c . (15)

Let us eliminate the sine from eqs. (11) and (13):

1− x̃0

1 + x̃0

=
x̃2 − 1

x̃2 + 1
. (16)

After transformations of (16) it is possible to obtain the very important property of the

relative x-
oordinates of the 
ir
le 
entres,

x̃0 =
1

x̃2

. (17)

Equation (17) with (10) shows that the x-
oordinates of the 
entres of the 
ir
les form a

geometri
 progression with the denominator x̃2. S
aling (or mirroring in the x-axis and

s
aling) with the 
entre O 
onverts Figure 1b into itself at the fa
tors x̃n
2 for n ∈ Z.

Corollary 1. The sequen
e of 
ir
les is in�nite in both dire
tions toward the x-axis and

approa
hing the point O.

Corollary 2. All 
ir
les 
an be obtained from a single one by a spiral transformation, that

is the produ
t of rotation about the x-axis through the angle π and a s
aling with the fa
tor

x̃2 with respe
t to the 
entre O: Rj = Rix̃
j−i
2 , xj = xix̃

j−i
2 , rOj = xOix̃

j−i
2 for i ∈ Z and

j ∈ Z.
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The substitution of (17) to (18) and a simple transformation give the following:

x̃0,2 =

√

√

1 + Θ2
c ∓ (Θb −Θc)

√

1 + Θ2
c ± (Θb −Θc)

=

√

√

√

√

1∓ 2
√

1 + Θ2
c

Θb −Θc

± 1
. (18)

The top sign is for x0 and the bottom one is for x̃2 = xi+1/xi, the 
ommon ratio of the

geometri
 progression xi. It is real if

1∓ 2
√

1 + Θ2
c

Θb −Θc

± 1

≥ 0. (19)

The inequality (19) is equivalent to

Θc >
Θ2

b − 1

2Θb

. (20)

Substituting (8) into (11) and using the 
ondition x2 > 1, we obtain

(x̃2 + 1)2 (Θb −Θc)
2

[

1−
(

Θc

Θb −Θc

)2
]

− (x̃2 − 1)2 = 0. (21)

Equation (21) 
an have a solution only if the expression in square bra
kets is positive, so

Θc <
Θb

2
. (22)

From the inequalities (20) and (22) the root isolating interval of Θc is

max

(

0,
Θ2

b − 1

2Θb

)

< Θc <
Θb

2
. (23)

Substitution of (18) to (21) gives a single, but 
umbersome, equation. For the numeri
al

solution, the better option is the same numeri
al substitution.

In addition, we 
an 
onne
t the tangents Θb, Θc and the parameters ΘR using the line

AiBi, whi
h 
onsists of the 
ir
le i radius OiBi and the distan
e |O1A1| between the 
ir
le


entre and the x-axis:
ΘR = Θb −Θc. (24)

From (6) and (24) it is possible to �nd the tangent of the half-angle s as

Θs = Θb − 2Θc = ΘR −Θc. (25)

The equation (21), after substitution of (18), has been solved in the range (23), divided by

1000 se
tions, using S
iLab (Figure 2). The results 
an be approximated in the range Θb ≤ 6
(βb ≤ 80.53 ◦

) with relative toleran
e up to 0.0089 % (at least four 
orre
t signi�
ant digits):

Θc/Θb = −6.153 10−6 Θ5
b + 0.0001395Θ4

b − 0.001206Θ3
b + 0.004367Θ2

b − 0.000584Θb

+0.46414, (26)

x̃2 = −7.17 10−6 Θ6
b + 0.000162Θ5

b − 0.0017656Θ4
b + 0.014628Θ3

b + 0.1461Θ2
b

+0.53486Θb + 1.00006. (27)
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Figure 2: The tangents and the 
ommon ratio in the 2D 
ase and

in the 3D 
ase for ϕi+1 − ϕi = π

For the jet simulation, this range is very large and (26) is too di�
ult. In engineering 
al-


ulations the following approximation is enough for the shorter range Θb ≤ 3 (βb ≤ 71, 57 ◦
)

with the same relative toleran
e � up to 0.0087 % (at least four 
orre
t signi�
ant digits):

