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Abstract. New developments of the author's research project [3, 4, 5, 6] on the
geometry of conics are presented. Special attention is paid to the relationships
among the ellipse and three circles � denoted by Φ1, Φ2 and Φ3 � previously
introduced by the author [6] and belonging to the elliptic and hyperbolic pencil
of circles de�ned by the ellipse foci. Among the newly de�ned points, arising
as intersections of the geometrical objects under examination, eight triplets of
collinear points (Theorems 10 and 13) and as many quadruplets of concyclic points
(Theorems 11 and 14; Figures 4 and 5) are recognized. Eight new special points
are shown (Theorem 17) to be concyclic on the well known circle through P and
the ellipse foci.
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1. Introduction

In an orthogonal reference frame (Figure 1), let H be the ellipse

x2

a2
+
y2

b2
= 1, a > b, (1.1)

whose foci are F1(−c, 0) and F2(c, 0), where c =
√
a2 − b2. Throughout this paper, the ellipse

general point � that is, any point di�erent from the vertices � is denoted by P (a cos ε; b sin ε)
or simply P . Nevertheless, to avoid the exceeding verbal complexity, I will formulate any
statement assuming that P lies in the �rst quadrant (x > 0, y > 0). For the reader's
convenience, some geometrical objects frequently referred to throughout this paper are listed
and previous results are summarized.

1. The ellipse diameters with slope me = tan ε and me′ = − tan ε, which have been given by
the author [3] the names eccentric line (1.2) and symm-eccentric line e′ (1.3), respectively,
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y = x tan ε, (1.2) y = −x tan ε. (1.3)

2. The tangent t (1.4) to the ellipse H at P and its respective x- and y-intercepts Tx and Ty,

y = −x b
a

cot ε+
b

sin ε
, (1.4) Tx

( a

cos ε
; 0
)
, (1.5) Ty

(
0;

b

sin ε

)
. (1.6)

3. The normal n (1.7) to the ellipse H at P and its respective x- and y-intercepts Nx and Ny,

y = x
a

b
tan ε− c

2

b
sin ε, (1.7) Nx

(
c2

a
cos ε; 0

)
, (1.8) Ny

(
0; −c

2

b
sin ε

)
. (1.9)

4. The following points E (1.10) and I (1.11), where the normal (1.7) meets the eccentric
(1.2) and the symm-eccentric (1.3) line of P , respectively,

E ((a+ b) cos ε; (a+ b) sin ε) , (1.10) I ((a− b) cos ε; − (a− b) sin ε) . (1.11)

This paper deals with relationships among the ellipse H (1.1) and the following circles
(Fig. 1), previously introduced by the author [6]:

• the circle Φ1, whose center is the y-intercept Ty (1.6) of the tangent (1.4); it passes
through the foci and the points E (1.10) and I (1.11) ([6, Theorem 2.2]),

x2 +

(
y − b

sin ε

)2

= c2 +
b2

sin2 ε
; (1.12)

• the circle Φ2, whose center is the y-intercept Ny (1.9) of the normal (1.7); it passes
through the foci,

x2 +

(
y +

c2

b
sin ε

)2

= c2 +

(
c2

b
sin ε

)2

; (1.13)

• the circle Φ3, whose center is the x-intercept Tx (1.5) of the tangent (1.4) to H at P ; it
passes through the points E (1.10) and I (1.11),(

x− a

cos ε

)2

+ y2 =
a2 sin2 ε+ b2 cos2 ε

cos2 ε
. (1.14)

The circles Φ1, Φ2 and Φ3 taken pairwise are mutually orthogonal ([6, Theorem 2.1]), and the
point Nx (1.8) is their radical center.

The circles Φ2 and Φ3 share the points (the notation (acbs) = a2 cos2 ε+ b2 sin2 ε is used)

Ψ1

(
(a− c sin ε) c2 cos ε

(acbs)
;

(a− c sin ε) bc

(acbs)

)
; (1.15)

Ψ2

(
(a+ c sin ε) c2 cos ε

(acbs)
;
− (a+ c sin ε) bc

(acbs)

)
(1.16)
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In the present paper, the vertices of the ellipse H (1.1) are denoted by V1(a, 0), V2(0, b),
V3(−a, 0), and V4(0,−b), or simply V1, . . . , V4. The points where the circle Φi(i = 1, 3) meets
the tangent drawn at the ellipse vertex Vj, j = 1, 4 , are denoted by Tijλ, λ = 1, 2 .

