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Abstract. A task about spheres and cones is solved. The task is about tan-
gent, spheres around an x-axis. Three right circular cones with the same apex on
the x-axis at z = 0 contain corresponding endpoints of diameters of the spheres,
perpendicular to x, and centres of the spheres, respectively. Any three adjacent
spheres are mutually tangent. Diameters of the spheres are proportional to x.
The z-axis intersects all spheres. The goal of the task is to find geometric rela-
tions between the involved cones and to give rules for plotting the scheme. The
solution allows a transformation of the sphere sequence onto itself by rotation and
homothety. In 2D, the right circular cones degenerate to angles formed by two
rays starting at the apex, while the cones’ axis degenerates to the angle bisector.
The spheres degenerate to circles. Therefore, the task has a 2D analogue. If one
of the angles is known, the others can be found uniquely. The radii of the circles
form a geometric progression. Nevertheless, the 3D task has more freedom. If the
opening angle of the largest cone is known, it is possible to find the minimum of
the opening angle of the intermediate cone passing through the sphere centres.
This task allows a simplified geometric simulation of large eddies in free jets.
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1. Introduction

There is a lot of tasks about contacting spheres. Most interesting are tasks with practical
application. One of the examples is a sphere packing task, which is very important in goods
packing, physics etc., [1, 2, 3, 7, 8, 10, 11, 14]. In this work, we will introduce a task about
spheres and cones, which is applicable in fluid mechanics, especially in jet theory. Jets contain
large-scale growing vortices, which are self-arranged because of geometrical compatibility. The
solution of this task provides a discrete model of axis-symmetric (3D) and flat (2D) free jets. It
is different from the classical packing tasks because the spheres have different radii, depending
on their position.
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2. Definition of the task

Let us assume the z-axis starting from a point O (Figure la). Let us consider three coaxial
right circular cones (hereinafter referred to as “cones”) with the same apex O. The cone b
(boundary) has the greatest opening angle, the cone s (submerge) has the smallest one, and
the cone ¢ (centres) has an intermediate one. There is a sequence of externally tangent spheres,
intersecting the x-axis and numbered by ¢ € Z . The sphere 1 has an arbitrary x-coordinate.
The sphere sequence must be infinite in both directions. Any three adjacent spheres (i — 1,
i, and i + 1) are tangent to each other. The radius R; of the sphere with no. i is proportional
to the x-coordinate x; of the centre of the sphere with constant of proportionality ©z:

RZ‘ = @R Z;. (1)

The cones s and b contain the respective endpoints S; and B; of diameters normal to the
x-axis of all spheres. The cone ¢ contains all centres O; of the spheres. The points of contact
between the spheres ¢ and j will be called A;; (i < j) .

Let us use a cylindrical coordinate system around the z-axis. A polar axis r starts from
the point O and is oriented parallel to the diameter B1S;. The angular coordinate ¢ can be
oriented clockwise or counter-clockwise. Both cases provide two identical symmetric solutions;
so we will not specify the direction.

The scheme of spheres can be mapped onto itself by appropriate rotations about the x-
axis and scalings relatively to the apex O. This condition requires two limitations: the angle
difference |p;11 —¢;| between consecutive spheres must be constant (to ensure a coincidence of
angular directions of all old and new diameters B;S; after the rotation), and the coordinates
x; must form a geometric progression (to ensure scalability). From the two possibilities
Yir1 —0i = @i —i—1 and ;11— @; = — (v; — pi—1) we will consider only the first one, which
provides uniformity of sphere allocation around the x-axis. The second one can provide the
same uniformity only at ¢;11 — ¢; = +7m. Both signs provide the same result, so there is no
difference if we use the first case.

Alternatively, instead of defining the cone ¢ and the condition above, we can say that the
centres of the spheres are on a conical helix around the x-axis with the same opening angle
as the cone c. Nevertheless, the sphere 1 has an arbitrary xz-coordinate; so the spiral is not
fixed. If we change the coordinate freely (which happen in jets), the spiral will rotate forming
the cone ¢ (which is very close to the half-velocity surface in jets). For different tasks, it is
possible to use both definitions.