Θc/Θb = −0.00051327Θ3
b + 0.0031463Θ2

b − 0.000115Θb + 0.464087 (28)

x̃2 = −0.000911Θ4
b + 0.0129692Θ3

b + 0.14729Θ2
b + 0.5346274Θb + 1.000063. (29)

The most important value is Θb = 0.22, whi
h 
orresponds to free jets. In this 
ase, Θc =
0.1021 and Θs = 0.01573. The �rst result deviates from [9℄ only by 0.3%. Therefore, the

simpli�
ations in [9℄ are not 
riti
al. Thus, all results obtained in the author's works have

enough pre
ision for engineering 
al
ulations and s
ienti�
 resear
hes.

Finally, we 
an redu
e the task to the pa
kaging one. Let us introdu
e lines t (external)
and u (internal) from the point O tangent to the 
ir
les 0 and 1. As other 
ir
les 
an be

obtained from them by homotheti
 transformation with the 
entre O, the lines are tangent to
all 
ir
les. The angle between the x-axis and the line t is βt with the tangent Θt. The angle

between the x-axis and the line u is βu, and the tangent Θu. The angle γ between the lines c
and t is equal to the angle between c and u,

βt − βc = βc + βu.

After applying the tangent to both sides and after simple transformations, we obtain

Θu =
Θt −Θc (2 + ΘcΘt)

1 + Θc (2Θt −Θc)
, Θu

(

βt =
π

2

)

= lim
Θt→∞

Θu =
1−Θ2

c

2Θc

. (30)

Let us draw a perpendi
ular O1T1 from the point O1 to the line t. The length of it is the

radius of the 
ir
le 1. Using (6),

|O1T1| = R1 = x1(Θb −Θc). (31)

One important 
hara
teristi
 
ase is βt = π/2. As the line t is normal to the x-axis, the
perpendi
ular |O1T1| is parallel to x-axis. Therefore, R1 = x1 and, by (31), Θb − Θc = 1.
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Substituting the result to eqs. (18) and (21) allows an analyti
al solution. From (25) and (30)

follows

x̃2 =
3 +

√
5

2
= 2.61803 . . . , x̃0 =

3−
√
5

2
= 0.381966 . . . , Θb =

5 + 2
√
5

5
= 1.894427 . . . ,

Θc =
2
√
5

5
= 0.894427 . . . , Θs =

5− 2
√
5

5
= 0.1055728 . . . , Θu =

√
5

20
= 0.111803 . . .

In other 
ases, extending the line |O1B1| to the line t, gives a point F1. The length of the line

O1F1 is

|O1F1| = |A1F1| ∓ |A1O1| = x1 (±Θt ∓Θc) = x1 |Θt −Θc| , (32)

where the top signs hold for βt < π/2, the bottom signs for βt > π/2. From the right-angled

triangle △O1T1F1, in whi
h ∠T1O1B1 = βt due to perpendi
ular sides, follows

Θb −Θc = |Θt −Θc| cos βt =
|Θt −Θc|
√

Θ2
t + 1

. (33)

There is the solution of (33):

Θt =
Θc ±

√

Θ2
c +Θb

(

1− (Θb −Θc)
2
)

(Θb − 2Θc)

1− (Θb −Θc)
2

. (34)

Analogi
ally, we 
an �nd the angle βu between the x-axis and the line u. From the 
entre O1

we should put a perpendi
ular O1U1 to the line u that is tangent to the 
ir
le 1. In addition,

we should extend the line O1S1 to the line u. The new endpoint is G1. The new triangle

△O1U1G1 has the right angle O1U1G1 and the angle U1O1G1 is equal to βu. Using (6), the

leg is

|O1U1| = R1 = x1(Θb −Θc) = x1(Θs +Θc) (35)

and the hypotenuse

|O1G1| = x1 (Θu +Θc) . (36)