2. Results

The tangent t (1.4) (Figure 1) drawn to the ellipse H (1.1) at P meets:
(i) the tangents drawn to the ellipse H (1.1) at its vertices V3(−a, 0) and V1(a, 0) in the

following points T131 and T112, respectively:

T131

(
−a;

b(1 + cos ε)

sin ε

)
, (2.1) T112

(
a;

b(1− cos ε)

sin ε

)
; (2.2)

(ii) the tangents drawn to the ellipse H (1.1) at its vertices V2(0, b) and V4(0,−b) in the
following points T321 and T342:

T321

(
a(1− sin ε)

cos ε
; b

)
, (2.3) T342

(
a(1 + sin ε)

cos ε
; −b

)
. (2.4)

Replacing the coordinates of the points T131 and T112 [T321 and T342] in the equation (1.12)
representing the circle Φ1 [in the equation (1.14) representing the circle Φ3], one can see that
such equations are ful�lled. Accordingly, we may state the following:

Theorem 1. [Figure 1] The tangent (1.4) drawn to the ellipse H (1.1) at P meets
• the tangents drawn to the ellipse at its vertices V1(a, 0) and V3(−a, 0) in points belonging
to the circle Φ1 (1.12) [such points are denoted by T112 (2.2) and T131 (2.1), respectively];

• the tangents drawn to the ellipse at its vertices V2(0, b) and V4(0,−b) in points belonging
to the circle Φ3 (1.12) [such points are denoted by T321 (2.3) and T342 (2.4), respectively].

The present author has shown in [6, Theorem 2.2], that the points E (1.10) and I (1.11)
� where the normal (1.7) to H at P meets the eccentric (1.2) and the symm-eccentric line
(1.2) of P , respectively � belong to the circle Φ1 (1.12). Accordingly, we may state:

Theorem 2. [Figure 1] The ellipse foci, the points E (1.10) and I (1.11) and the points T112

(2.2) and T131 (2.1) are concyclic about the y-intercept Ty (1.6) of the tangent to the ellipse
H at P on the circle Φ1 (1.12).

Also the circle Φ3 (1.12) passes through E (1.10) and I(1.11). Accordingly, we may state:

Theorem 3. [Figure 1]. The points E (1.10) and I (1.11), T321 (2.3) and T342 (2.4) are
concyclic about the x-intercept Tx (1.5) of the tangent to the ellipse H at P on the circle Φ3

(1.14).

Of course, there exist points symmetrical to the afore mentioned ones about the ellipse
symmetry axes, I will not mention for the sake of brevity.

Remembering that any couple of points de�nes an elliptic and a hyperbolic pencil of circles
([2], Chapter 7), we may regard the circles Φ1 and Φ2 as elements of the elliptic pencil of circles
de�ned by the ellipse foci. The general element of this set, denoted here by ΦE, is represented
by the following equation,

x2 + (y − yo)2 = y2
o + c2, (2.5)
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Figure 1: Illustrating the de�nition of circles Φ1, Φ2 and Φ3 and the Theorems 2.1, 2.2
and 2.3. The points F1 and F2 are the foci of the ellipse H; the ellipse vertices are
denoted by V1 through V4; the tangents to H at such vertices are drawn [blue]. The
tangent to H at P meets the tangent at V3, the y-axis x, the tangent at V2, the tangent
at V1, the x-axis and the tangent at V4 in the points T131, Ty, T321, T112, Tx and T342,
respectively. Two circles [red] through the foci, denoted by Φ1 and Φ2, are constructed
about Ty and Ny, respectively. The circle Φ3 [red] is constructed about Tx; the circles
Φ1 and Φ3 and the normal share the points E and I; the circles Φ2 and Φ3 share the
points Ψ1 and Ψ2. The circle Φ2 meets the tangent to H at V1 in T212; the Φ2 diameter
through T212 [magenta] touches the ellipse (Corollary 1) at P3; the normal to H at P3

[magenta] meets the minor axis at Ty (Theorem 8).

where the parameter yo is the y-coordinate of the center. The circle Φ3 belongs to the
hyperbolic pencil of circles de�ned by the ellipse foci. The general element of this set, denoted
by ΦH , is represented by the following equation:

(x− xo)2 + y2 = x2
o − c2, (2.6)

where the parameter xo is the x-coordinate of the center. Any circle of the hyperbolic pencil
passes through the ellipse imaginary foci F i

1 (0, ic), F i
2 (0,−ic). Any circle of either pencil is

orthogonal to each circle of the other pencil.

