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Abstrat. A task about spheres and ones is solved. The task is about tan-

gent spheres around an x-axis. Three right irular ones with the same apex on

the x-axis at x = 0 ontain orresponding endpoints of diameters of the spheres,

perpendiular to x, and entres of the spheres, respetively. Any three adjaent

spheres are mutually tangent. Diameters of the spheres are proportional to x.
The x-axis intersets all spheres. The goal of the task is to �nd geometri rela-

tions between the involved ones and to give rules for plotting the sheme. The

solution allows a transformation of the sphere sequene onto itself by rotation and

homothety. In 2D, the right irular ones degenerate to angles formed by two

rays starting at the apex, while the ones' axis degenerates to the angle bisetor.

The spheres degenerate to irles. Therefore, the task has a 2D analogue. If one

of the angles is known, the others an be found uniquely. The radii of the irles

form a geometri progression. Nevertheless, the 3D task has more freedom. If the

opening angle of the largest one is known, it is possible to �nd the minimum of

the opening angle of the intermediate one passing through the sphere entres.

This task allows a simpli�ed geometri simulation of large eddies in free jets.
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1. Introdution

There is a lot of tasks about ontating spheres. Most interesting are tasks with pratial

appliation. One of the examples is a sphere paking task, whih is very important in goods

paking, physis et., [1, 2, 3, 7, 8, 10, 11, 14℄. In this work, we will introdue a task about

spheres and ones, whih is appliable in �uid mehanis, espeially in jet theory. Jets ontain

large-sale growing vorties, whih are self-arranged beause of geometrial ompatibility. The

solution of this task provides a disrete model of axis-symmetri (3D) and �at (2D) free jets. It

is di�erent from the lassial paking tasks beause the spheres have di�erent radii, depending

on their position.
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2. De�nition of the task

Let us assume the x-axis starting from a point O (Figure 1a). Let us onsider three oaxial

right irular ones (hereinafter referred to as �ones�) with the same apex O. The one b
(boundary) has the greatest opening angle, the one s (submerge) has the smallest one, and

the one c (entres) has an intermediate one. There is a sequene of externally tangent spheres,

interseting the x-axis and numbered by i ∈ Z . The sphere 1 has an arbitrary x-oordinate.
The sphere sequene must be in�nite in both diretions. Any three adjaent spheres (i − 1,
i, and i+1) are tangent to eah other. The radius Ri of the sphere with no. i is proportional
to the x-oordinate xi of the entre of the sphere with onstant of proportionality ΘR:

Ri = ΘR xi. (1)

The ones s and b ontain the respetive endpoints Si and Bi of diameters normal to the

x-axis of all spheres. The one c ontains all entres Oi of the spheres. The points of ontat

between the spheres i and j will be alled Aij (i < j) .

Let us use a ylindrial oordinate system around the x-axis. A polar axis r starts from

the point O and is oriented parallel to the diameter B1S1. The angular oordinate ϕ an be

oriented lokwise or ounter-lokwise. Both ases provide two idential symmetri solutions;

so we will not speify the diretion.

The sheme of spheres an be mapped onto itself by appropriate rotations about the x-
axis and salings relatively to the apex O. This ondition requires two limitations: the angle

di�erene |ϕi+1−ϕi| between onseutive spheres must be onstant (to ensure a oinidene of

angular diretions of all old and new diameters BiSi after the rotation), and the oordinates

xi must form a geometri progression (to ensure salability). From the two possibilities

ϕi+1−ϕi = ϕi−ϕi−1 and ϕi+1−ϕi = − (ϕi − ϕi−1) we will onsider only the �rst one, whih

provides uniformity of sphere alloation around the x-axis. The seond one an provide the

same uniformity only at ϕi+1 − ϕi = ±π. Both signs provide the same result, so there is no

di�erene if we use the �rst ase.

Alternatively, instead of de�ning the one c and the ondition above, we an say that the

entres of the spheres are on a onial helix around the x-axis with the same opening angle

as the one c. Nevertheless, the sphere 1 has an arbitrary x-oordinate; so the spiral is not

�xed. If we hange the oordinate freely (whih happen in jets), the spiral will rotate forming

the one c (whih is very lose to the half-veloity surfae in jets). For di�erent tasks, it is

possible to use both de�nitions.