As it will be shown, we can introduce the fourth (¢) and fifth (u) cones tangent to all
spheres. We can restate the task replacing the cones b and s by ¢ and w. This is interesting
because it can reduce the task to the packaging one and, possibly, widen the application
range. Nevertheless, this causes a more difficult analysis in jets.

[t is necessary to figure out the relations (if possible) between the opening angles of the
cones. In addition, we need rules for plotting the scheme.

The task has a 2D analogue: A sphere degenerates to a circle in a plane. A right circular
cone is a 3D figure that tapers from a circle to a point on the normal to the circle plane,
crossing through its centre. In 2D, the cone’s axis and the apex do not degrade, but the
cone’s base can degrade to a line segment normal to the axis. The axis crosses the midpoint
of this segment. Thus, a cone degrades to an angle — two rays, symmetric with respect to
the axis, start from the apex.
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Figure 1: Calculation scheme: a) 3D; b) 2D; c¢) fragment for solution of the tangent
lines t and u; d) example of 2D case at ©, = 2 and ; = (0.518906353122758...) - 7

Therefore, the task may be restated from 3D to 2D as follows. Let us assume the z-axis
starting from the point O (Figure 1b, c¢). Let us consider three angles with the same bisector x
and vertex O. The angle b (boundary) is the greatest, the angle s (submerge) is the smallest,
and the angle ¢ (centres) is intermediate. There is a sequence of tangent circles intersecting
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the z-axis. The radius R; of the circle ¢ is proportional to the xz-coordinate (abscissa) xz; of
the centre of the sphere by (1). The circle sequence must be infinite in both directions. Any
three adjacent spheres (i — 1, 4, and 7 + 1) are tangent to each other.

The angles s (the value is 255) and b (the value is 23,) contain the respective endpoints .S;
and B; of diameters normal to the z-axis of all circles. The angle ¢ (the value is 25.) contains
all centres O; of the circles. The point of contact between the circles i and j (i < j) will be
called A;;. The points A; are the intersection points of the diameters B;S; and the x-axis.

Remark. No condition of spiral transformation is necessary in this case. We will prove that
the transformation is provided by the conditions above (see Corollary 2 hereinafter).

It is necessary to find relations between the angles. In addition, we need rules for plotting
the scheme.

3. Limitations

At first, there is a limitation for the 2D and 3D tasks: In both cases, the cones (lines) could
be continued in the negative x half-space (half-plane). We will obtain the same picture but in
opposite z-direction. Therefore, we will consider only the half-space (half-plane) with positive
x. If B, > 7/2, the lines b will pass through the opposite half-plane, relatively to the r-axis.
Therefore, the figure at the angles 3, and m — 3, is the same, and we can restrict the angle to
By < /2 without losses.

In the case 5, = m/2, the cone (lines) b degenerates to the plane (line) z = 0. In the
2D case, the lines A;B; coincide with the r-axis, and only two externally tangent circles are
possible. In 3D case, the lines A;B; are at the plane x = 0. The lines should pass through
the point O and the point should be inside the spheres. Thus, the point should be a point of
contact, and only one pair of spheres can be present at a time. In both cases, the task has no
solution.

As a conclusion, there is a limitation, which allows obtaining all possible solutions:

By< 5 2)

The limitation allows using tangents of the angles [, 5., and s because [, is the greatest.

Remark. This angle 5, between the tangent line ¢ and the z-axis can be greater than /2.
The example at O, = tan 8, = 2 has been built using the following calculation results in
Figure 1d.

4. 2D solution

At first, the 2D case may be considered: From the circle sequence, let us choose the circle
no. 1. The previous circle (closer to the apex O) is no. 0. The next one (farther from apex
0) is 2, and so on.