From the triangle follows

Θb −Θc = Θs +Θc = (Θu +Θc) cos βu =
Θu +Θc
√

Θ2
u + 1

, (37)

Θu =
−Θc ∓

√

Θ2
c +Θb

(

1− (Θb −Θc)
2
)

(Θb − 2Θc)

1− (Θb −Θc)
2

(38)

Equations (34) and (38) have only one positive value at Θb−Θc < 1 (βt < π/2). It 
orresponds
to the plus sign. Both equations at Θb −Θc > 1 (βt > π/2) have two solutions: the solutions

of (34) are negative, the solutions of (38) are positive, whi
h 
orresponds to the geometri


meaning. The most important pe
uliarity is the same absolute value of the solutions at the

top signs, as well as at the bottom signs. Thus, we should a

ept the solution with greater

absolute value and negative sign as Θt and with lower absolute value as Θu. Therefore, there

are universal equations, whi
h 
an be transformed using (24),

Θt =

√

Θ2
c +Θb

(

1− (Θb −Θc)
2
)

(Θb − 2Θc) + Θc

1− (Θb −Θc)
2

=

√

Θ2
c +

(

1−Θ2
R

) (

Θ2
R −Θ2

c

)

+Θc

1−Θ2
R

. (39)

Θu =

√

Θ2
c +Θb

(

1− (Θb −Θc)
2
)

(Θb − 2Θc)−Θc

1− (Θb −Θc)
2

=

√

Θ2
c +

(

1−Θ2
R

) (

Θ2
R −Θ2

c

)

−Θc

1−Θ2
R

. (40)



108 V. Mileikovskyi: A Task About Spheres and Cones, Appli
able in Jet Theory

Thus, we solved the 2D task.

• The relation between the 
hara
teristi
 angles 
an be found from (21) after substitution

of (18) in the root isolation interval (23) at known Θb or Θc. In addition, eqs. (39) and

(40) give a possibility to 
al
ulate the tangent lines. For engineering 
al
ulations, we


an use the eqs. (26) or (28), instead.

• The spheres 
an be built by the sequen
e of the x- and r-
oordinates of their 
entres and
their radii. The denominator x̃2 of the progression of x-
oordinates should be found by

(18). For engineering 
al
ulations, the approximations (27) of (29) 
an be used, instead.

After that, we should put a 
oordinate x1 and 
ompute the x-
oordinates progression
as xi = x1x̃

i−1
2 , the 
orresponding radii by (1) and the r-
oordinates by (3).

The examples are displayed in Figure 1b and d.

5. 3D solution

After the 2D solution, we will solve the 3D task. From the sequen
e of spheres, let us 
hoose

a sphere no. 1. The previous sphere (
loser to the apex O) is 0, the next one (farther from

the apex O) is 2, and so on.

The polar 
oordinate of i-th sphere 
entre (on the 
one c) is proportional to its x-

oordinate by (3), where Θc is the tangent of half of the opening angle (angle between some

generatrix of the 
one c and the x-axis). The equations (3) and (4) are also valid. Therefore,

for the de�nition of some spheres, it is enough to set only two 
oordinates of its 
entre Oi: xi

and ϕi. Let us assume that x1 is known. We may set ϕ1 = 0.
The tangen
y between spheres will de�ne the other. The tangen
y between the spheres i

and j (|j − i| ≤ 2) says that the distan
e between the sphere 
entres is equal to the sum of

their radii, |OiOj| = Ri +Rj , or

√

(xj − xi)
2 + (rj cos (ϕj)− ri cos (ϕi))

2 + (rj sin (ϕj)− ri sin (ϕi))
2 = Ri +Rj . (41)

After the substitution of eqs. (1), (3), and (10) and simple transformations, (41) is equivalent

to

∆̃ij

x̃i

=

√

√

√

√

(

x̃j
x̃i

− 1

)2

+Θ2
c

(

(

x̃j
x̃i

)2

+ 1− 2
x̃j

x̃i

cos (ϕj − ϕi)

)

−ΘR

(

x̃j
x̃i

+ 1

)

= 0. (42)

The absolute value of ∆̃ij equals the distan
e between the 
losest points of non-overlapping

spheres (if ∆̃ij > 0) or the most deeply overlapped points of overlapping spheres (if ∆̃ij < 0),
that 
orresponds to x1.