As it will be shown, we an introdue the fourth (t) and �fth (u) ones tangent to all

spheres. We an restate the task replaing the ones b and s by t and u. This is interesting
beause it an redue the task to the pakaging one and, possibly, widen the appliation

range. Nevertheless, this auses a more di�ult analysis in jets.

It is neessary to �gure out the relations (if possible) between the opening angles of the

ones. In addition, we need rules for plotting the sheme.

The task has a 2D analogue: A sphere degenerates to a irle in a plane. A right irular

one is a 3D �gure that tapers from a irle to a point on the normal to the irle plane,

rossing through its entre. In 2D, the one's axis and the apex do not degrade, but the

one's base an degrade to a line segment normal to the axis. The axis rosses the midpoint

of this segment. Thus, a one degrades to an angle �- two rays, symmetri with respet to

the axis, start from the apex.
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a) b) )

d)

Figure 1: Calulation sheme: a) 3D; b) 2D; ) fragment for solution of the tangent

lines t and u; d) example of 2D ase at Θb = 2 and βt = (0.518906353122758 . . . ) · π

Therefore, the task may be restated from 3D to 2D as follows. Let us assume the x-axis
starting from the point O (Figure 1b, ). Let us onsider three angles with the same bisetor x
and vertex O. The angle b (boundary) is the greatest, the angle s (submerge) is the smallest,

and the angle c (entres) is intermediate. There is a sequene of tangent irles interseting
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the x-axis. The radius Ri of the irle i is proportional to the x-oordinate (absissa) xi of

the entre of the sphere by (1). The irle sequene must be in�nite in both diretions. Any

three adjaent spheres (i− 1, i, and i+ 1) are tangent to eah other.

The angles s (the value is 2βs) and b (the value is 2βb) ontain the respetive endpoints Si

and Bi of diameters normal to the x-axis of all irles. The angle c (the value is 2βc) ontains

all entres Oi of the irles. The point of ontat between the irles i and j (i < j) will be
alled Aij . The points Ai are the intersetion points of the diameters BiSi and the x-axis.

Remark. No ondition of spiral transformation is neessary in this ase. We will prove that

the transformation is provided by the onditions above (see Corollary 2 hereinafter).

It is neessary to �nd relations between the angles. In addition, we need rules for plotting

the sheme.

3. Limitations

At �rst, there is a limitation for the 2D and 3D tasks: In both ases, the ones (lines) ould

be ontinued in the negative x half-spae (half-plane). We will obtain the same piture but in

opposite x-diretion. Therefore, we will onsider only the half-spae (half-plane) with positive
x. If βb > π/2, the lines b will pass through the opposite half-plane, relatively to the r-axis.
Therefore, the �gure at the angles βb and π− βb is the same, and we an restrit the angle to

βb ≤ π/2 without losses.

In the ase βb = π/2, the one (lines) b degenerates to the plane (line) x = 0. In the

2D ase, the lines AiBi oinide with the r-axis, and only two externally tangent irles are

possible. In 3D ase, the lines AiBi are at the plane x = 0. The lines should pass through

the point O and the point should be inside the spheres. Thus, the point should be a point of

ontat, and only one pair of spheres an be present at a time. In both ases, the task has no

solution.

As a onlusion, there is a limitation, whih allows obtaining all possible solutions:

βb <
π

2
. (2)

The limitation allows using tangents of the angles βb, βc, and βs beause βb is the greatest.

Remark. This angle βt between the tangent line t and the x-axis an be greater than π/2.
The example at Θb = tan βb = 2 has been built using the following alulation results in

Figure 1d.

4. 2D solution

At �rst, the 2D ase may be onsidered: From the irle sequene, let us hoose the irle

no. 1. The previous irle (loser to the apex O) is no. 0. The next one (farther from apex

O) is 2, and so on.

Lemma 1. All tangeny points Aij are loated on the x-axis.