Lemma 1. All tangency points A;; are located on the x-awxis.

Proof. There is a line Ey Eo parallel to x crossing the point O;. The points Ey; and Ej
are the intersection points with diameters BySy and BsSs, respectively. As the z-axis is the
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bisector of the angle ¢, the length of the line segments |O;A;| is proportional to the respective
lengths |OA;| = xo; with the proportionality constant ©. = tan(/.), hence

The angle b provides a similar proportionality between the line segments |OA;| = xo; and
rp; = |B;A;|. The corresponding proportionality constant is O, = tan(/3,), hence

B = \Bz'Ai| =0 x. (4)

Finally, for the angle s there is a proportion between |OA;| = zo; and rg; = |S;A;| with the
proportionality constant ©, = tan(f,), consequently

re; = |SiAi] = O, . (5)

We otain the circle radius R; = |O;B;| = |B;Si| — |0:S;| = 0:S:| = |0;A;| + |S:A;]. Using
eas. (3), (4), and (5),

RZ‘ =T; (@b — @c) =T; (@c + @s> . (6)
By egs. (3) and (6) there is a proportion |OgAg|/|OvAn| = |AoEo1|/|A01O1], because the
denominators are the radii. It can be transformed to the following proportion:

|OOA0| _ |OOE01|
[OoAo|  |OO1]”

By the SAS theorem, AAQOQAQ:[ ~ AE()lOQOl. ThU_S, AOlAO 1 OOE01- Since AOlAO 1 z and
x crosses the point Ap, the line Ag;Ag is collinear with the x-axis. Therefore, all tangency
points A;; are on the z-axis, which was to be proved. O

The following right-angled triangles are also similar: AAyOgAg; ~ AAy;O05A15, because
of proportional radii and distances from the centres to the xz-axis (hypotenuse-leg similarity).
Thus, |OgAp|/|OpAo1| = |O2A2|/]O2A12|. Therefore, using the acute angle similarity,

AO(]EOlOl ~ AO(]A()A(H ~ AOlAlA()l - AOlAlAlg ~ A02A2A12 ~ AOgEuOl. (7)

Lemma 2. There is a scaling factor, with which scaling or mirroring in the x-axis and scaling
with respect to the centre O, converts Figure 1b onto itself.

Proof. 1t is possible to define a system of equations that allows obtaining Figure 1b for
different values of parameters. In |9], there was a first attempt to solve the task. It was
very simplified, believing without proof, that Ay € x, and skipping some of the following
equations “by analogy”, which cause oversimplified assumptions.

From the right-angled triangle AOyApAo;, using (3) and (4),

r CH
cos o = cos £ AgOpAp = RLOO = G0, (8)

From the right-angled triangle AOyEy O; we obtain

1 — Xo

Ro+ Ry =

sina
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Using egs. (1), (3), and (4) and introducing the relative z-coordinate as

X

T, = —, 10
5= (10
we can transform (9) as follows:
_ 1 —
1)(©, —06.) = : 11
(F0+1)(0y—0) =~ (1)
From the right-angled triangle AOs;E150; we obtain
Ry+ R, =211 (12)
sin «
Using eqgs. (1), (3), (4), and (10), we can transform (9) as follows:
- Ty —1
1 O, —0,) = 13
(14+5)(0,-0) = 2 (13)

The equations (11) and (13) are very similar, but the third “analogous” equation with %, and
To is the oversimplified assumption of [9]. The third equation can be written from the right
triangle AOsFEg0y, where Oy FEjy is the perpendicular from the point O, to the line OySy.
Therefore, Oy Eps || , and the angle £ Fypy0200 = .. Thus,

Ty — To

Ry+ Ry = o5 B,

(14)

Using egs. (1), (3), (4), and (10), we can transform (14) as follows:

(Fo+ 32) (O — ©) = 2700 _ (G, )\ /TT OF. (15)

cos [,

Let us eliminate the sine from eqs. (11) and (13):

