# Common Tangents to Ellipse and Circles, the 13-Point Circle and Other Theorems

Maurizio Ternullo

INAF - Osservatorio Astrofisico di Catania
v. S. Sofia 78., I-95125 Catania, Italia
email: mternullo@oact.inaf.it

Abstract. New developments of the author's research project [3, 4, 5, 6] on the geometry of conics are presented. Special attention is paid to the relationships among the ellipse and three circles — denoted by  $\Phi_1$ ,  $\Phi_2$  and  $\Phi_3$  — previously introduced by the author [6] and belonging to the elliptic and hyperbolic pencil of circles defined by the ellipse foci. Among the newly defined points, arising as intersections of the geometrical objects under examination, eight triplets of collinear points (Theorems 10 and 13) and as many quadruplets of concyclic points (Theorems 11 and 14; Figures 4 and 5) are recognized. Eight new special points are shown (Theorem 17) to be concyclic on the well known circle through P and the ellipse foci.

 $Key\ Words:$ ellipse, harmonic range, collinear points, concyclic points, symbiotic ellipse, Monge's circle, circle inversion

MSC 2010: 51M04, 51N20

# 1. Introduction

In an orthogonal reference frame (Figure 1), let H be the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad a > b, \tag{1.1}$$

whose foci are  $F_1(-c, 0)$  and  $F_2(c, 0)$ , where  $c = \sqrt{a^2 - b^2}$ . Throughout this paper, the ellipse general point — that is, any point different from the vertices — is denoted by  $P(a \cos \varepsilon; b \sin \varepsilon)$ or simply P. Nevertheless, to avoid the exceeding verbal complexity, I will formulate any statement assuming that P lies in the first quadrant (x > 0, y > 0). For the reader's convenience, some geometrical objects frequently referred to throughout this paper are listed and previous results are summarized.

1. The ellipse diameters with slope  $m_e = \tan \varepsilon$  and  $m_{e'} = -\tan \varepsilon$ , which have been given by the author [3] the names eccentric line (1.2) and symm-eccentric line e' (1.3), respectively,

$$y = x \tan \varepsilon,$$
 (1.2)  $y = -x \tan \varepsilon.$  (1.3)

2. The tangent t (1.4) to the ellipse H at P and its respective x- and y-intercepts  $T_x$  and  $T_y$ ,

$$y = -x\frac{b}{a}\cot\varepsilon + \frac{b}{\sin\varepsilon}, (1.4) \qquad T_x\left(\frac{a}{\cos\varepsilon}; 0\right), (1.5) \qquad T_y\left(0; \frac{b}{\sin\varepsilon}\right).$$
(1.6)

3. The normal n (1.7) to the ellipse H at P and its respective x- and y-intercepts  $N_x$  and  $N_y$ ,

$$y = x\frac{a}{b}\tan\varepsilon - \frac{c^2}{b}\sin\varepsilon, \ (1.7) \qquad N_x\left(\frac{c^2}{a}\cos\varepsilon; 0\right), \quad (1.8) \qquad N_y\left(0; -\frac{c^2}{b}\sin\varepsilon\right). \quad (1.9)$$

4. The following points E (1.10) and I (1.11), where the normal (1.7) meets the eccentric (1.2) and the symm-eccentric (1.3) line of P, respectively,

$$E((a+b)\cos\varepsilon; (a+b)\sin\varepsilon),$$
 (1.10)  $I((a-b)\cos\varepsilon; -(a-b)\sin\varepsilon).$  (1.11)

This paper deals with relationships among the ellipse H (1.1) and the following circles (Fig. 1), previously introduced by the author [6]:

• the circle  $\Phi_1$ , whose center is the *y*-intercept  $T_y$  (1.6) of the tangent (1.4); it passes through the foci and the points E (1.10) and I (1.11) ([6, Theorem 2.2]),

$$x^{2} + \left(y - \frac{b}{\sin\varepsilon}\right)^{2} = c^{2} + \frac{b^{2}}{\sin^{2}\varepsilon};$$
(1.12)

• the circle  $\Phi_2$ , whose center is the *y*-intercept  $N_y$  (1.9) of the normal (1.7); it passes through the foci,

$$x^{2} + \left(y + \frac{c^{2}}{b}\sin\varepsilon\right)^{2} = c^{2} + \left(\frac{c^{2}}{b}\sin\varepsilon\right)^{2}; \qquad (1.13)$$

• the circle  $\Phi_3$ , whose center is the x-intercept  $T_x$  (1.5) of the tangent (1.4) to H at P; it passes through the points E (1.10) and I (1.11),

$$\left(x - \frac{a}{\cos\varepsilon}\right)^2 + y^2 = \frac{a^2 \sin^2\varepsilon + b^2 \cos^2\varepsilon}{\cos^2\varepsilon}.$$
 (1.14)

The circles  $\Phi_1$ ,  $\Phi_2$  and  $\Phi_3$  taken pairwise are mutually orthogonal ([6, Theorem 2.1]), and the point  $N_x$  (1.8) is their radical center.

The circles  $\Phi_2$  and  $\Phi_3$  share the points (the notation  $(acbs) = a^2 \cos^2 \varepsilon + b^2 \sin^2 \varepsilon$  is used)

$$\Psi_1 \left( \frac{(a - c\sin\varepsilon) c^2 \cos\varepsilon}{(acbs)}; \frac{(a - c\sin\varepsilon) bc}{(acbs)} \right);$$
(1.15)

$$\Psi_2\left(\frac{(a+c\sin\varepsilon)c^2\cos\varepsilon}{(acbs)}; \ \frac{-(a+c\sin\varepsilon)bc}{(acbs)}\right)$$
(1.16)

In the present paper, the vertices of the ellipse H (1.1) are denoted by  $V_1(a,0)$ ,  $V_2(0,b)$ ,  $V_3(-a,0)$ , and  $V_4(0,-b)$ , or simply  $V_1, \ldots, V_4$ . The points where the circle  $\Phi_i(i=1,3)$  meets the tangent drawn at the ellipse vertex  $V_j$ , j = 1, 4, are denoted by  $T_{ij\lambda}$ ,  $\lambda = 1, 2$ .

## 2. Results

The tangent t (1.4) (Figure 1) drawn to the ellipse H (1.1) at P meets:

(i) the tangents drawn to the ellipse H (1.1) at its vertices  $V_3(-a,0)$  and  $V_1(a,0)$  in the following points  $T_{131}$  and  $T_{112}$ , respectively:

$$T_{131}\left(-a; \ \frac{b(1+\cos\varepsilon)}{\sin\varepsilon}\right), \qquad (2.1) \qquad \qquad T_{112}\left(a; \ \frac{b(1-\cos\varepsilon)}{\sin\varepsilon}\right); \qquad (2.2)$$

(ii) the tangents drawn to the ellipse H (1.1) at its vertices  $V_2(0, b)$  and  $V_4(0, -b)$  in the following points  $T_{321}$  and  $T_{342}$ :

$$T_{321}\left(\frac{a(1-\sin\varepsilon)}{\cos\varepsilon}; b\right),$$
 (2.3)  $T_{342}\left(\frac{a(1+\sin\varepsilon)}{\cos\varepsilon}; -b\right).$  (2.4)

Replacing the coordinates of the points  $T_{131}$  and  $T_{112}$  [ $T_{321}$  and  $T_{342}$ ] in the equation (1.12) representing the circle  $\Phi_1$  [in the equation (1.14) representing the circle  $\Phi_3$ ], one can see that such equations are fulfilled. Accordingly, we may state the following:

**Theorem 1.** [Figure 1] The tangent (1.4) drawn to the ellipse H (1.1) at P meets

- the tangents drawn to the ellipse at its vertices  $V_1(a, 0)$  and  $V_3(-a, 0)$  in points belonging to the circle  $\Phi_1$  (1.12) [such points are denoted by  $T_{112}$  (2.2) and  $T_{131}$  (2.1), respectively];
- the tangents drawn to the ellipse at its vertices  $V_2(0,b)$  and  $V_4(0,-b)$  in points belonging to the circle  $\Phi_3$  (1.12) [such points are denoted by  $T_{321}$  (2.3) and  $T_{342}$  (2.4), respectively].

The present author has shown in [6, Theorem 2.2], that the points E (1.10) and I (1.11) — where the normal (1.7) to H at P meets the eccentric (1.2) and the symm-eccentric line (1.2) of P, respectively — belong to the circle  $\Phi_1$  (1.12). Accordingly, we may state:

**Theorem 2.** [Figure 1] The ellipse foci, the points E (1.10) and I (1.11) and the points  $T_{112}$ (2.2) and  $T_{131}$  (2.1) are concyclic about the y-intercept  $T_y$  (1.6) of the tangent to the ellipse H at P on the circle  $\Phi_1$  (1.12).