Dividing both parts of (42) by x̃j/x̃i gives the same equation as repla
ing x̃j/x̃i by x̃i/x̃j .

Therefore, if a value of x̃j/x̃i is a root, the re
ipro
al value is also a root.

Equation (10) implies x̃1 = 1. Thus, from (42) at j = 1,

∆̃i1 =

√

(x̃i − 1)2 +Θ2
c (x̃

2
i + 1− 2x̃i cos (ϕi))−ΘR (x̃i + 1) = 0. (43)

Both eqs. (42) and (43) have non-negative radi
ands. The �rst members of the radi
ands

are squares of expressions. At the greatest possible value of 
osine, namely 1, the se
ond
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members are also squares of expressions. As the 
oordinates x̃i and x̃j 
an be only non-

negative, a smaller 
osine value 
auses not a smaller value of the se
ond members. Thus both

members are non-negative.

The 
osine from (42) and (43) satis�es

−1 ≤ cos (ϕj − ϕi) =

(

x̃j

x̃i

− 1
)2

+Θ2
c

(

(

x̃j

x̃i

)2

+ 1

)

−Θ2
R

(

x̃j

x̃i

+ 1
)2

2Θ2
c

x̃j

x̃i

≤ 1. (44)

Three spheres 0, 1 and 2 give two identi
al equations (43) and one equation (42). There are

four unknowns � two relative 
oordinates and two angles. Thus, there are multiple solutions

with one degree of freedom. The geometri
 progression of xi or the 
onstant angle di�eren
e

ϕi − ϕi−1 
an fully de�ne the problem. Both 
onditions are equivalent by (44).

Using the geometri
 progression 
ondition, the equations 
an be solved easily. (43) has

two solutions for the tangen
y of the spheres 1 and 2 and the spheres 0 and 1, respe
tively:

x̃2 =

√

(2Θ2
R −Θ2

c (1− cos (ϕ2))) (Θ2
c (cos (ϕ2) + 1) + 2) + Θ2

c cos (ϕ2) + Θ2
R + 1

Θ2
c −Θ2

R + 1
≥ 1, (45)

x̃0 =
1

x̃2

. (46)

For the spheres 0 and 2, (42) should be applied using

x̃j

x̃i

=
x̃i+2

x̃i

= x̃2
2 and ϕj − ϕi = ϕi+2 − ϕi = 2ϕ2. (47)

The solution > 1 of (42), using (47), is

x̃2 =

√

√

√

√

√

(

2Θ2
R −Θ2

c (1− cos (2ϕ2))
)

(Θ2
c (cos (2ϕ2) + 1) + 2) + Θ2

c cos (2ϕ2) + Θ2
R + 1

Θ2
c −Θ2

R + 1
. (48)

The eqs. (45) and (48) give a single equation for the angle step ϕ2:

(
√

(

2Θ2
R −Θ2

c (1− cosϕ2)
)

(Θ2
c (cosϕ2 + 1) + 2) + Θ2

c cosϕ2 +Θ2
R + 1

)2

=
(

Θ2
c −Θ2

R + 1
)

×
(

2
√

(

Θ2
R −Θ2

c (1− cos2 ϕ2)
)

(Θ2
c cos

2 ϕ2 + 1) + Θ2
c (2 cos

2 ϕ2 − 1) + Θ2
R + 1

)

.