1—Fy dp—1
14+ &g do+1

(16)

After transformations of (16) it is possible to obtain the very important property of the
relative z-coordinates of the circle centres,

Fo=—. (17)

Equation (17) with (10) shows that the x-coordinates of the centres of the circles form a
geometric progression with the denominator Z;. Scaling (or mirroring in the z-axis and
scaling) with the centre O converts Figure 1b into itself at the factors % for n € Z. O

Corollary 1. The sequence of circles is infinite in both directions toward the x-azis and
approaching the point O.

Corollary 2. All circles can be obtained from a single one by a spiral transformation, that
is the product of rotation about the x-awis through the angle ™ and a scaling with the factor
Ty with respect to the centre O: R; = Ri&) ", x; = x;@y ', ro; = 03 ' fori € Z and
jEZ.
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The substitution of (17) to (18) and a simple transformation give the following:

V1+02F (e
02_\/ + :F b — o 1 (18)

O —

The top sign is for zp and the bottom one is for o = x;11/z;, the common ratio of the
geometric progression x;. It is real if

2
l1F———— >0. 19
T 19)

O, — O,

The inequality (19) is equivalent to
02 -1

0,> 2 —. 20
26, (20)

Substituting (8) into (11) and using the condition z > 1, we obtain

1o (20 )
6, - 0.

Equation (21) can have a solution only if the expression in square brackets is positive, so

o, < % (22)

(7o +1)2 (0, — 6,)? —(#—1)%=0. (21)

From the inequalities (20) and (22) the root isolating interval of O, is

07 -1 Oy
max (O, 26, ) < 0. < - (23)

Substitution of (18) to (21) gives a single, but cumbersome, equation. For the numerical
solution, the better option is the same numerical substitution.

In addition, we can connect the tangents ©,, O. and the parameters Oy using the line
A;B;, which consists of the circle i radius O;B; and the distance |O;A;| between the circle
centre and the z-axis:

Or =0, — O.. (24)

From (6) and (24) it is possible to find the tangent of the half-angle s as
O;,=0,—20.=0g— 0O, (25)

The equation (21), after substitution of (18), has been solved in the range (23), divided by
1000 sections, using SciLab (Figure 2). The results can be approximated in the range ©, < 6
(By < 80.53 °) with relative tolerance up to 0.0089 % (at least four correct significant digits):

0./0, = —6.153107° 0] 4 0.0001395 O} — 0.001206 O} + 0.004367 ©F — 0.000584 O,
+0.46414, (26)

By = —7.17107° 0% + 0.000162 ©F — 0.0017656 O} + 0.014628 O + 0.1461 O
+0.53486 ©;, + 1.00006. (27)



106 V. Mileikovskyi: A Task About Spheres and Cones, Applicable in Jet Theory

Xi 1/ X;
ﬁf ﬁc ,Bs, :Bu i+17 2]
74 0574 0.057 — 10 100
08 ) 0.4 74 0.04 Rl 14 8 Lso
Rl I R Zdp .\ E g
06z 037 0037 A2 I\ L6 160
= // ﬁs)\l |
047 0274002z prdupan xL\_.z, 40
/"///47 /jf A X1 \ |
027z 017z 0011 e % it 2 120
A ol=T1111 fe T \0 L0
0 01z 02z 03z 04z 057p,

Figure 2: The tangents and the common ratio in the 2D case and
in the 3D case for ;11 —p; =7

For the jet simulation, this range is very large and (26) is too difficult. In engineering cal-
culations the following approximation is enough for the shorter range ©, < 3 (8, < 71,57°)
with the same relative tolerance — up to 0.0087 % (at least four correct significant digits):

0./6, = —0.00051327 ©} + 0.0031463 ©F — 0.000115 O, + 0.464087 (28)
Ty = —0.000911 6} + 0.0129692 O} + 0.14729 OF + 0.5346274 ©, + 1.000063. (29)

The most important value is ©, = 0.22, which corresponds to free jets. In this case, ©. =
0.1021 and ©4 = 0.01573. The first result deviates from [9] only by 0.3%. Therefore, the
simplifications in |9] are not critical. Thus, all results obtained in the author’s works have
enough precision for engineering calculations and scientific researches.