Also the circle  $\Phi_3$  (1.12) passes through E (1.10) and I(1.11). Accordingly, we may state:

**Theorem 3.** [Figure 1]. The points E (1.10) and I (1.11),  $T_{321}$  (2.3) and  $T_{342}$  (2.4) are concyclic about the x-intercept  $T_x$  (1.5) of the tangent to the ellipse H at P on the circle  $\Phi_3$  (1.14).

Of course, there exist points symmetrical to the afore mentioned ones about the ellipse symmetry axes, I will not mention for the sake of brevity.

Remembering that any couple of points defines an *elliptic* and a *hyperbolic pencil of circles* ([2], Chapter 7), we may regard the circles  $\Phi_1$  and  $\Phi_2$  as elements of the elliptic pencil of circles defined by the ellipse foci. The general element of this set, denoted here by  $\Phi_E$ , is represented by the following equation,

$$x^{2} + (y - y_{o})^{2} = y_{o}^{2} + c^{2}, \qquad (2.5)$$



Figure 1: Illustrating the definition of circles  $\Phi_1$ ,  $\Phi_2$  and  $\Phi_3$  and the Theorems 2.1, 2.2 and 2.3. The points  $F_1$  and  $F_2$  are the foci of the ellipse H; the ellipse vertices are denoted by  $V_1$  through  $V_4$ ; the tangents to H at such vertices are drawn [blue]. The tangent to H at P meets the tangent at  $V_3$ , the y-axis x, the tangent at  $V_2$ , the tangent at  $V_1$ , the x-axis and the tangent at  $V_4$  in the points  $T_{131}$ ,  $T_y$ ,  $T_{321}$ ,  $T_{112}$ ,  $T_x$  and  $T_{342}$ , respectively. Two circles [red] through the foci, denoted by  $\Phi_1$  and  $\Phi_2$ , are constructed about  $T_y$  and  $N_y$ , respectively. The circle  $\Phi_3$  [red] is constructed about  $T_x$ ; the circles  $\Phi_1$  and  $\Phi_3$  and the normal share the points E and I; the circles  $\Phi_2$  and  $\Phi_3$  share the points  $\Psi_1$  and  $\Psi_2$ . The circle  $\Phi_2$  meets the tangent to H at  $V_1$  in  $T_{212}$ ; the  $\Phi_2$  diameter through  $T_{212}$  [magenta] touches the ellipse (Corollary 1) at  $P_3$ ; the normal to H at  $P_3$ [magenta] meets the minor axis at  $T_y$  (Theorem 8).

where the parameter  $y_o$  is the y-coordinate of the center. The circle  $\Phi_3$  belongs to the hyperbolic pencil of circles defined by the ellipse foci. The general element of this set, denoted by  $\Phi_H$ , is represented by the following equation:

$$(x - x_o)^2 + y^2 = x_o^2 - c^2, (2.6)$$

where the parameter  $x_o$  is the x-coordinate of the center. Any circle of the hyperbolic pencil passes through the ellipse imaginary foci  $F_1^i(0, ic)$ ,  $F_2^i(0, -ic)$ . Any circle of either pencil is orthogonal to each circle of the other pencil.

Theorem 1 implies the following:

**Corollary 1.** [Figure 1] Let  $\Phi_E$  (2.5) be a circle through the ellipse foci which meets the line x = a in real points. The  $\Phi_E$  diameters through such points are tangent to the ellipse H.

Let the tangents drawn to the ellipse H at its minor axis vertices (namely, the lines y = band y = -b) meet the circle  $\Phi_1$  (1.12) at the following points  $T_{122}$  and  $T_{142}$  (Figure 2):



Figure 2: The circle  $\Phi_1$  [red] meets the line y = b [blue] in  $T_{122}$ . The tangent  $t_{122}$  to the circle  $\Phi_1$  at  $T_{122}$  touches the ellipse (Lemma 1) at  $P_1$ . The tangent t to the ellipse at P meets the lines y = b and y = -b [blue] in the points  $T_{321}$  and  $T_{342}$ . The circles  $\Phi_4$  and  $\Phi_5$  [blue] symmetrically lie about the minor axis and touch the tangent t at  $T_{321}$  and  $T_{342}$ , respectively; they pass through the foci (Lemma 2). The tangents  $t_4$  and  $t_5$  [blue] to the circles  $\Phi_4$  and  $\Phi_5$  at the focus  $F_1$  form the angle  $\delta$  [Theorem 5, item (i)]. The bisectors  $b_1$  and  $b_2$  [black, dashed lines] of the angle  $\delta$  and its supplementary meet the minor axis in  $T_y$  and  $N_y$ . The circle  $K_{\Sigma}$  [green] passes through  $T_y$ ,  $N_y$ , P and the foci [Theorem 5, item (iii)].

$$T_{122}\left(\sqrt{a^2 + 2b^2 \frac{1 - \sin\varepsilon}{\sin\varepsilon}}; \ b\right), \qquad (2.7) \qquad T_{142}\left(\sqrt{a^2 - 2b^2 \frac{1 + \sin\varepsilon}{\sin\varepsilon}}; \ -b\right), \qquad (2.8)$$

respectively. The tangent  $t_{122}$  to the circle  $\Phi_1$  at  $T_{122}$  (2.7) has the equation

$$y = x \frac{\sqrt{(c^2 - b^2)\sin^2 \varepsilon + 2b^2 \sin \varepsilon}}{b(1 - \sin \varepsilon)} - \frac{c^2 \sin \varepsilon + b^2}{b(1 - \sin \varepsilon)}.$$
(2.9)

Simultaneously solving the equations of the tangent  $t_{122}$  (2.9) to the circle  $\Phi_1$  at  $T_{122}$  and the ellipse H (1.1), we get the following, single unknown equation (the notation  $(asbc) = a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon$  is used):

$$x^{2}(asbc) - 2xa^{2}(asbc)\sqrt{(c^{2} - b^{2})\sin^{2}\varepsilon + 2b^{2}\sin\varepsilon + a^{4}\left[\left(c^{2} - b^{2}\right)\sin^{2}\varepsilon + 2b^{2}\sin\varepsilon\right]} = 0. \quad (2.10)$$

The vanishing of the discriminant of (2.10) shows that the tangent  $t_{122}$  (2.9) to the circle  $\Phi_1$  at  $T_{122}$  touches also the ellipse H. Moreover, observing that the circle  $\Phi_1$  (1.12) shares such property with the general circle through the foci, we may state the following:

**Lemma 1.** [Figure 2] Let  $\Phi_E$  (2.5) be a circle belonging to the elliptic pencil of circles defined by the ellipse foci, which meets the line y = b in real points. The tangents drawn to  $\Phi_E$  at such points are tangent to the ellipse, too.

Now, let us consider a circle, denoted by  $\Phi_y$  and represented by the following equation,

$$x^{2} + (y - y_{o})^{2} = y_{o}^{2} + x_{o}^{2}$$
(2.11)

The center of the circle  $\Phi_y$  (2.11) is a point belonging to the minor axis of the ellipse H (1.1),  $|y_o|$  apart from the major axis. The circle meets the major axis in points  $|x_o|$  apart from the minor axis. Let the line y = b meet the circle  $\Phi_y$  in the real point  $T'_{122}\left(\sqrt{x_o^2 + 2by_o - b^2}, b\right)$ . The tangent drawn to  $\Phi_y$  at such point is

$$y = x \frac{\sqrt{x_o^2 + 2by_o - b^2}}{y_o - b} - \frac{y_o b + x_o^2}{y_o - b}.$$
(2.12)

Let us assume that the line (2.12) is tangent to the ellipse (1.1), too. This hypothesis amounts to state that the following equation

$$\frac{x^2}{a^2} + \frac{1}{b^2} \left( x \frac{\sqrt{x_o^2 + 2by_o - b^2}}{y_o - b} - \frac{y_o b + x_o^2}{y_o - b} \right)^2 = 1,$$
(2.13)

written by replacing the r.h.s. of (2.12) in the ellipse equation (1.1), has a vanishing discriminant. Setting the discriminant of (2.13) to zero amounts, in turn, to write the following equation for the unknown  $x_o^2$  (the conventional notation  $R = x_o^2 + 2by_o - b^2$  is used):

$$a^{4} (y_{o}b + x_{o}^{2})^{2} R - [b^{2} (y_{o} - b)^{2} + a^{2} R] \times a^{2} [(y_{o}b + x_{o}^{2})^{2} - b^{2} (y_{o} - b)^{2}] = 0,$$

which may be written, by means of trivial manipulations, as follows:

$$x_o^4 + 2y_o bx_o^2 - a^2 x_o^2 - b^4 + 2b^3 y_o - 2a^2 by_o + a^2 b^2 = 0$$

The unique acceptable solution is  $x_o^2 = c^2$ . This result means that the circle  $\Phi_y$  passes through the foci. Accordingly, we may state:

**Lemma 2.** [Figure 2] Let  $\Phi_y$  (2.11) be a circle about a point lying on the ellipse minor axis, which meets the line y = b in real points. If the tangents drawn to the circle at such points touch also the ellipse, then the circle  $\Phi_y$  passes through the ellipse foci.