(49)

The equation (49) has been symboli
ally solved, whi
h is very easy using Maxima algebra

system. After getting rid of the roots (two times), the equation will be quarti
. Its depressed

equation is biquadrati
, but it has only two di�erent se
ond order roots,

cosϕ2 =
±ΘR

√

2 (Θ2
R + 3) (1−Θ2

R +Θ2
c) + (Θ2

R + 1)Θc

(1−Θ2
R) Θc

. (50)

We 
hoose the real solution in the range [−1, 1].
Let us dis
uss the most 
hara
teristi
 
ases of the task. To �nd the minimum possible

value of Θc, let us di�erentiate (44) by Θc:

d cos (ϕj − ϕi)

dΘc

=

(

ΘR + 1 +
x̃j

x̃i

((ΘR − 1)
)(

ΘR − 1 +
x̃j

x̃i

(ΘR + 1)
)

Θ3
c

x̃j

x̃i

. (51)
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The derivative has only one dis
ontinuity at x̃j/x̃i = 0 and two non-positive roots at ΘR ≤ 1:

x̃j

x̃i

=
ΘR ± 1

ΘR ∓ 1
. (52)

The derivative 
annot 
hange its sign at x̃j/x̃i > 0. At x̃j/x̃i = 1, the derivative (51) is

4Θ2
R/Θ

3
c > 0. Thus, the derivative is positive, so the fun
tion is in
reasing. The minimum

possible value of Θc is 
orresponding to the minimum possible value of 
osine � minus

one. The angle is π; so all sphere 
entres and tangen
y points are in the same plane. The

interse
tion with the plane is the same as in Figure 1b. Moreover, the results of the 2D task

in
l. Figure 2, (26), (27), (28), and (29) are a

eptable. Four spheres 
annot be tangent to

ea
h other. To 
he
k the solution, a fun
tion in S
iLab has been 
reated. The fun
tion tests

the possibility of a solution at Θc = ΘR (always) and at Θc = 0 (never). The minimum point

of Θc with the last possible solution 
an be found by the bise
tion method. Cal
ulations show

that at the minimum |ϕ0| = |ϕ2| = π.
The next 
hara
teristi
 
ase is Θc → ΘR = Θb/2. It is the spe
ial 
ase, whi
h allows

four tangent spheres: two pairs of opposite ones. The lines between the 
entres of the pairs

are perpendi
ular. However, if Θc is in�nitely less than Θb/2, only three spheres (by numeri


solution) 
an be tangent ea
h other. The numeri
 solution (Figure 3) 
an be approximated

by the following equations of the 
ommon ratio and angular 
oordinate di�eren
e in radians

between adja
ent spheres with the respe
tive deviations 0.012% and 0.0025%:

xi+1/xi = −0.00237Θ3
b + 0.07273Θ2

b + 0.36394Θb + 1.00011, (53)

ϕi+1 − ϕi = −0.000773Θ4
b + 0.0008082Θ3

b + 0.0687363Θ2
b + 0.3654873Θb + 1.000024. (54)

The third 
hara
teristi
 
ase is the average value of Θc between the �rst and the se
ond


hara
teristi
 
ases (Figure 4). The following approximation has the respe
tive deviations

Figure 3: The angle di�eren
e, the tangents, and the 
ommon ratio in the 3D 
ase

if Θc = ΘR
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Figure 4: The angle di�eren
e, the tangents, and the 
ommon ratio in the 3D 
ase

at the average value of Θc

0.0058%, 0.008%, 0.0064%, and 0.002%:

Θc/Θb = −0.000216Θ3
b + 0.00141Θ2

b + 0.482692, (55)

Θs/Θb = −0.00004Θ5
b + 0.0002364Θ4

b − 0.0025905Θ2
b + 0.0346523, (56)

ϕi+1 − ϕi = 0.0036Θ2
b + 0.00139Θb + 2.598875; (57)

xi+1/xi = −0.00201Θ4
b + 0.00633Θ3

b + 0.103668Θ2
b + 0.45301Θb + 1.000019. (58)

In other 
ases it is ne
essary to solve the equations. For a 
rude approximation, it is

possible to 
al
ulate the parameters at the three 
ases above and perform a paraboli
 inter-

polation.