Finally, we can reduce the task to the packaging one. Let us introduce lines ¢ (external)
and v (internal) from the point O tangent to the circles 0 and 1. As other circles can be
obtained from them by homothetic transformation with the centre O, the lines are tangent to
all circles. The angle between the xz-axis and the line ¢ is 8; with the tangent ©,. The angle
between the x-axis and the line u is /3, and the tangent ©,. The angle v between the lines ¢
and t is equal to the angle between ¢ and wu,

ﬁt_ﬁczﬁc+5u-
After applying the tangent to both sides and after simple transformations, we obtain
@t — @c (2 + @c@t) ™ . 1— @2
110, (20, -0, br=5) =g, 20, (30)

Let us draw a perpendicular O;7} from the point O; to the line £. The length of it is the
radius of the circle 1. Using (6),

|01T1| = Rl = xl(@b — @C) (31)

One important characteristic case is §; = m/2. As the line ¢ is normal to the x-axis, the
perpendicular |O,7}| is parallel to z-axis. Therefore, Ry = x; and, by (31), ©, — 0. = 1.
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Substituting the result to egs. (18) and (21) allows an analytical solution. From (25) and (30)
follows

952:3+\/5:2.61803..., ;z0:3_2\/5=o.381966..., @b=5+52*/5:1.894427...,
@C—M—0894427 e,=2 52[_01055728 @u:;/—05:0.111803...

In other cases, extending the line |O;B;| to the line ¢, gives a point F;. The length of the line
O+ F) is

|O1F1| = |A1F1| F |A104] = 21 (20, FO.) = 21 |0, — O], (32)
where the top signs hold for 5, < 7/2, the bottom signs for 8, > 7/2. From the right-angled
triangle AO,T1 Fy, in which ZT101B; = f3; due to perpendicular sides, follows

|@t - 90|

Oy, — 0, = 1|0, — O, cos f; = ———. 33
b ‘ t | Bt \/W ( )
There is the solution of (33):
0.+ /024 6,(1 - (6, —06,)%) (6, — 20,)

1—(8,—06,)?

Analogically, we can find the angle 3, between the z-axis and the line u. From the centre O,
we should put a perpendicular O,U; to the line u that is tangent to the circle 1. In addition,
we should extend the line O5; to the line u. The new endpoint is GG;. The new triangle
AO1U1G4 has the right angle O1U;G1 and the angle U;0,Gq is equal to ,. Using (6), the
leg is

|01U1| =R = xl(@b - 90) = xl(@s + 90) (35)
and the hypotenuse

|O1G1| = 21 (O, + ©,) . (36)

From the triangle follows
0~ 0. =0, 10, = (0, +6,)cosf, = 2% (37)

VO?2 +1
_ 2 _ _ 2 _

o _ 07 V02 +6,(1-(9,-0,)°) (6, - 20,) o)

1—(6,—06,)°

Equations (34) and (38) have only one positive value at ©,—©, < 1 (5 < 7/2). It corresponds
to the plus sign. Both equations at ©, — O, > 1 (5; > 7/2) have two solutions: the solutions
of (34) are negative, the solutions of (38) are positive, which corresponds to the geometric
meaning. The most important peculiarity is the same absolute value of the solutions at the
top signs, as well as at the bottom signs. Thus, we should accept the solution with greater
absolute value and negative sign as ©; and with lower absolute value as ©,. Therefore, there
are universal equations, which can be transformed using (24),

V02 +0,(1— (0~ 6.)?) (8 — 20.) + \/@2 (1-6%) (0% —02) + 0,
0, = ) _ . (39)
1- (0, -0, 1- 02
02 +0,(1— (0, —0,)%) (8 — 20,) 0+ (1-02%) (0% -02) -6,
o _ VOLHOML-(0-0)) (O -/ )0k 09 -e.