The Lemmas 1 and 2 amount to the following:

**Theorem 4.** [Figure 2] Let  $\Phi_y$  (2.11) be a circle about a point lying on the ellipse minor axis, which meets the line y = b in real points. A necessary and sufficient condition for the tangents to the circle at such points to touch also the ellipse is the membership of the circle in the elliptic pencil of circles defined by the ellipse foci.

An obvious consequence of Theorem 4 is the following:

**Corollary 2.** [Figure 2] Let the tangent t (1.4) to the ellipse H at P meet the lines y = band y = -b in the real points  $T_{321}$  (2.3) and  $T_{342}$  (2.4), respectively. Let  $\Phi_4$  and  $\Phi_5$  be two circles whose centers lie on the minor axis, which touch the line t in the points  $T_{321}$  and  $T_{342}$ , respectively. Under such hypothesis, the circles  $\Phi_4$  and  $\Phi_5$  pass through the ellipse foci.

The following equations (2.14) and (2.15) represent the circles  $\Phi_4$  and  $\Phi_5$ , respectively (the notation  $(asbc) = a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon$  is used):

$$x^{2} + \left(y - \frac{(asbc) - a^{2}\sin\varepsilon}{b\cos^{2}\varepsilon}\right)^{2} = \left(\frac{a(1 - \sin\varepsilon)}{\cos\varepsilon}\right)^{2} + \left(b - \frac{(asbc) - a^{2}\sin\varepsilon}{b\cos^{2}\varepsilon}\right)^{2}, \quad (2.14)$$
$$x^{2} + \left(y + \frac{(asbc) + a^{2}\sin\varepsilon}{b\cos^{2}\varepsilon}\right)^{2} = \left(\frac{a(1 + \sin\varepsilon)}{\cos\varepsilon}\right)^{2} + \left(-b + \frac{(asbc) + a^{2}\sin\varepsilon}{b\cos^{2}\varepsilon}\right)^{2}. \quad (2.15)$$

The tangents to the circles  $\Phi_4$  (2.14) and  $\Phi_5$  (2.15) at the focus  $F_1(-c, 0)$  have the following slopes  $m_4$  (2.16) and  $m_5$  (2.17), respectively:

$$m_4: \frac{-bc\cos^2\varepsilon}{(asbc) - a^2\sin\varepsilon},$$
 (2.16)  $m_5: \frac{bc\cos^2\varepsilon}{(asbc) + a^2\sin\varepsilon}.$  (2.17)

The tangents to the circles  $\Phi_4$  and  $\Phi_5$  at the focus  $F_1$  form an angle  $\delta$ ,

$$\delta = \arctan \frac{m_4 - m_5}{1 + m_4 m_5} = \arctan \frac{-\frac{bc\cos^2 \varepsilon}{(asbc) - a^2 \sin \varepsilon} - \frac{bc\cos^2 \varepsilon}{(asbc) + a^2 \sin \varepsilon}}{1 - \frac{b^2 c^2 \cos^4 \varepsilon}{(asbc)^2 - a^4 \sin^2 \varepsilon}} = \arctan \frac{2bc}{c^2 - b^2}.$$

This unexpected result means that — in spite of the dependence of any detail on the eccentric anomaly  $\varepsilon$  of P (namely, on the point P location on the ellipse) — the measure of the angle  $\delta$  does not depend on such variable but on the ellipse semiaxes only.

A further, unexpected result arises from the bisectors of the angle  $\delta$  and its supplementary. Indeed, observing that  $\tan \frac{\delta}{2} = \frac{b}{c}$ , the slopes of such bisectors — here denoted by  $m_{b_1}$  and  $m_{b_2}$  — can be written as follows:

$$m_{b_1} = \frac{m_5 + \tan\frac{b_b}{c}}{1 - m_5 \tan\frac{b}{c}} = \frac{bc^2 \cos^2 \varepsilon + a^2 b \sin^2 \varepsilon + b^3 \cos^2 \varepsilon + a^2 b \sin \varepsilon}{a^2 c \sin^2 \varepsilon + b^2 c \cos^2 \varepsilon + a^2 c \sin \varepsilon - b^2 c \cos^2 \varepsilon} = \frac{b}{c \sin \varepsilon},$$
  
$$m_{b_2} = -\frac{1}{m_{b_1}} = -\frac{c \sin \varepsilon}{b}.$$

These slopes  $m_{b_1}$  and  $m_{b_2}$  equal the slopes of the tangents drawn to the circles  $\Phi_2$  and  $\Phi_1$  at the focus  $F_1$ , respectively. Because of the orthogonality of the circles  $\Phi_1$  and  $\Phi_2$ , this finding means that the bisectors  $b_1$  and  $b_2$  of the angle  $\delta$  and of its supplementary pass through the centers —  $T_y$  (1.6) and  $N_y$  (1.9) — of the circles  $\Phi_1$  and  $\Phi_2$ , respectively. This result carries with itself a further consequence: if a circle is constructed on the segment  $T_yN_y$  as diameter, such circle passes through the foci.

We may summarize these results as follows:

**Theorem 5.** [Figure 2] Drawn the tangent t to the ellipse H at P, let  $\Phi_4$  (2.14) and  $\Phi_5$  (2.15) be two circles whose centers lie on the minor axis, which touch the line t at the points  $T_{321}$  (2.3) and  $T_{342}$  (2.4), where such line meets the lines y = b and y = -b, respectively. Let these circles [which pass through the foci by virtue of the Corollary 2] admit as tangent at the foci two lines denoted by  $t_4$  and  $t_5$ . Then the following holds:

(i) the lines  $t_4$  and  $t_5$  meet at constant angle  $\delta = \arctan \frac{2bc}{c^2 - b^2}$ ;

52

- (ii) the bisectors of the angles formed by the lines  $t_4$  and  $t_5$  are tangent to the circles  $\Phi_1$ (1.12) and  $\Phi_2$  (1.13), respectively;
- (iii) the point P, the y-intercepts  $T_y$  and  $N_y$  of the tangent and normal to the ellipse at P and the foci are concyclic on the circle constructed on the segment  $T_yN_y$  as diameter.

The following equation represents the circle — here denoted by  $K_{\Sigma}$  — whose existence is stated by the last proposition of Theorem 5:

$$x^{2} + \left(y - \frac{b^{2} - c^{2} \sin^{2} \varepsilon}{2b \sin \varepsilon}\right)^{2} = \left(\frac{b^{2} + c^{2} \sin^{2} \varepsilon}{2b \sin \varepsilon}\right)^{2}.$$
 (2.18)

The circle (2.18) is well known since a long time. The new proof I have given here of its existence adds to many others registered in the literature (e.g., see [7, p. 86], [1, Chapter VI, p. 215], and [6, subsect. 3.2, item 2]).

Remembering that the point  $T_{112}$  is common to (i) the circle  $\Phi_1$ , (ii) the tangent x = adrawn to the ellipse at  $V_1(a, 0)$ , and (iii) the tangent t (1.4) to the ellipse at P (Theorem 1), let us assume that a circle denoted  $\Phi_x$ , symmetrically lying about the focal axis, passes through the point  $T_{112}$ . Remembering that the line t (1.4) is a diameter of  $\Phi_1$ , it is obvious that, if such line t touches also the circle  $\Phi_x$  at  $T_{112}$ , then the circle  $\Phi_x$  is orthogonal to  $\Phi_1$ . Since  $\Phi_1$  belongs to the elliptic pencil of circles defined by the ellipse foci, we conclude that the circle  $\Phi_x$  belongs to the conjugated hyperbolic pencil of circles. On the other hand, if  $\Phi_x$ orthogonally cuts the circle  $\Phi_1$  at the point  $T_{112}$  — namely: if  $\Phi_x$  belongs to the hyperbolic pencil of circles defined by the ellipse foci. Accordingly, we may state:

**Theorem 6.** [Figure 3] Let  $\Phi_x$  be a circle about a point lying on the ellipse focal axis, which meets the line x = a in real points. A necessary and sufficient condition for the tangents to the circle  $\Phi_x$  at such points to touch also the ellipse is the membership of the circle in the hyperbolic pencil of circles defined by the ellipse foci.