Proof. There is a line E01E12 parallel to x rossing the point O1. The points E01 and E12

are the intersetion points with diameters B0S0 and B2S2, respetively. As the x-axis is the
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bisetor of the angle c, the length of the line segments |OiAi| is proportional to the respetive
lengths |OAi| = xOi with the proportionality onstant Θc = tan(βc), hene

rOi = |OiAi| = Θc x. (3)

The angle b provides a similar proportionality between the line segments |OAi| = xOi and

rBi = |BiAi|. The orresponding proportionality onstant is Θb = tan(βb), hene

rBi = |BiAi| = Θb x. (4)

Finally, for the angle s there is a proportion between |OAi| = xOi and rSi = |SiAi| with the

proportionality onstant Θs = tan(βs), onsequently

rSi = |SiAi| = Θs x. (5)

We otain the irle radius Ri = |OiBi| = |BiSi| − |OiSi| = |OiSi| = |OiAi| + |SiAi|. Using

eqs. (3), (4), and (5),

Ri = xi (Θb −Θc) = xi (Θc +Θs) . (6)

By eqs. (3) and (6) there is a proportion |O0A0|/|O0A01| = |A0E01|/|A01O1|, beause the

denominators are the radii. It an be transformed to the following proportion:

|O0A0|
|O0A01|

=
|O0E01|
|O0O1|

.

By the SAS theorem, △A0O0A01 ∼ △E01O0O1. Thus, A01A0 ⊥ O0E01. Sine A01A0 ⊥ x and

x rosses the point A0, the line A01A0 is ollinear with the x-axis. Therefore, all tangeny

points Aij are on the x-axis, whih was to be proved.

The following right-angled triangles are also similar: △A0O0A01 ∼ △A2O2A12, beause

of proportional radii and distanes from the entres to the x-axis (hypotenuse-leg similarity).

Thus, |O0A0|/|O0A01| = |O2A2|/|O2A12|. Therefore, using the aute angle similarity,

△O0E01O1 ∼ △O0A0A01 ∼ △O1A1A01 = △O1A1A12 ∼ △O2A2A12 ∼ △O2E12O1. (7)

Lemma 2. There is a saling fator, with whih saling or mirroring in the x-axis and saling
with respet to the entre O, onverts Figure 1b onto itself.

Proof. It is possible to de�ne a system of equations that allows obtaining Figure 1b for

di�erent values of parameters. In [9℄, there was a �rst attempt to solve the task. It was

very simpli�ed, believing without proof, that A01 ∈ x, and skipping some of the following

equations �by analogy�, whih ause oversimpli�ed assumptions.

From the right-angled triangle △O0A0A01, using (3) and (4),

cosα = cos∠A0O0A01 =
rO0

R0

=
Θc

Θb −Θc

. (8)

From the right-angled triangle △O0E01O1 we obtain

R0 +R1 =
x1 − x0

sinα
. (9)
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Using eqs. (1), (3), and (4) and introduing the relative x-oordinate as

x̃i =
xi

x1

, (10)

we an transform (9) as follows:

(x̃0 + 1) (Θb −Θc) =
1− x̃0

sinα
. (11)

From the right-angled triangle △O2E12O1 we obtain

R1 +R2 =
x2 − x1

sinα
. (12)

Using eqs. (1), (3), (4), and (10), we an transform (9) as follows:

(1 + x̃2) (Θb −Θc) =
x̃2 − 1

sinα
. (13)

The equations (11) and (13) are very similar, but the third �analogous� equation with x̃0 and

x̃2 is the oversimpli�ed assumption of [9℄. The third equation an be written from the right

triangle △O2E02O0, where O2E02 is the perpendiular from the point O2 to the line O0S0.

Therefore, O2E02 ‖ x, and the angle ∠E02O2O0 = βc. Thus,

R0 +R2 =
x2 − x0

cos βc

. (14)

Using eqs. (1), (3), (4), and (10), we an transform (14) as follows:

(x̃0 + x̃2) (Θb −Θc) =
x̃2 − x̃0

cos βc

= (x̃2 − x̃0)
√

1 + Θ2
c . (15)

Let us eliminate the sine from eqs. (11) and (13):

1− x̃0

1 + x̃0

=
x̃2 − 1

x̃2 + 1
. (16)

After transformations of (16) it is possible to obtain the very important property of the

relative x-oordinates of the irle entres,

x̃0 =
1

x̃2

. (17)

Equation (17) with (10) shows that the x-oordinates of the entres of the irles form a

geometri progression with the denominator x̃2. Saling (or mirroring in the x-axis and

saling) with the entre O onverts Figure 1b into itself at the fators x̃n
2 for n ∈ Z.

Corollary 1. The sequene of irles is in�nite in both diretions toward the x-axis and

approahing the point O.