For the 
one t, whi
h is tangent to all spheres externally, and the 
one u, whi
h is tangent

to all spheres internally, eqs. (39) and (40) are appli
able. Let us build a plane through the

x-axis and the 
entre of the sphere 1. The interse
tion of the 
ones and the sphere 1 with

this plane is the same as Figure 1
. Thus, the development of the equations in the 2D 
ase is

appli
able to the 3D 
ase.

Thus, we solved the 3D task.

• The relation between the 
hara
teristi
 angles is not �xed. At �rst, we should assume

the tangent Θb of the 
one b. The tangent of the 
one c should be a

epted in the range

Θc = [Θc,min, Θb/2], where the minimum value Θc,min is the same as in the 2D task

by eqs. (18) and (21) in the root isolation interval (23). Alternatively, we 
an assume

Θc. After that, Θb should be a

epted inside the range Θb = [2Θc, Θb,max], where the

maximum value Θb,max is the same as in the 2D task by the same equations. Other

tangents 
an be found from eqs. (25), (39), and (40).

• The spheres 
an be built by the geometri
 progressions of the x- and r-
oordinates
of 
entres and the radii, and also by the step of the angle ϕ. The denominator x̃2
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of progression of the x-
oordinates and the angle step ϕ 
an be found by (51) and

(45). For engineering 
al
ulations, the approximations (27), (29), (53), (54), (55), (56),

(57), and (58) 
an be used instead for the 
orresponding 
ases. In other 
ases, we 
an

interpolate the approximation results. After that, we should de�ne a 
oordinate x1 and


ompute the x-
oordinate progression xi = x1x̃
i−1
2 , the 
orresponding radii by (1), and

the r-
oordinates by (3).

An example is shown in Figure 1a.

6. Appli
ation of the results

The presented solution gives a dis
rete jet model, whi
h 
an be used for the simulation of

ventilation air�ows for the development of energy-e�
ient air ex
hange organization in rooms

[4℄. One of the most important problems is energy e�
ien
y. During the euro-integration

pro
ess [6℄ Ukraine highly in
reases the energy e�
ien
y of 
onstru
tions. Air�ows in rooms

(both averaged and turbulent parameters) are a very important part [4, 12℄ in the energy

e�
ien
y of ventilation. Air jets have a large-s
ale vorti
ity, whi
h allows the simulation of the

ma
rostru
ture using the presented method. At a low Reynolds number, the ma
rostru
ture

is visible [5, 15℄ in dyed jets (Figure 5) and very similar to Figure 1a. The 
ones represent

the 
hara
teristi
 jet dimensions: jet boundary, half-velo
ity surfa
e and intera
tion deepness

between vorti
es. As there is no di�eren
e in the equations for jet parameters in ventilation,

we 
an extend the ma
rostru
ture analysis on the wide range of Reynolds numbers.

Figure 5: A free jet, dyed by uranine

A new dire
tion of rising the energy e�
ien
y of buildings by air�ows with turbulent

ma
rostru
ture is the 
ontrol of the �
ooling e�e
t� of �green stru
tures� [13℄, whi
h are

stru
tures of buildings with living plants. The plants 
ool air and stru
tures by evaporation,

whi
h is dependent on air velo
ity and turbulen
e intensity. A spe
ially designed parapet of

�green goofs� 
an 
ontrol the air�ows for maximizing the �
ooling e�e
t� only in summer for

passive air 
onditioning. The simulation method is used for optimization of the parapet.
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7. Con
lusions

The solution of the 2D task about angles and tangent 
ir
les was found. It required a numeri


solution of an equation. In addition, the solution of the 3D task about spheres and 
ones was

found. The 3D 
ase adds up to the 2D one in extreme 
ases � lowest opening angle of the


one with the sphere 
entres. The tasks 
an simply represent the ma
rostru
ture of free jet

�ows in hydro-aerodynami
s.

8. Prospe
ts for further resear
h

The simulation of air velo
ity and turbulen
e intensity of 3D jets using the model is �nished.

A su

essful optimization of air distributors with multiple tangential slots using the simulation

method shows its usability. Now we are fo
used on the optimization of air ex
hange in rooms.
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