Of course, what has been said for the point  $T_{112}$  holds also for the point  $T_{131}$ , where the tangent t (1.4) drawn to the ellipse at P meets the line x = -a. Therefore, we may construct two circles — let them be denoted by  $\Phi'_4$  and  $\Phi'_5$  — such that their centers lie on the focal axis and they touch the tangent t in the points  $T_{112}$  and  $T_{131}$ , respectively. The following statement is an obvious consequence of the Theorem 6:

**Corollary 3.** [Figure 3] Let the tangent t (1.4) to the ellipse H at P meet the lines x = aand x = -a in the real points  $T_{112}$  (2.2) and  $T_{131}$  (2.1), respectively. Let  $\Phi'_4$  and  $\Phi'_5$  be two circles whose centers lie on the major axis, which touch the line t in the points  $T_{112}$  and  $T_{131}$ , respectively.

Under such hypothesis, the circles  $\Phi'_4$  and  $\Phi'_5$  belong to the hyperbolic pencil of circles defined by the ellipse foci.

A special circle belonging to the hyperbolic pencil defined by the foci is  $\Phi_3$  (1.14) (Figure 3). The line x = a meets the circle  $\Phi_3$  (1.14) in two points; one of them is the following  $T_{311}$ ,

$$T_{311}\left(a, \sqrt{2\frac{a^2}{\cos\varepsilon} - a^2 - c^2}\right)$$
 (2.19)



Figure 3: The circle  $\Phi_3$  [red] meets the line x = a [blue] in  $T_{311}$ ; the tangent to  $\Phi_3$  at  $T_{311}$  [blue] touches the ellipse (Theorem 6) at  $P_2$ . The tangent t to the ellipse at P meets the lines x = a and x = -a in the points  $T_{112}$  and  $T_{131}$ ; the circles  $\Phi'_4$  and  $\Phi'_5$  [blue] touch the tangent t in  $T_{112}$  and  $T_{131}$ .

The following line  $t_{311}$  (2.20),

$$y = x \frac{a(1 - \cos\varepsilon)}{\sqrt{2a^2 \cos\varepsilon - (a^2 + c^2) \cos^2\varepsilon}} + \frac{a^2 - c^2 \cos\varepsilon}{\sqrt{2a^2 \cos\varepsilon - (a^2 + c^2) \cos^2\varepsilon}},$$
(2.20)

is tangent to the circle  $\Phi_3$  at  $T_{311}$  (2.19) and to the ellipse H at the following point  $P_2$ ,

$$P_2\left(-\frac{a^3\left(1-\cos\varepsilon\right)}{a^2-c^2\cos\varepsilon}; \ \frac{b^2\sqrt{2a^2\cos\varepsilon-(a^2+c^2)\cos^2\varepsilon}}{a^2-c^2\cos\varepsilon}\right).$$
(2.21)

We have recognized some special points on the tangent to the ellipse at P, which can be gathered into special quadruplets, as the following Theorem states:

**Theorem 7.** [Figure 1] The following quadruplets of points form harmonic ranges.

- (i)  $T_{131}$  (2.1),  $T_{321}$  (2.3),  $T_{112}$  (2.2) and  $T_{342}$  (2.4),
- (*ii*)  $T_y$  (1.6),  $T_{321}$  (2.3), P and  $T_{342}$  (2.4),
- (*iii*)  $T_{131}$  (2.1), P,  $T_{112}$  (2.2) and  $T_x$  (1.5)

The orthogonality of the circles  $\Phi_1$  and  $\Phi_3$  accounts for the harmonic range formed by the first quadruplet. As regards the second and third quadruplet, replacing the points by their x- and y-coordinates, respectively, we may write down the following quadruplets:

$$\left(\frac{b}{\sin\varepsilon}, b, b\sin\varepsilon, -b\right)$$
 and  $\left(-a, a\cos\varepsilon, a, \frac{a}{\cos\varepsilon}\right)$ ,

54

and check that, for both of them, the product of the 1st and 3rd term equals — apart from the sign — the product of the 2nd and 4th term.

In the paper [6], I have introduced the circle  $\Phi_2$  (1.13). It is constructed about the *y*-intercept  $N_y$  (1.9) of the normal to *H* at *P*, passes through the foci and forms, together with  $\Phi_1$  (1.12) and  $\Phi_3$  (1.14), a triplet of orthogonal circles ([6, Theorem 2.1]). The line x = a meets the circle  $\Phi_2$  in the following points  $T_{211}$  and  $T_{212}$  (Figure 1):

$$T_{211}\left(a; \ \frac{-c^2\sin\varepsilon - \sqrt{c^4\sin^2\varepsilon - b^4}}{b}\right), \ (2.22) \qquad T_{212}\left(a; \ \frac{-c^2\sin\varepsilon + \sqrt{c^4\sin^2\varepsilon - b^4}}{b}\right). \ (2.23)$$

Let us restrict ourselves to consider the point  $T_{212}$  (2.23). Corollary 1 enables us to state that the following  $\Phi_2$  diameter through  $T_{212}$ ,

$$y = -\frac{c^2 \sin \varepsilon}{b} + x \,\frac{\sqrt{c^4 \sin^2 \varepsilon - b^4}}{ab},\tag{2.24}$$

is tangent to the ellipse H. Indeed, the tangency point is the following  $P_3$ :

$$P_3\left(\frac{a\sqrt{c^4\sin^2\varepsilon - b^4}}{c^2\sin\varepsilon}; -\frac{b^3}{c^2\sin\varepsilon}\right).$$
(2.25)

The circle  $\Phi_2$  plays, w.r.t. the point  $P_3$ , the same role the circle  $\Phi_1$  plays w.r.t. the point P. Accordingly, as the normal to H at P is, by definition, a diameter of  $\Phi_2$ , the normal to H at  $P_3$  is a diameter of  $\Phi_1$  (Figure 1). Such normal passes, therefore, through the center  $T_y$  (1.6) of  $\Phi_1$ , as the following Theorem states:

**Theorem 8.** [Figure 1] The normal to the ellipse H at the point  $P_3$  (2.25) concurs with the tangent (1.4) to H at P in the minor axis point  $T_u(0, b/\sin \varepsilon)$ .

If the procedure which has lead us from P to  $P_3$  is followed starting from  $P_3$ , the circles  $\Phi_1$  and  $\Phi_2$  exchange their role with each other, as well as the points  $T_{112}$  and  $T_{212}$ , the points  $T_y$  and  $N_y$  and, accordingly, the points P and  $P_3$ , too. This accounts for the following

**Theorem 9.** The correspondence associating the points P and  $P_3$  (2.25) is involutory.

Observing that the y-intercepts of the normal and tangent to H at  $P_3$  (2.25) coincide with the y-intercepts  $T_y$  (1.6) and  $N_y$  (1.9) of the tangent and normal to H at P, respectively, we conclude that a circle constructed on the segment  $T_yN_y$  as diameter passes through P and  $P_3$ . But we know (Theorem 5)that the segment  $T_yN_y$  is a diameter of the circle  $K_{\Sigma}$  (2.18), which passes through the point P and the foci. Moreover, also the following point  $C_{\Psi}$  (2.26), representing the midpoint between the points  $\Psi_1$  (1.15) and  $\Psi_2$  (1.16),

$$C_{\Psi}\left(\frac{ac^2\cos\varepsilon}{a^2\cos^2\varepsilon + b^2\sin^2\varepsilon}; -\frac{bc^2\sin\varepsilon}{a^2\cos^2\varepsilon + b^2\sin^2\varepsilon}\right),\tag{2.26}$$

belongs to the circle  $K_{\Sigma}$  (2.18). Indeed, replacing the  $C_{\Psi}$  (2.26) coordinates in the l.h.s. of (2.18) and doing some simplifications, we get

$$a^{2}c^{2}\cos^{2}\varepsilon + b^{2}c^{2}\sin^{2}\varepsilon + \left(a^{2}\cos^{2}\varepsilon + b^{2}\sin^{2}\varepsilon\right)\left(b^{2} - c^{2}\sin^{2}\varepsilon\right) - \left(a^{2}\cos^{2}\varepsilon + b^{2}\sin^{2}\varepsilon\right)^{2}.$$

Few, trivial manipulations allow us to conclude that this expression vanishes. Accordingly, we may state the following

**Lemma 3.** The points  $P_3$  (2.25) and  $C_{\Psi}$  (2.26) are concyclic with the point P, the foci and the y-intercepts of the tangent  $[T_y$  (1.6)] and normal  $[N_y$  (1.9)] to the ellipse H at P in the circle  $K_{\Sigma}$  (2.18).