Corollary 2. All irles an be obtained from a single one by a spiral transformation, that

is the produt of rotation about the x-axis through the angle π and a saling with the fator

x̃2 with respet to the entre O: Rj = Rix̃
j−i
2 , xj = xix̃

j−i
2 , rOj = xOix̃

j−i
2 for i ∈ Z and

j ∈ Z.
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The substitution of (17) to (18) and a simple transformation give the following:

x̃0,2 =

√

√

1 + Θ2
c ∓ (Θb −Θc)

√

1 + Θ2
c ± (Θb −Θc)

=

√

√

√

√

1∓ 2
√

1 + Θ2
c

Θb −Θc

± 1
. (18)

The top sign is for x0 and the bottom one is for x̃2 = xi+1/xi, the ommon ratio of the

geometri progression xi. It is real if

1∓ 2
√

1 + Θ2
c

Θb −Θc

± 1

≥ 0. (19)

The inequality (19) is equivalent to

Θc >
Θ2

b − 1

2Θb

. (20)

Substituting (8) into (11) and using the ondition x2 > 1, we obtain

(x̃2 + 1)2 (Θb −Θc)
2

[

1−
(

Θc

Θb −Θc

)2
]

− (x̃2 − 1)2 = 0. (21)

Equation (21) an have a solution only if the expression in square brakets is positive, so

Θc <
Θb

2
. (22)

From the inequalities (20) and (22) the root isolating interval of Θc is

max

(

0,
Θ2

b − 1

2Θb

)

< Θc <
Θb

2
. (23)

Substitution of (18) to (21) gives a single, but umbersome, equation. For the numerial

solution, the better option is the same numerial substitution.

In addition, we an onnet the tangents Θb, Θc and the parameters ΘR using the line

AiBi, whih onsists of the irle i radius OiBi and the distane |O1A1| between the irle

entre and the x-axis:
ΘR = Θb −Θc. (24)

From (6) and (24) it is possible to �nd the tangent of the half-angle s as

Θs = Θb − 2Θc = ΘR −Θc. (25)

The equation (21), after substitution of (18), has been solved in the range (23), divided by

1000 setions, using SiLab (Figure 2). The results an be approximated in the range Θb ≤ 6
(βb ≤ 80.53 ◦

) with relative tolerane up to 0.0089 % (at least four orret signi�ant digits):

Θc/Θb = −6.153 10−6 Θ5
b + 0.0001395Θ4

b − 0.001206Θ3
b + 0.004367Θ2

b − 0.000584Θb

+0.46414, (26)

x̃2 = −7.17 10−6 Θ6
b + 0.000162Θ5

b − 0.0017656Θ4
b + 0.014628Θ3

b + 0.1461Θ2
b

+0.53486Θb + 1.00006. (27)
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Figure 2: The tangents and the ommon ratio in the 2D ase and

in the 3D ase for ϕi+1 − ϕi = π

For the jet simulation, this range is very large and (26) is too di�ult. In engineering al-

ulations the following approximation is enough for the shorter range Θb ≤ 3 (βb ≤ 71, 57 ◦
)

with the same relative tolerane � up to 0.0087 % (at least four orret signi�ant digits):

Θc/Θb = −0.00051327Θ3
b + 0.0031463Θ2

b − 0.000115Θb + 0.464087 (28)

x̃2 = −0.000911Θ4
b + 0.0129692Θ3

b + 0.14729Θ2
b + 0.5346274Θb + 1.000063. (29)

The most important value is Θb = 0.22, whih orresponds to free jets. In this ase, Θc =
0.1021 and Θs = 0.01573. The �rst result deviates from [9℄ only by 0.3%. Therefore, the

simpli�ations in [9℄ are not ritial. Thus, all results obtained in the author's works have

enough preision for engineering alulations and sienti� researhes.

Finally, we an redue the task to the pakaging one. Let us introdue lines t (external)
and u (internal) from the point O tangent to the irles 0 and 1. As other irles an be

obtained from them by homotheti transformation with the entre O, the lines are tangent to
all irles. The angle between the x-axis and the line t is βt with the tangent Θt. The angle

between the x-axis and the line u is βu, and the tangent Θu. The angle γ between the lines c
and t is equal to the angle between c and u,

βt − βc = βc + βu.