1— (0 —06,)? 1-0%
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Thus, we solved the 2D task.

e The relation between the characteristic angles can be found from (21) after substitution
of (18) in the root isolation interval (23) at known ©, or ©.. In addition, egs. (39) and
(40) give a possibility to calculate the tangent lines. For engineering calculations, we
can use the eqs. (26) or (28), instead.

e The spheres can be built by the sequence of the x- and r-coordinates of their centres and
their radii. The denominator 5 of the progression of z-coordinates should be found by
(18). For engineering calculations, the approximations (27) of (29) can be used, instead.
After that, we should put a coordinate x; and compute the z-coordinates progression
as x; = 1175 ', the corresponding radii by (1) and the r-coordinates by (3).

The examples are displayed in Figure 1b and d.

5. 3D solution

After the 2D solution, we will solve the 3D task. From the sequence of spheres, let us choose
a sphere no. 1. The previous sphere (closer to the apex O) is 0, the next one (farther from
the apex O) is 2, and so on.

The polar coordinate of i-th sphere centre (on the cone c¢) is proportional to its z-
coordinate by (3), where O, is the tangent of half of the opening angle (angle between some
generatrix of the cone ¢ and the z-axis). The equations (3) and (4) are also valid. Therefore,
for the definition of some spheres, it is enough to set only two coordinates of its centre O;: x;
and ;. Let us assume that z; is known. We may set ¢ = 0.

The tangency between spheres will define the other. The tangency between the spheres ¢
and j (|7 —i| < 2) says that the distance between the sphere centres is equal to the sum of
their radii, ‘OZO]‘ = RZ + Rj, or

\/(ccj — 2;)° 4 (r;cos (ip;) — 73 cos (¢;)) + (rysin (@;) —risin (9;))> = R; + R;. (41)

After the substitution of egs. (1), (3), and (10) and simple transformations, (41) is equivalent

to
Ay Zj ’ 7\ i 7;
LY - _ 2 ' 907 o . Zj _
7 (m )*96<(@.) 127 cos (g %)) GR(ji‘l'l) 0. (42)

The absolute value of Azj equals the distance between the closest points of non-overlapping
spheres (if AU > 0) or the most deeply overlapped points of overlapping spheres (if A” < 0),
that corresponds to x;.

Dividing both parts of (42) by Z;/%; gives the same equation as replacing %;/%; by Z;/%;.
Therefore, if a value of Z,/; is a root, the reciprocal value is also a root.

Equation (10) implies #; = 1. Thus, from (42) at j =1,

Ag = /(5 — 1) + 02 (8 +1 - 2i;cos (1)) — O (3 +1) = 0. (43)

Both eqs. (42) and (43) have non-negative radicands. The first members of the radicands
are squares of expressions. At the greatest possible value of cosine, namely 1, the second
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members are also squares of expressions. As the coordinates Z; and Z; can be only non-
negative, a smaller cosine value causes not a smaller value of the second members. Thus both
members are non-negative.

The cosine from (42) and (43) satisfies

() e ()" 0)-en 3 o)

202 L

T

< 1. (44)

—1 < cos(p; — i) =

Three spheres 0, 1 and 2 give two identical equations (43) and one equation (42). There are
four unknowns — two relative coordinates and two angles. Thus, there are multiple solutions
with one degree of freedom. The geometric progression of x; or the constant angle difference
;i — i1 can fully define the problem. Both conditions are equivalent by (44).