### 3. The normal to the ellipse at the point P

The normal (1.7) to H at P meets the circle  $\Phi_2$  (1.13) (Figure 4) in points denoted by  $N_{22}$ and  $N_{21}$  (the farther and closer to P, respectively). Such points are

$$N_{22}\left(-c\cos\varepsilon; \ -\frac{c(a+c)\sin\varepsilon}{b}\right), \quad (3.1) \qquad N_{21}\left(c\cos\varepsilon; \ \frac{c(a-c)\sin\varepsilon}{b}\right). \quad (3.2)$$

Six lines link the points  $N_{21}$  (3.2),  $N_{22}$  (3.1),  $T_{131}$  (2.1) and  $T_{112}$  (2.2), two of them being the normal and the tangent to H at P. The remaining four lines are involved in relationships of collinearity and concyclicity with several other points.

**Theorem 10.** [Figure 4] The focus  $F_1(-c, 0)$  is collinear

1. with the points  $T_{131}$  (2.1) and  $N_{22}$  (3.1) on the line

$$T_{131}F_1N_{22}: \ y = -\frac{b(1+\cos\varepsilon)}{(a-c)\sin\varepsilon}(x+c),$$
(3.3)

2. with the points  $T_{112}$  (2.2) and  $N_{21}$  (3.2) on the line

$$T_{112}N_{21}F_1: \ y = \frac{(a-c)\sin\varepsilon}{b(1+\cos\varepsilon)}(x+c).$$
 (3.4)

The lines  $T_{131}F_1N_{22}$  (3.3) and  $T_{112}N_{21}F_1$  (3.4) meet orthogonally at  $F_1$ . The focus  $F_2(c,0)$  is collinear

1. with the points  $T_{131}$  (2.1) and  $N_{21}$  (3.2) on the line

$$T_{131}N_{21}F_2: \ y = -\frac{b(1+\cos\varepsilon)}{(a+c)\sin\varepsilon}(x-c),$$
(3.5)

2. with the points  $T_{112}$  (2.2) and  $N_{22}$  (3.1) on the line

$$T_{112}F_2N_{22}: \ y = \frac{b(1-\cos\varepsilon)}{(a-c)\sin\varepsilon}(x-c).$$
(3.6)

The lines  $T_{131}N_{21}F_2$  (3.5) and  $T_{112}F_2N_{22}$  (3.6) meet orthogonally at  $F_2$ .

The collinearity of the mentioned triplets of points is demonstrated by checking that, for each of them, the points coordinates fulfill the equation of the corresponding line. A glance at the slope of the lines  $T_{131}F_1N_{22}$  (3.3) and  $T_{112}N_{21}F_1$  (3.4) reveals that such lines are orthogonal, as well as the lines  $T_{131}N_{21}F_2$  (3.5) and  $T_{112}F_2N_{22}$  (3.6) are.

In the light of these results, the following holds, too:



Figure 4: The normal to the ellipse at P meets the circle  $\Phi_2$  [red] in  $N_{21}$  and  $N_{22}$ . The points forming the triplets  $T_{131}F_1N_{22}$ ,  $T_{112}N_{21}F_1$ ,  $T_{131}N_{21}F_2$  and  $T_{112}F_2N_{22}$  are collinear [red lines] (Theorem 10). The points forming the quadruplets  $T_{131}N_{22}F_2P$ ,  $F_1N_{22}T_{112}P$ ,  $N_{21}F_2T_{112}P$  and  $T_{131}F_1N_{21}P$  are concyclic on the circles  $K_i(i = 1, 4)$  [blue] (Theorem 11). The centers  $C_i(i = 1, 4)$  of the circles  $K_i$  are the vertices of a rectangle, whose sides [violet] parallel the tangent and normal to the ellipse H at P (Theorem 12).

**Corollary 4.** [Figure 4] The normal (1.7) to the ellipse H at P and the lines  $T_{131}F_1$  (3.3) and  $T_{112}F_2$  (3.6) concur in the point  $N_{22}$  (3.1), which belongs to the circle  $\Phi_2$  (1.13).

The normal (1.7) to the ellipse H at P and the lines  $T_{131}F_2$  (3.5) and  $T_{112}F_1$  (3.4) concur in the point  $N_{21}$  (3.2), which belongs to the circle  $\Phi_2$  (1.13).

The tangents to the ellipse H at P (1.4) and at the vertex  $V_3(-a, 0)$  and the lines  $N_{22}F_1$  (3.3) and  $N_{21}F_2$  (3.5) concur in the point  $T_{131}$  (2.1), which belongs to the circle  $\Phi_1$  (1.12).

The tangents to the ellipse H at P (1.4) and at the vertex  $V_1(a, 0)$  and the lines  $N_{21}F_1$  (3.4) and  $N_{22}F_2$  (3.6) concur in the point  $T_{112}$  (2.2), which belongs to the circle  $\Phi_1$  (1.12).

Since the lines  $T_{131}F_1N_{22}$  (3.3) and  $T_{112}N_{21}F_1$  (3.4) meet at the focus  $F_1$ , both triangles  $F_1N_{21}T_{131}$  and  $F_1N_{22}T_{112}$  are right, the point  $F_1$  being the common vertex of their right angles and the sides opposite to  $F_1$  — namely,  $N_{21}T_{131}$  and  $N_{22}T_{112}$  — being their hypotenuses. By similar reasoning, we may achieve the conclusion that the segments  $N_{21}T_{112}$  and  $N_{22}T_{131}$  are the hypotenuses of as many right triangles sharing the vertex  $F_2$ . Moreover, the same segments  $N_{21}T_{131}$ ,  $N_{22}T_{112}$ ,  $N_{21}T_{112}$  and  $N_{22}T_{131}$  are the hypotenuses of a second set of four right triangles sharing the point P as the common vertex of their right angles, whilst their

catheti are segments of the tangent and normal to H at P. Accordingly, if four circles  $K_i$  (i = 1, 4) are constructed on the afore mentioned segments as diameters, each one of such circles passes through P and the focus non collinear with the diameter. Here, for each segment assumed as diameter, the center is given:

midpoint of 
$$T_{131}N_{22}$$
:  $C_1\left(-\frac{a+c\cos\varepsilon}{2}; \frac{b^2(1+\cos\varepsilon)-c(a+c)\sin^2\varepsilon}{2b\sin\varepsilon}\right),$  (3.7)

midpoint of 
$$T_{112}N_{22}$$
:  $C_2\left(\frac{a-c\cos\varepsilon}{2}; \frac{b^2(1-\cos\varepsilon)-c(a+c)\sin^2\varepsilon}{2b\sin\varepsilon}\right)$ , (3.8)

midpoint of 
$$T_{112}N_{21}$$
:  $C_3\left(\frac{a+c\cos\varepsilon}{2}; \frac{b^2(1-\cos\varepsilon)+c(a-c)\sin^2\varepsilon}{2b\sin\varepsilon}\right),$  (3.9)

midpoint of 
$$T_{131}N_{21}$$
:  $C_4\left(\frac{-a+c\cos\varepsilon}{2}; \frac{b^2(1+\cos\varepsilon)+c(a-c)\sin^2\varepsilon}{2b\sin\varepsilon}\right).$  (3.10)

Which angles form the radii of the four circles  $K_i(i = 1, 4)$  at their common point P? Here I give the respective slopes  $m_{C_1P}$  and  $m_{C_3P}$  of the radii through P of the circles  $K_1$  and  $K_3$ :

$$m_{C_1P} = \frac{2b^2 \sin^2 \varepsilon - b^2 (1 + \cos \varepsilon) + c(a+c) \sin^2 \varepsilon}{(2a \cos \varepsilon + a + c \cos \varepsilon)b \sin \varepsilon},$$
$$m_{C_3P} = \frac{2b^2 \sin^2 \varepsilon - b^2 (1 - \cos \varepsilon) - c(a-c) \sin^2 \varepsilon}{(2a \cos \varepsilon - a - c \cos \varepsilon)b \sin \varepsilon}.$$

Few manipulations allow us to write the product of such slopes as

$$m_{C_1P}m_{C_3P} = \frac{-b^2\cos^2\varepsilon + 2a\cos\varepsilon(c - a\cos\varepsilon) + a^2\sin^2\varepsilon}{-a^2\sin^2\varepsilon + 2a\cos\varepsilon(-c + a\cos\varepsilon) + b^2\cos^2\varepsilon} = -1$$

This means that the circles  $K_1$  and  $K_3$  meet orthogonally. In the same way, we can see that the circles  $K_2$  and  $K_4$  orthogonally meet, too. We may summarize these findings as follows:

**Theorem 11.** [Figure 4] Let the circles  $K_1, K_2, K_3$  and  $K_4$  be constructed on the segments  $T_{131}N_{22}, T_{112}N_{22}, T_{112}N_{21}$  and  $T_{131}N_{21}$  as diameters, respectively. Each circle passes through the point P and through the focus non collinear with the segment taken as diameter. The circles  $K_1$  and  $K_3$ , as well as the circles  $K_2$  and  $K_4$ , are two couples of orthogonal circles.