After applying the tangent to both sides and after simple transformations, we obtain

Θu =
Θt −Θc (2 + ΘcΘt)

1 + Θc (2Θt −Θc)
, Θu

(

βt =
π

2

)

= lim
Θt→∞

Θu =
1−Θ2

c

2Θc

. (30)

Let us draw a perpendiular O1T1 from the point O1 to the line t. The length of it is the

radius of the irle 1. Using (6),

|O1T1| = R1 = x1(Θb −Θc). (31)

One important harateristi ase is βt = π/2. As the line t is normal to the x-axis, the
perpendiular |O1T1| is parallel to x-axis. Therefore, R1 = x1 and, by (31), Θb − Θc = 1.
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Substituting the result to eqs. (18) and (21) allows an analytial solution. From (25) and (30)

follows

x̃2 =
3 +

√
5

2
= 2.61803 . . . , x̃0 =

3−
√
5

2
= 0.381966 . . . , Θb =

5 + 2
√
5

5
= 1.894427 . . . ,

Θc =
2
√
5

5
= 0.894427 . . . , Θs =

5− 2
√
5

5
= 0.1055728 . . . , Θu =

√
5

20
= 0.111803 . . .

In other ases, extending the line |O1B1| to the line t, gives a point F1. The length of the line

O1F1 is

|O1F1| = |A1F1| ∓ |A1O1| = x1 (±Θt ∓Θc) = x1 |Θt −Θc| , (32)

where the top signs hold for βt < π/2, the bottom signs for βt > π/2. From the right-angled

triangle △O1T1F1, in whih ∠T1O1B1 = βt due to perpendiular sides, follows

Θb −Θc = |Θt −Θc| cos βt =
|Θt −Θc|
√

Θ2
t + 1

. (33)

There is the solution of (33):

Θt =
Θc ±

√

Θ2
c +Θb

(

1− (Θb −Θc)
2
)

(Θb − 2Θc)

1− (Θb −Θc)
2

. (34)

Analogially, we an �nd the angle βu between the x-axis and the line u. From the entre O1

we should put a perpendiular O1U1 to the line u that is tangent to the irle 1. In addition,

we should extend the line O1S1 to the line u. The new endpoint is G1. The new triangle

△O1U1G1 has the right angle O1U1G1 and the angle U1O1G1 is equal to βu. Using (6), the

leg is

|O1U1| = R1 = x1(Θb −Θc) = x1(Θs +Θc) (35)

and the hypotenuse

|O1G1| = x1 (Θu +Θc) . (36)

From the triangle follows

Θb −Θc = Θs +Θc = (Θu +Θc) cos βu =
Θu +Θc
√

Θ2
u + 1

, (37)

Θu =
−Θc ∓

√

Θ2
c +Θb

(

1− (Θb −Θc)
2
)

(Θb − 2Θc)

1− (Θb −Θc)
2

(38)

Equations (34) and (38) have only one positive value at Θb−Θc < 1 (βt < π/2). It orresponds
to the plus sign. Both equations at Θb −Θc > 1 (βt > π/2) have two solutions: the solutions

of (34) are negative, the solutions of (38) are positive, whih orresponds to the geometri

meaning. The most important peuliarity is the same absolute value of the solutions at the

top signs, as well as at the bottom signs. Thus, we should aept the solution with greater

absolute value and negative sign as Θt and with lower absolute value as Θu. Therefore, there

are universal equations, whih an be transformed using (24),

Θt =

√

Θ2
c +Θb

(

1− (Θb −Θc)
2
)

(Θb − 2Θc) + Θc

1− (Θb −Θc)
2

=

√

Θ2
c +

(

1−Θ2
R

) (

Θ2
R −Θ2

c

)

+Θc

1−Θ2
R

. (39)

Θu =

√

Θ2
c +Θb

(

1− (Θb −Θc)
2
)

(Θb − 2Θc)−Θc

1− (Θb −Θc)
2

=

√

Θ2
c +

(

1−Θ2
R

) (

Θ2
R −Θ2

c

)

−Θc

1−Θ2
R

. (40)
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Thus, we solved the 2D task.

• The relation between the harateristi angles an be found from (21) after substitution

of (18) in the root isolation interval (23) at known Θb or Θc. In addition, eqs. (39) and

(40) give a possibility to alulate the tangent lines. For engineering alulations, we

an use the eqs. (26) or (28), instead.