Using the geometric progression condition, the equations can be solved easily. (43) has
two solutions for the tangency of the spheres 1 and 2 and the spheres 0 and 1, respectively:

/(263 — ©2 (1 — cos (¢2))) (02 (cos (2) + 1) +2) + OF cos (¢2) + OF + 1

To = > 1, (45)
02 - 0% +1
1
To = —. 46
Lo 7 (46)
For the spheres 0 and 2, (42) should be applied using
Ti T -
i R h - 75 and @; — @i = iy — @i = 2. (47)
ZT; €T;
The solution > 1 of (42), using (47), is
) \/(2@%% — ©2 (1 —cos (2p2))) (B2 (cos (2p2) + 1) + 2) + O2 cos (22) + O% + 1
2= 02— 0% +1 - @)
The eqs. (45) and (48) give a single equation for the angle step o:
2
<\/(2®% — 02 (1 —cos p2)) (O2 (cos pa + 1) + 2) + O2 cos g + OF + 1) = (02 -0%+1)
(49)

X <2\/(@%z — 02 (1 — cos? p3)) (B2 cos? 2 + 1) + O2 (2cos? py — 1) + O% + 1> '

The equation (49) has been symbolically solved, which is very easy using Maxima algebra
system. After getting rid of the roots (two times), the equation will be quartic. Its depressed
equation is biquadratic, but it has only two different second order roots,

+0r/2(0% +3) (1 - 0% +02)+ (04 +1)6,
(1-6%) 06, ’

(50)

COS (g =

We choose the real solution in the range [—1,1].
Let us discuss the most characteristic cases of the task. To find the minimum possible
value of ©,, let us differentiate (44) by O.:

deos (o, — o) (@R Tl % (Or — 1)) (@R 1+ ‘z—ﬂ (Or + 1)) &1)

do. 03 %
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The derivative has only one discontinuity at ;/Z; = 0 and two non-positive roots at O < 1:

7, Op*l

& OpF1l

(52)

The derivative cannot change its sign at z,;/2; > 0. At %;/%; = 1, the derivative (51) is
40%/6? > 0. Thus, the derivative is positive, so the function is increasing. The minimum
possible value of ©,. is corresponding to the minimum possible value of cosine — minus
one. The angle is 7; so all sphere centres and tangency points are in the same plane. The
intersection with the plane is the same as in Figure 1b. Moreover, the results of the 2D task
incl. Figure 2, (26), (27), (28), and (29) are acceptable. Four spheres cannot be tangent to
each other. To check the solution, a function in Scilab has been created. The function tests
the possibility of a solution at ©. = O (always) and at ©, = 0 (never). The minimum point
of ©. with the last possible solution can be found by the bisection method. Calculations show
that at the minimum |@g| = |@2| = 7.

The next characteristic case is ©, — Og = ©,/2. It is the special case, which allows
four tangent spheres: two pairs of opposite ones. The lines between the centres of the pairs
are perpendicular. However, if ©, is infinitely less than ©,/2, only three spheres (by numeric
solution) can be tangent each other. The numeric solution (Figure 3) can be approximated
by the following equations of the common ratio and angular coordinate difference in radians
between adjacent spheres with the respective deviations 0.012 % and 0.0025 %:

Tiy1/2; = —0.00237 ©F +0.07273 ©F 4 0.36394 O, + 1.00011, (53)

Pir1 — ;i = —0.000773 OF + 0.0008082 OF + 0.0687363 OF + 0.3654873 O, + 1.000024. (54)

The third characteristic case is the average value of ©. between the first and the second
characteristic cases (Figure 4). The following approximation has the respective deviations
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Figure 3: The angle difference, the tangents, and the common ratio in the 3D case

if ©, = Op
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Figure 4: The angle difference, the tangents, and the common ratio in the 3D case

at the average value of O,

0.0058 %, 0.008 %, 0.0064 %, and 0.002 %:

Pi+1 — Pi

©./6s
©,/6y

$i+1/5'3i

—0.000216 ©F + 0.00141 ©F + 0.482692,

—0.00004 ©F + 0.0002364 O} — 0.0025905 2 + 0.0346523,

0.0036 ©7 4 0.00139 O, + 2.598875;

—0.00201 ©} + 0.00633 O} 4 0.103668 O} + 0.45301 O + 1.000019.