Moreover, as it is easy to check with a bit of algebra, the four midpoints  $C_1$  (3.7) through  $C_4$  (3.10) possess the properties described by the next statement:

**Theorem 12.** [Figure 4] The midpoints  $C_1$  (3.7),  $C_2$  (3.8),  $C_3$  (3.9) and  $C_4$  (3.10) of the segments  $T_{131}N_{22}$ ,  $T_{112}N_{22}$ ,  $T_{112}N_{21}$  and  $T_{131}N_{21}$ , respectively, are the vertices of a rectangle whose sides  $C_1C_2$  and  $C_3C_4$  are parallel to the tangent to the ellipse at P whilst the sides  $C_1C_4$  and  $C_3C_2$  are parallel to the normal.

The same points are concyclic on the circle  $K_{\Sigma}$  (2.18), which is constructed on the segment of the ellipse minor axis intercepted by the tangent and normal to the ellipse at P.

The center of the circle  $K_{\Sigma}$  (2.18) is the common midpoint of the segments  $C_1C_3$  and  $C_2C_4$ . These segments are, therefore, diameters of  $K_{\Sigma}$ . This result implies, in turn, that the triangles whose vertices are the points  $C_i(i = 1, 4)$  taken three at a time are right, because each of them is inscribed in a semicircle. The lines  $C_1P$  and  $C_3P$  are orthogonal because they are

58

inscribed in a semicircle, too. Since these lines are radii of the circles  $K_1$  and  $K_2$ , respectively, such circles are orthogonal to each other. In this way we find again the orthogonality of the circles  $K_1$  and  $K_3$  and of  $K_2$  and  $K_4$ .

In 2007, the author introduced in [3] the following circle K (Figure 5), taking as diameter the segment  $T_yT_x$  of tangent to the ellipse H at P intercepted by the axes,

$$\left(x - \frac{a}{2\cos\varepsilon}\right)^2 + \left(y - \frac{b}{2\sin\varepsilon}\right)^2 = \left(\frac{a}{2\cos\varepsilon}\right)^2 + \left(\frac{b}{2\sin\varepsilon}\right)^2.$$
 (3.11)

The circle K (3.11) was shown to pass through many special points, two of them being the intersections E (1.10) and I (1.11) of the normal (1.7) to the ellipse H at P with the eccentric (1.2) and the symm-eccentric line (1.3) of P, respectively. A further paper [6] introduced the concept of symbiotic conics: taken a point P on the ellipse H (1.1), the symbiotic ellipse  $H_{\Sigma}$  of the ellipse H about P is an ellipse having P as center and passing through the center O of the ellipse H. The axes of  $H_{\Sigma}$  are the tangent and normal to H at P; the tangent and normal to  $H_{\Sigma}$  at O are the y- and x-axes of H, respectively. The equation of the ellipse  $H_{\Sigma}$  follows:

$$x^{2} \frac{a^{2} - b^{2} \cos^{2} \varepsilon}{a^{2} \cos^{2} \varepsilon} - 2xy \frac{b}{a} \tan \varepsilon - 2x \frac{c^{2}}{a \cos \varepsilon} + y^{2} = 0.$$
(3.12)

The foci of the ellipse  $H_{\Sigma}$  are the points E (1.10) and I (1.11) ([6, Theorem 3.1]). We can say that the point E, I and O are, for the ellipse  $H_{\Sigma}$ , objects homologous to the points  $F_1$ ,  $F_2$  and P. On the other hand, the symbiotic ellipse of  $H_{\Sigma}$  about O is the ellipse H.

Remembering that the circle  $K_{\Sigma}$  (2.18) is, by definition, the circle constructed taking as diameter the segment  $T_y N_y$  of the y-axis intercepted by the tangent and normal to H at P, the introduction of the symbiotic ellipse  $H_{\Sigma}$  allows to redefine such circle  $K_{\Sigma}$  (2.18) as the circle constructed taking as diameter the segment  $T_y N_y$  of the tangent to the ellipse  $H_{\Sigma}$  intercepted by the axes of  $H_{\Sigma}$ . Since this new definition faithfully traces the definition of the circle K, we can conclude that the circle  $K_{\Sigma}$  is homologous to the circle K (3.11). In [6], it was shown that the circles homologous to  $\Phi_1$ ,  $\Phi_2$  and  $\Phi_3$  are the circles  $\Phi_1$ ,  $\Phi_3$  and  $\Phi_2$ , respectively. Objects which correspond to themselves, as the circle  $\Phi_1$ , are said auto homologous. Now, we can determine objects homologous to the newly introduced points, lines and circles.

From Theorem 1, we know that the points  $T_{131}$  (2.1) and  $T_{112}$  (2.2) are the intersections of the tangent to H at P with the circle  $\Phi_1$ , where they are diametrical opposite. More precisely,  $T_{112}$  lies on the same side as P, with respect to the ellipse H minor axis, at variance with  $T_{131}$ ; the former will be said *homolateral* and the latter *contralateral*. Accordingly, as the circle  $\Phi_1$ is auto homologous, we may conclude that the points homologous to  $T_{131}$  and  $T_{112}$  are the intersections of the y-axis [namely, the tangent to  $H_{\Sigma}$  at O] with the circle  $\Phi_1$ ; such points are the following  $\Phi_{1d}$  (3.13) and  $\Phi_{1p}$  (3.14), respectively:

$$\Phi_{1d}\left(0; \ \frac{b+\sqrt{a^2\sin^2\varepsilon+b^2\cos^2\varepsilon}}{\sin\varepsilon}\right), \ (3.13) \qquad \Phi_{1p}\left(0; \ \frac{b-\sqrt{a^2\sin^2\varepsilon+b^2\cos^2\varepsilon}}{\sin\varepsilon}\right). \ (3.14)$$

The points  $\Phi_{1d}$  (3.13) and  $\Phi_{1p}$  (3.14) are the  $\Phi_1$  points lying at maximal and minimal distance to the *H* center *O*. They will be referred to as the  $\Phi_1$  distal and proximal points, respectively. Quite analogously, the points  $T_{131}$  and  $T_{112}$  are the  $\Phi_1$  points lying at maximal and minimal distance to the  $H_{\Sigma}$  center *P*.



Figure 5: The circles  $\Phi_i(i = 1, 3)$  are represented by red, dashed lines; their points lying at maximal and minimal distance to the origin are denoted by  $\Phi_{id}$  and  $\Phi_{ip}$ , respectively. The symbiotic ellipse  $H_{\Sigma}$  (3.12) [magenta] is constructed about the points Eand I as foci. The points forming the triplets  $\Phi_{1d}E\Phi_{3d}$ ,  $\Phi_{1p}\Phi_{3p}E$ ,  $\Phi_{1d}\Phi_{3p}I$  and  $\Phi_{1p}I\Phi_{3d}$ are collinear [red lines] (Theorem 13). The points forming the quadruplets  $\Phi_{1d}OI\Phi_{3d}$ ,  $\Phi_{1p}\Phi_{3d}EO$ ,  $\Phi_{1p}I\Phi_{3p}O$  and  $\Phi_{1d}O\Phi_{3p}E$  are concyclic on the circles  $K'_i(i = 1, 4)$  [blue] (Theorem 14). The centers  $C'_i(i = 1, 4)$  of the circles  $K'_i$  are the vertices of a rectangle whose sides (violet) parallel the x- and y-axes; the same points  $C'_i$  are concyclic with E and I,  $T_y$  and  $T_x$  and the midpoint  $C_{\Psi}$  of the chord  $\Psi_1\Psi_2$  in the circle K [green] (Theorem 15).

The points  $N_{22}$  (3.1) and  $N_{21}$  (3.2) are the intersections of the normal (1.7) to H at P with the circle  $\Phi_2$ . Accordingly, they correspond to the intersections of the normal to  $H_{\Sigma}$  at O [namely, the x-axis] with the circle  $\Phi_3$  [the circles  $\Phi_2$  and  $\Phi_3$  are homologous to each other]. Precisely, as  $N_{22}$  and  $N_{21}$  are the farther and closer to P, their homologous points are the following  $\Phi_{3d}$  and  $\Phi_{3p}$ , namely the  $\Phi_3$  distal and proximal points, respectively:

$$\Phi_{3d}\left(\frac{a+\sqrt{a^2\sin^2\varepsilon+b^2\cos^2\varepsilon}}{\cos\varepsilon};\ 0\right)\quad(3.15)\qquad\Phi_{3p}\left(\frac{a-\sqrt{a^2\sin^2\varepsilon+b^2\cos^2\varepsilon}}{\cos\varepsilon};\ 0\right)\quad(3.16)$$

We may conclude by saying that the points E (1.10), I (1.11),  $\Phi_{1d}$  (3.13),  $\Phi_{1p}$  (3.14),  $\Phi_{3d}$ (3.15) and  $\Phi_{3p}$  (3.16) are homologous to the H foci  $F_1$  and  $F_2$ , the points  $T_{131}$  (2.1),  $T_{112}$  (2.2),  $N_{22}$  (3.1) and  $N_{21}$  (3.2) and *viceversa*, respectively. In other words, when dealing with the ellipse H and its point P, we regard the points E and I as the intersections of the normal to H at P with the eccentric and symm-eccentric line. If we change our perspective, dealing with the ellipse  $H_{\Sigma}$  and its point O, we regard the points E and I as the foci of  $H_{\Sigma}$ .