• The spheres an be built by the sequene of the x- and r-oordinates of their entres and
their radii. The denominator x̃2 of the progression of x-oordinates should be found by

(18). For engineering alulations, the approximations (27) of (29) an be used, instead.

After that, we should put a oordinate x1 and ompute the x-oordinates progression
as xi = x1x̃

i−1
2 , the orresponding radii by (1) and the r-oordinates by (3).

The examples are displayed in Figure 1b and d.

5. 3D solution

After the 2D solution, we will solve the 3D task. From the sequene of spheres, let us hoose

a sphere no. 1. The previous sphere (loser to the apex O) is 0, the next one (farther from

the apex O) is 2, and so on.

The polar oordinate of i-th sphere entre (on the one c) is proportional to its x-
oordinate by (3), where Θc is the tangent of half of the opening angle (angle between some

generatrix of the one c and the x-axis). The equations (3) and (4) are also valid. Therefore,

for the de�nition of some spheres, it is enough to set only two oordinates of its entre Oi: xi

and ϕi. Let us assume that x1 is known. We may set ϕ1 = 0.
The tangeny between spheres will de�ne the other. The tangeny between the spheres i

and j (|j − i| ≤ 2) says that the distane between the sphere entres is equal to the sum of

their radii, |OiOj| = Ri +Rj , or

√

(xj − xi)
2 + (rj cos (ϕj)− ri cos (ϕi))

2 + (rj sin (ϕj)− ri sin (ϕi))
2 = Ri +Rj . (41)

After the substitution of eqs. (1), (3), and (10) and simple transformations, (41) is equivalent

to

∆̃ij

x̃i

=

√

√

√

√

(

x̃j
x̃i

− 1

)2

+Θ2
c

(

(

x̃j
x̃i

)2

+ 1− 2
x̃j

x̃i

cos (ϕj − ϕi)

)

−ΘR

(

x̃j
x̃i

+ 1

)

= 0. (42)

The absolute value of ∆̃ij equals the distane between the losest points of non-overlapping

spheres (if ∆̃ij > 0) or the most deeply overlapped points of overlapping spheres (if ∆̃ij < 0),
that orresponds to x1.

Dividing both parts of (42) by x̃j/x̃i gives the same equation as replaing x̃j/x̃i by x̃i/x̃j .

Therefore, if a value of x̃j/x̃i is a root, the reiproal value is also a root.

Equation (10) implies x̃1 = 1. Thus, from (42) at j = 1,

∆̃i1 =

√

(x̃i − 1)2 +Θ2
c (x̃

2
i + 1− 2x̃i cos (ϕi))−ΘR (x̃i + 1) = 0. (43)

Both eqs. (42) and (43) have non-negative radiands. The �rst members of the radiands

are squares of expressions. At the greatest possible value of osine, namely 1, the seond
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members are also squares of expressions. As the oordinates x̃i and x̃j an be only non-

negative, a smaller osine value auses not a smaller value of the seond members. Thus both

members are non-negative.

The osine from (42) and (43) satis�es

−1 ≤ cos (ϕj − ϕi) =

(

x̃j

x̃i

− 1
)2

+Θ2
c

(

(

x̃j

x̃i

)2

+ 1

)

−Θ2
R

(

x̃j

x̃i

+ 1
)2

2Θ2
c

x̃j

x̃i

≤ 1. (44)

Three spheres 0, 1 and 2 give two idential equations (43) and one equation (42). There are

four unknowns � two relative oordinates and two angles. Thus, there are multiple solutions

with one degree of freedom. The geometri progression of xi or the onstant angle di�erene

ϕi − ϕi−1 an fully de�ne the problem. Both onditions are equivalent by (44).