%)
o6

(55)
(56)
(57)
(58)

58

In other cases it is necessary to solve the equations. For a crude approximation, it is
possible to calculate the parameters at the three cases above and perform a parabolic inter-
polation.

For the cone ¢, which is tangent to all spheres externally, and the cone u, which is tangent
to all spheres internally, eqs. (39) and (40) are applicable. Let us build a plane through the
r-axis and the centre of the sphere 1. The intersection of the cones and the sphere 1 with
this plane is the same as Figure 1c. Thus, the development of the equations in the 2D case is
applicable to the 3D case.

Thus, we solved the 3D task.

e The relation between the characteristic angles is not fixed. At first, we should assume

the tangent ©, of the cone b. The tangent of the cone ¢ should be accepted in the range
= [O¢min, Op/2], where the minimum value O, is the same as in the 2D task
by egs. (18) and (21) in the root isolation interval (23). Alternatively, we can assume
©.. After that, © should be accepted inside the range O, = [20,, Op max], Where the
maximum value Opmax is the same as in the 2D task by the same equations. Other
tangents can be found from egs. (25), (39), and (40).

e The spheres can be built by the geometric progressions of the x- and r-coordinates
of centres and the radii, and also by the step of the angle ¢. The denominator o

OF
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of progression of the z-coordinates and the angle step ¢ can be found by (51) and
(45). For engineering calculations, the approximations (27), (29), (53), (54), (55), (56),
(57), and (58) can be used instead for the corresponding cases. In other cases, we can
interpolate the approximation results. After that, we should define a coordinate x; and
compute the z-coordinate progression z; = 2,75 *, the corresponding radii by (1), and
the r-coordinates by (3).

An example is shown in Figure 1la.

6. Application of the results

The presented solution gives a discrete jet model, which can be used for the simulation of
ventilation airflows for the development of energy-efficient air exchange organization in rooms
[4]. One of the most important problems is energy efficiency. During the euro-integration
process |6] Ukraine highly increases the energy efficiency of constructions. Airflows in rooms
(both averaged and turbulent parameters) are a very important part |4, 12| in the energy
efficiency of ventilation. Air jets have a large-scale vorticity, which allows the simulation of the
macrostructure using the presented method. At a low Reynolds number, the macrostructure
is visible [5, 15] in dyed jets (Figure 5) and very similar to Figure la. The cones represent
the characteristic jet dimensions: jet boundary, half-velocity surface and interaction deepness
between vortices. As there is no difference in the equations for jet parameters in ventilation,
we can extend the macrostructure analysis on the wide range of Reynolds numbers.

Figure 5: A free jet, dyed by uranine

A new direction of rising the energy efficiency of buildings by airflows with turbulent
macrostructure is the control of the “cooling effect” of “green structures” [13|, which are
structures of buildings with living plants. The plants cool air and structures by evaporation,
which is dependent on air velocity and turbulence intensity. A specially designed parapet of
“green goofs” can control the airflows for maximizing the “cooling effect” only in summer for
passive air conditioning. The simulation method is used for optimization of the parapet.
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7. Conclusions

The solution of the 2D task about angles and tangent circles was found. It required a numeric
solution of an equation. In addition, the solution of the 3D task about spheres and cones was
found. The 3D case adds up to the 2D one in extreme cases — lowest opening angle of the
cone with the sphere centres. The tasks can simply represent the macrostructure of free jet
flows in hydro-aerodynamics.

8. Prospects for further research

The simulation of air velocity and turbulence intensity of 3D jets using the model is finished.
A successful optimization of air distributors with multiple tangential slots using the simulation
method shows its usability. Now we are focused on the optimization of air exchange in rooms.
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