The fruit of this approach is that, from a given statement involving a special set of geometrical objects, we may generate a twin statement involving the set of the homologous objects. In many cases, the new statement, far from being a trivial duplicate of the previous statement, reveals new, worth mentioning facts.

The following Theorem 13 is an example of this approach; it is but the Theorem 10, invoked for the objects homologous to those mentioned in the original statement.

#### **Theorem 13.** [Figure 5] The point E(1.10) is collinear

60

1. with the points  $\Phi_{1d}$  (3.13) and  $\Phi_{3d}$  (3.15) on the line

$$\Phi_{1d} E \Phi_{3d} \colon y = \frac{b + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{\sin \varepsilon} - x \frac{b + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{a + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}} \cot \varepsilon, \quad (3.17)$$

2. with the points  $\Phi_{1p}$  (3.14) and  $\Phi_{3p}$  (3.16) on the line

$$\Phi_{1p}\Phi_{3p}E: \ y = \frac{b - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{\sin \varepsilon} - x \frac{b - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{a - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}} \cot \varepsilon.$$
(3.18)

The lines  $\Phi_{1d}E\Phi_{3d}$  (3.17) and  $\Phi_{1p}\Phi_{3p}E$  (3.18) meet orthogonally at E. The point I (1.11) is collinear

1. with the points  $\Phi_{1d}$  (3.13) and  $\Phi_{3p}$  (3.16) on the line

$$\Phi_{1d}\Phi_{3p}I: \ y = \frac{b + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{\sin \varepsilon} - x \frac{b + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{a - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}} \cot \varepsilon, \quad (3.19)$$

2. with the points  $\Phi_{1p}$  (3.14) and  $\Phi_{3d}$  (3.15) on the line

$$\Phi_{1p}I\Phi_{3d}: \ y = \frac{b - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{\sin \varepsilon} - x \frac{b - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{a + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}} \cot \varepsilon.$$
(3.20)

The lines  $\Phi_{1d}\Phi_{3p}I$  (3.19) and  $\Phi_{1p}I\Phi_{3d}$  (3.20) meet orthogonally at I.

Now, if we construct four circles  $K'_i(i = 1, 4)$  on the segments  $\Phi_{1d}\Phi_{3d}$ ,  $\Phi_{1p}\Phi_{3d}$ ,  $\Phi_{1p}\Phi_{3p}$  and  $\Phi_{1d}\Phi_{3p}$  as diameters, it suffices that we invoke Theorem 11 to state the following:

**Theorem 14.** [Figure 5] Let the circles  $K'_i$  (i = 1, 4) be constructed taking as diameters the segments  $\Phi_{1d}\Phi_{3d}$ ,  $\Phi_{1p}\Phi_{3d}$ ,  $\Phi_{1p}\Phi_{3p}$  and  $\Phi_{1d}\Phi_{3p}$ , respectively.

1. The points  $\Phi_{1d}$ , O, I and  $\Phi_{3d}$  are concyclic on the following circle  $K'_1$  about the midpoint  $C'_1$  between  $\Phi_{1d}$  and  $\Phi_{3d}$ ,

$$\left(x - \frac{a + \sqrt{(asbc)}}{2\cos\varepsilon}\right)^2 + \left(y - \frac{b + \sqrt{(asbc)}}{2\sin\varepsilon}\right)^2 = \left(\frac{a + \sqrt{(asbc)}}{2\cos\varepsilon}\right)^2 + \left(\frac{b + \sqrt{(asbc)}}{2\sin\varepsilon}\right)^2. (3.21)$$

2. The points  $\Phi_{1p}$ ,  $\Phi_{3d}$ , E and O are concyclic on the following circle  $K'_2$  about the midpoint  $C'_2$  between the points  $\Phi_{1p}$  and  $\Phi_{3d}$ :

$$\left(x - \frac{a + \sqrt{(asbc)}}{2\cos\varepsilon}\right)^2 + \left(y - \frac{b - \sqrt{(asbc)}}{2\sin\varepsilon}\right)^2 = \left(\frac{a + \sqrt{(asbc)}}{2\cos\varepsilon}\right)^2 + \left(\frac{b - \sqrt{(asbc)}}{2\sin\varepsilon}\right)^2. (3.22)$$

3. The points  $\Phi_{1p}$ , O,  $\Phi_{3p}$  and I are concyclic on the following circle  $K'_3$  about the midpoint  $C'_3$  between  $\Phi_{1p}$  and  $\Phi_{3p}$ :

$$\left(x - \frac{a - \sqrt{(asbc)}}{2\cos\varepsilon}\right)^2 + \left(y - \frac{b - \sqrt{(asbc)}}{2\sin\varepsilon}\right)^2 = \left(\frac{a - \sqrt{(asbc)}}{2\cos\varepsilon}\right)^2 + \left(\frac{b - \sqrt{(asbc)}}{2\sin\varepsilon}\right)^2. (3.23)$$

4. The points  $\Phi_{1d}$ , O,  $\Phi_{3p}$  and E are concyclic on the following circle  $K'_4$  about the midpoint  $C'_4$  between the points  $\Phi_{1d}$  and  $\Phi_{3p}$ :

$$\left(x - \frac{a - \sqrt{(asbc)}}{2\cos\varepsilon}\right)^2 + \left(y - \frac{b + \sqrt{(asbc)}}{2\sin\varepsilon}\right)^2 = \left(\frac{a - \sqrt{(asbc)}}{2\cos\varepsilon}\right)^2 + \left(\frac{b + \sqrt{(asbc)}}{2\sin\varepsilon}\right)^2. (3.24)$$

The circles  $K'_1$  (3.21) and  $K'_3$  (3.23) are orthogonal, as well as the circles  $K'_2$  (3.24) and  $K'_4$  (3.22). The centers  $C'_i$  of the circles  $K'_i$  (i = 1, 4) belong to the circle K (3.11).

Invoking Theorem 12 for the points homologous to  $C_i$  (i = 1, 4), we may state the following:

**Theorem 15.** [Figure 5] The midpoints  $C'_1$ ,  $C'_2$ ,  $C'_3$ , and  $C'_4$  of the segments  $\Phi_{1d}\Phi_{3d}$ ,  $\Phi_{1p}\Phi_{3d}$ ,  $\Phi_{1p}\Phi_{3p}$ ,  $\Phi_{1p}\Phi_{3p}$ , and  $\Phi_{1d}\Phi_{3p}$ , respectively, are the vertices of a rectangle whose sides  $C'_1C'_2$  and  $C'_3C'_4$  are parallel to the y-axis [that is the tangent to the ellipse  $H_{\Sigma}$  at O] whilst the sides  $C'_1C'_4$  and  $C'_2C'_3$  are parallel to the x-axis [that is the normal to the ellipse  $H_{\Sigma}$  at O].

The same points are concyclic on the circle K (3.11), which is constructed on the segment of the tangent to the ellipse H intercepted by the x- and y-axes.