Using the geometri progression ondition, the equations an be solved easily. (43) has

two solutions for the tangeny of the spheres 1 and 2 and the spheres 0 and 1, respetively:

x̃2 =

√

(2Θ2
R −Θ2

c (1− cos (ϕ2))) (Θ2
c (cos (ϕ2) + 1) + 2) + Θ2

c cos (ϕ2) + Θ2
R + 1

Θ2
c −Θ2

R + 1
≥ 1, (45)

x̃0 =
1

x̃2

. (46)

For the spheres 0 and 2, (42) should be applied using

x̃j

x̃i

=
x̃i+2

x̃i

= x̃2
2 and ϕj − ϕi = ϕi+2 − ϕi = 2ϕ2. (47)

The solution > 1 of (42), using (47), is

x̃2 =

√

√

√

√

√

(

2Θ2
R −Θ2

c (1− cos (2ϕ2))
)

(Θ2
c (cos (2ϕ2) + 1) + 2) + Θ2

c cos (2ϕ2) + Θ2
R + 1

Θ2
c −Θ2

R + 1
. (48)

The eqs. (45) and (48) give a single equation for the angle step ϕ2:

(
√

(

2Θ2
R −Θ2

c (1− cosϕ2)
)

(Θ2
c (cosϕ2 + 1) + 2) + Θ2

c cosϕ2 +Θ2
R + 1

)2

=
(

Θ2
c −Θ2

R + 1
)

×
(

2
√

(

Θ2
R −Θ2

c (1− cos2 ϕ2)
)

(Θ2
c cos

2 ϕ2 + 1) + Θ2
c (2 cos

2 ϕ2 − 1) + Θ2
R + 1

)

.

(49)

The equation (49) has been symbolially solved, whih is very easy using Maxima algebra

system. After getting rid of the roots (two times), the equation will be quarti. Its depressed

equation is biquadrati, but it has only two di�erent seond order roots,

cosϕ2 =
±ΘR

√

2 (Θ2
R + 3) (1−Θ2

R +Θ2
c) + (Θ2

R + 1)Θc

(1−Θ2
R) Θc

. (50)

We hoose the real solution in the range [−1, 1].
Let us disuss the most harateristi ases of the task. To �nd the minimum possible

value of Θc, let us di�erentiate (44) by Θc:

d cos (ϕj − ϕi)

dΘc

=

(

ΘR + 1 +
x̃j

x̃i

((ΘR − 1)
)(

ΘR − 1 +
x̃j

x̃i

(ΘR + 1)
)

Θ3
c

x̃j

x̃i

. (51)
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The derivative has only one disontinuity at x̃j/x̃i = 0 and two non-positive roots at ΘR ≤ 1:

x̃j

x̃i

=
ΘR ± 1

ΘR ∓ 1
. (52)

The derivative annot hange its sign at x̃j/x̃i > 0. At x̃j/x̃i = 1, the derivative (51) is

4Θ2
R/Θ

3
c > 0. Thus, the derivative is positive, so the funtion is inreasing. The minimum

possible value of Θc is orresponding to the minimum possible value of osine � minus

one. The angle is π; so all sphere entres and tangeny points are in the same plane. The

intersetion with the plane is the same as in Figure 1b. Moreover, the results of the 2D task

inl. Figure 2, (26), (27), (28), and (29) are aeptable. Four spheres annot be tangent to

eah other. To hek the solution, a funtion in SiLab has been reated. The funtion tests

the possibility of a solution at Θc = ΘR (always) and at Θc = 0 (never). The minimum point

of Θc with the last possible solution an be found by the bisetion method. Calulations show

that at the minimum |ϕ0| = |ϕ2| = π.
The next harateristi ase is Θc → ΘR = Θb/2. It is the speial ase, whih allows

four tangent spheres: two pairs of opposite ones. The lines between the entres of the pairs

are perpendiular. However, if Θc is in�nitely less than Θb/2, only three spheres (by numeri

solution) an be tangent eah other. The numeri solution (Figure 3) an be approximated

by the following equations of the ommon ratio and angular oordinate di�erene in radians

between adjaent spheres with the respetive deviations 0.012% and 0.0025%:

xi+1/xi = −0.00237Θ3
b + 0.07273Θ2

b + 0.36394Θb + 1.00011, (53)

ϕi+1 − ϕi = −0.000773Θ4
b + 0.0008082Θ3

b + 0.0687363Θ2
b + 0.3654873Θb + 1.000024. (54)

The third harateristi ase is the average value of Θc between the �rst and the seond

harateristi ases (Figure 4). The following approximation has the respetive deviations

Figure 3: The angle di�erene, the tangents, and the ommon ratio in the 3D ase

if Θc = ΘR
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Figure 4: The angle di�erene, the tangents, and the ommon ratio in the 3D ase

at the average value of Θc

0.0058%, 0.008%, 0.0064%, and 0.002%:

Θc/Θb = −0.000216Θ3
b + 0.00141Θ2

b + 0.482692, (55)

Θs/Θb = −0.00004Θ5
b + 0.0002364Θ4

b − 0.0025905Θ2
b + 0.0346523, (56)

ϕi+1 − ϕi = 0.0036Θ2
b + 0.00139Θb + 2.598875; (57)

xi+1/xi = −0.00201Θ4
b + 0.00633Θ3

b + 0.103668Θ2
b + 0.45301Θb + 1.000019. (58)

In other ases it is neessary to solve the equations. For a rude approximation, it is

possible to alulate the parameters at the three ases above and perform a paraboli inter-

polation.

For the one t, whih is tangent to all spheres externally, and the one u, whih is tangent

to all spheres internally, eqs. (39) and (40) are appliable. Let us build a plane through the

x-axis and the entre of the sphere 1. The intersetion of the ones and the sphere 1 with

this plane is the same as Figure 1. Thus, the development of the equations in the 2D ase is

appliable to the 3D ase.

Thus, we solved the 3D task.

• The relation between the harateristi angles is not �xed. At �rst, we should assume

the tangent Θb of the one b. The tangent of the one c should be aepted in the range

Θc = [Θc,min, Θb/2], where the minimum value Θc,min is the same as in the 2D task

by eqs. (18) and (21) in the root isolation interval (23). Alternatively, we an assume

Θc. After that, Θb should be aepted inside the range Θb = [2Θc, Θb,max], where the

maximum value Θb,max is the same as in the 2D task by the same equations. Other

tangents an be found from eqs. (25), (39), and (40).

• The spheres an be built by the geometri progressions of the x- and r-oordinates
of entres and the radii, and also by the step of the angle ϕ. The denominator x̃2
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of progression of the x-oordinates and the angle step ϕ an be found by (51) and

(45). For engineering alulations, the approximations (27), (29), (53), (54), (55), (56),

(57), and (58) an be used instead for the orresponding ases. In other ases, we an

interpolate the approximation results. After that, we should de�ne a oordinate x1 and

ompute the x-oordinate progression xi = x1x̃
i−1
2 , the orresponding radii by (1), and

the r-oordinates by (3).

An example is shown in Figure 1a.

6. Appliation of the results

The presented solution gives a disrete jet model, whih an be used for the simulation of

ventilation air�ows for the development of energy-e�ient air exhange organization in rooms

[4℄. One of the most important problems is energy e�ieny. During the euro-integration

proess [6℄ Ukraine highly inreases the energy e�ieny of onstrutions. Air�ows in rooms

(both averaged and turbulent parameters) are a very important part [4, 12℄ in the energy

e�ieny of ventilation. Air jets have a large-sale vortiity, whih allows the simulation of the

marostruture using the presented method. At a low Reynolds number, the marostruture

is visible [5, 15℄ in dyed jets (Figure 5) and very similar to Figure 1a. The ones represent

the harateristi jet dimensions: jet boundary, half-veloity surfae and interation deepness

between vorties. As there is no di�erene in the equations for jet parameters in ventilation,

we an extend the marostruture analysis on the wide range of Reynolds numbers.

Figure 5: A free jet, dyed by uranine

A new diretion of rising the energy e�ieny of buildings by air�ows with turbulent

marostruture is the ontrol of the �ooling e�et� of �green strutures� [13℄, whih are

strutures of buildings with living plants. The plants ool air and strutures by evaporation,

whih is dependent on air veloity and turbulene intensity. A speially designed parapet of

�green goofs� an ontrol the air�ows for maximizing the �ooling e�et� only in summer for

passive air onditioning. The simulation method is used for optimization of the parapet.
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7. Conlusions

The solution of the 2D task about angles and tangent irles was found. It required a numeri

solution of an equation. In addition, the solution of the 3D task about spheres and ones was

found. The 3D ase adds up to the 2D one in extreme ases � lowest opening angle of the

one with the sphere entres. The tasks an simply represent the marostruture of free jet

�ows in hydro-aerodynamis.

8. Prospets for further researh

The simulation of air veloity and turbulene intensity of 3D jets using the model is �nished.

A suessful optimization of air distributors with multiple tangential slots using the simulation

method shows its usability. Now we are foused on the optimization of air exhange in rooms.
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