The points  $T_y$  (1.6),  $N_y$  (1.9),  $\Phi_{3p}$  (3.16) and  $\Phi_{3d}$  (3.15) are linked by six lines, two of which are the *x*- and *y*-axes; the remaining four lines are the following:

$$T_y \Phi_{3d}: \ y = \frac{b}{\sin \varepsilon} - \frac{b \left(a - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}\right)}{c^2 \sin \varepsilon \cos \varepsilon} x , \qquad (3.25)$$

$$N_y \Phi_{3p}: \ y = -\frac{c^2 \sin \varepsilon}{b} + \frac{\sin \varepsilon \left(a + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}\right)}{b \cos \varepsilon} x , \qquad (3.26)$$

$$N_y \Phi_{3d}: \ y = -\frac{c^2 \sin \varepsilon}{b} + \frac{c^2 \sin \varepsilon \cos \varepsilon}{b\left(a + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}\right)} x , \qquad (3.27)$$

$$T_y \Phi_{3p}: \ y = \frac{b}{\sin \varepsilon} - \frac{b \cos \varepsilon}{\sin \varepsilon \left(a - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}\right)} x \,. \tag{3.28}$$

The lines  $T_y \Phi_{3d}$  (3.25) and  $N_y \Phi_{3p}$  (3.26) meet at the following point  $P_{12}$  (the notation (*asbc*) =  $a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon$  is used):

$$P_{12}\left(\frac{c^2\cos\varepsilon\sqrt{(asbc)}}{a\sqrt{(asbc)} + c^2\sin^2\varepsilon - b^2}; \ \frac{2bc^2\sin\varepsilon}{a\sqrt{(asbc)} + c^2\sin^2\varepsilon - b^2}\right). \tag{3.29}$$

The lines  $N_y \Phi_{3d}$  (3.27) and  $T_y \Phi_{3p}$  (3.28) meet at the following point  $P_{13}$ ,

$$P_{13}\left(\frac{c^2\cos\varepsilon\sqrt{(asbc)}}{a\sqrt{(asbc)} - c^2\sin^2\varepsilon + b^2}; \frac{2b\sin\varepsilon\left(\sqrt{(asbc)} - a\right)}{(1 + \sin^2\varepsilon)\sqrt{(asbc)} - 2a\sin^2\varepsilon}\right).$$
 (3.30)

The following holds:

**Theorem 16.** The lines  $T_y \Phi_{3d}$  (3.25) and  $N_y \Phi_{3p}$  (3.26) are orthogonal, and their common point  $P_{12}$  (3.29) belongs to the circles  $\Phi_3$  (1.14) and  $K_{\Sigma}$  (2.18).

The lines  $N_y \Phi_{3d}$  (3.27) and  $T_y \Phi_{3p}$  (3.28) are orthogonal, and their common point  $P_{13}$  (3.30) belongs to the circles  $\Phi_3$  (1.14) and  $K_{\Sigma}$  (2.18).

The orthogonality of the lines  $T_y \Phi_{3d}$  (3.25) and  $N_y \Phi_{3p}$  (3.26) clearly appears from the product of their slopes,

$$m_{T_y\Phi_{3d}}m_{N_y\Phi_{3p}} = -\frac{b\cos\varepsilon}{\sin\varepsilon\left(a+\sqrt{(asbc)}\right)}\frac{c^2\sin\varepsilon\cos\varepsilon}{b\left(a-\sqrt{(asbc)}\right)} = -\frac{c^2\cos^2\varepsilon}{a^2-a^2\sin^2\varepsilon-b^2\cos^2\varepsilon} = -1,$$

and the same holds for the lines  $N_y \Phi_{3d}$  (3.27) and  $T_y \Phi_{3p}$  (3.28),

$$m_{N_y\Phi_{3d}}m_{T_y\Phi_{3p}} = -\frac{c^2\sin\varepsilon\cos\varepsilon}{b\left(a+\sqrt{(asbc)}\right)}\frac{b\cos\varepsilon}{\sin\varepsilon\left(a-\sqrt{(asbc)}\right)} = -\frac{c^2\cos^2\varepsilon}{a^2-a^2\sin^2\varepsilon-b^2\cos^2\varepsilon} = -1.$$

To demonstrate that the point  $P_{12}$  (3.29) belongs to the circle  $K_{\Sigma}$  (2.18), we will replace the coordinates (3.29) in the l.h.s. of (2.18). Making some obvious manipulations, we get

$$c^{2}(asbc)\cos^{2}\varepsilon + 4b^{2}c^{2}\sin^{2}\varepsilon - 2\left(b^{2} - c^{2}\sin^{2}\varepsilon\right)\left(a\sqrt{(asbc)} + c^{2}\sin^{2}\varepsilon - b^{2}\right) - \left(a\sqrt{(asbc)} + c^{2}\sin^{2}\varepsilon - b^{2}\right)^{2}.$$

Afterwards, further manipulations lead us to conclude that such expression identically vanishes and that  $P_{12}$  belongs, therefore, to  $K_{\Sigma}$ .

Quite similarly, to demonstrate that the point  $P_{12}$  (3.29) belongs to the circle  $\Phi_3$  (1.14), too, we will replace the coordinates (3.29) in the l.h.s. of (1.14), getting the following:

$$c^{4}(asbc)\cos^{2}\varepsilon - 2ac^{2}\sqrt{(asbc)}\left(a\sqrt{(asbc)} + c^{2}\sin^{2}\varepsilon - b^{2}\right) + 4b^{2}c^{4}\sin^{2}\varepsilon + c^{2}\left(a\sqrt{(asbc)} + c^{2}\sin^{2}\varepsilon - b^{2}\right)^{2}.$$

A bit of manipulations is enough to show that this expression vanishes, too. This proves that  $P_{12}$  belongs to the circle  $\Phi_3$ , too. Analogously, one proves that the point  $P_{13}$  (3.30) belongs to the circles  $K_{\Sigma}$  (2.18) and  $\Phi_3$  (1.14).

The new findings regarding the circle  $K_{\Sigma}$  — namely, the Lemma 3, the Theorem 12 and part of the Theorem 16 — may be summarized in the following statement:

#### **Theorem 17.** [The 13-Point Circle] Let the following points be considered:

- (i) the point  $P_3$  (2.25) [where the  $\Phi_2$  diameter through  $T_{212}$  (2.23) touches the ellipse H];
- (*ii*) the point  $C_{\Psi}$  (2.26) [the midpoint between the points  $\Psi_1$  (1.15) and  $\Psi_2$  (1.16), where the circles  $\Phi_2$  and  $\Phi_2$  meet];

- (iii) the midpoints  $C_1$  (3.7),  $C_3$  (3.9),  $C_4$  (3.10) and  $C_2$  (3.8) of the segments  $T_{131}N_{22}$ ,  $T_{112}N_{21}$ ,  $T_{131}N_{21}$  and  $T_{112}N_{22}$ , respectively;
- (iv) the point  $P_{12}$  (3.29) [where the lines  $T_y \Phi_{3d}$  (3.25) and  $N_y \Phi_{3p}$  (3.26) meet];
- (v) the point  $P_{13}$  (3.30) [where the lines  $N_y \Phi_{3d}$  (3.27) and  $T_y \Phi_{3p}$  (3.28) meet].

The afore mentioned eight points are concyclic with the ellipse foci, the point P and the y-intercepts of the normal and tangent to H at P in the circle  $\Sigma$  (2.18).

Invoking Theorem 16 for the homologous objects, the following results:

**Theorem 18.** The lines  $T_y N_{22}$  and  $T_x N_{21}$  are orthogonal and their common point belongs to the circles  $\Phi_2$  (1.13) and K (3.11). The lines  $T_x N_{22}$  and  $T_y N_{21}$  are orthogonal and their common point belongs to the circles  $\Phi_2$  (1.13) and K (3.11).

In [3, 4] the author has introduced the symm-normal line, whose equation is

$$y = b\sin\varepsilon - \frac{a}{b}\tan\varepsilon \left(x - a\cos\varepsilon\right).$$
(3.31)

The symm-normal passes through P and shares two points with Monge's circle  $(x^2 + y^2 = a^2 + b^2)$ . Each one of these points can be regarded as inverse of itself with respect to Monge's circle. Moreover, such points have been recognized [3] to belong to the circle K (3.11), too. The inversion of P with respect to Monge's circle yields the point

$$I_{P:M}\left(\frac{a^2+b^2}{a^2\cos^2\varepsilon+b^2\sin^2\varepsilon}\,a\cos\varepsilon;\,\,\frac{a^2+b^2}{a^2\cos^2\varepsilon+b^2\sin^2\varepsilon}\,b\sin\varepsilon;\right)$$

which belongs ([4, Theorem 1]) to the circle K (3.11), too. Having found three points which belong to the circle K and are inverse — w.r.t. Monge's circle — of as many points belonging to the symm-normal, we may state the following:

**Theorem 19.** The circle K (3.11) is the inverse curve of the symm-normal (3.31) with respect to Monge's circle.

## References

- [1] J. CASEY: A Treatise on the Analytical Geometry of the Point, Line, Circle and Conic Sections. 2nd ed., Dublin and London 1893.
- [2] G. GLAESER, H. STACHEL, B. ODEHNAL: The Universe of Conics. Springer-Verlag, Berlin Heidelberg 2016.
- [3] M. TERNULLO: A 10-point Circle is Associated with any General Point of the Ellipse. New Properties of Fagnano's Point. J. Geom. 87, 179–187 (2007).
- [4] M. TERNULLO: Two new sets of ellipse-related concyclic points. J. Geom. 94, 159–173 (2009).
- [5] M. TERNULLO: Triplets of Mutually Orthogonal Circles Associated with any Ellipse. J. Geom. 104, 383–393 (2013).
- [6] M. TERNULLO: Symbiotic Conics and Quartets of Four-Foci Orthogonal Circles. J. Geom. Graphics 20(1), 85–100 (2016).
- [7] C. TAYLOR: Geometry of Conics. Cambridge 1903.