Theorem 1 implies the following:

Corollary 1. [Figure 1] Let ΦE (2.5) be a circle through the ellipse foci which meets the line
x = a in real points. The ΦE diameters through such points are tangent to the ellipse H.

Let the tangents drawn to the ellipse H at its minor axis vertices (namely, the lines y = b
and y = −b) meet the circle Φ1 (1.12) at the following points T122 and T142 (Figure 2):
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Figure 2: The circle Φ1 [red] meets the line y = b [blue] in T122. The tangent t122 to the
circle Φ1 at T122 touches the ellipse (Lemma 1) at P1. The tangent t to the ellipse at P
meets the lines y = b and y = −b [blue] in the points T321 and T342. The circles Φ4 and
Φ5 [blue] symmetrically lie about the minor axis and touch the tangent t at T321 and
T342, respectively; they pass through the foci (Lemma 2). The tangents t4 and t5 [blue]
to the circles Φ4 and Φ5 at the focus F1 form the angle δ [Theorem 5, item (i)]. The
bisectors b1 and b2 [black, dashed lines] of the angle δ and its supplementary meet the
minor axis in Ty and Ny. The circle KΣ [green] passes through Ty, Ny, P and the foci
[Theorem 5, item (iii)].

T122

(√
a2 + 2b2

1− sin ε

sin ε
; b

)
, (2.7) T142

(√
a2 − 2b2

1 + sin ε

sin ε
; −b

)
, (2.8)

respectively. The tangent t122 to the circle Φ1 at T122 (2.7) has the equation

y = x

√
(c2 − b2) sin2 ε+ 2b2 sin ε

b(1− sin ε)
− c2 sin ε+ b2

b(1− sin ε)
. (2.9)

Simultaneously solving the equations of the tangent t122 (2.9) to the circle Φ1 at T122 and
the ellipse H (1.1), we get the following, single unknown equation (the notation (asbc) =
a2 sin2 ε+ b2 cos2 ε is used):

x2(asbc)−2xa2(asbc)
√

(c2 − b2) sin2 ε+ 2b2 sin ε+a4
[(
c2 − b2

)
sin2 ε+ 2b2 sin ε

]
= 0. (2.10)
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The vanishing of the discriminant of (2.10) shows that the tangent t122 (2.9) to the circle Φ1

at T122 touches also the ellipse H. Moreover, observing that the circle Φ1 (1.12) shares such
property with the general circle through the foci, we may state the following:

Lemma 1. [Figure 2] Let ΦE (2.5) be a circle belonging to the elliptic pencil of circles de�ned
by the ellipse foci, which meets the line y = b in real points. The tangents drawn to ΦE at
such points are tangent to the ellipse, too.

Now, let us consider a circle, denoted by Φy and represented by the following equation,

x2 + (y − yo)2 = y2
o + x2

o (2.11)

The center of the circle Φy (2.11) is a point belonging to the minor axis of the ellipse H (1.1),
|yo| apart from the major axis. The circle meets the major axis in points |xo| apart from the

minor axis. Let the line y = b meet the circle Φy in the real point T ′
122

(√
x2
o + 2byo − b2, b

)
.

The tangent drawn to Φy at such point is

y = x

√
x2
o + 2byo − b2

yo − b
− yob+ x2

o

yo − b
. (2.12)

Let us assume that the line (2.12) is tangent to the ellipse (1.1), too. This hypothesis
amounts to state that the following equation

x2

a2
+

1

b2

(
x

√
x2
o + 2byo − b2

yo − b
− yob+ x2

o

yo − b

)2

= 1, (2.13)

written by replacing the r.h.s. of (2.12) in the ellipse equation (1.1), has a vanishing discrim-
inant. Setting the discriminant of (2.13) to zero amounts, in turn, to write the following
equation for the unknown x2

o (the conventional notation R = x2
o + 2byo − b2 is used):

a4
(
yob+ x2

o

)2
R−

[
b2(yo − b)2 + a2R

]
× a2

[
(yob+ x2

o)
2 − b2 (yo − b)2] = 0,

which may be written, by means of trivial manipulations, as follows:

x4
o + 2yobx

2
o − a2x2

o − b4 + 2b3yo − 2a2byo + a2b2 = 0

The unique acceptable solution is x2
o = c2. This result means that the circle Φy passes through

the foci. Accordingly, we may state:

Lemma 2. [Figure 2] Let Φy (2.11) be a circle about a point lying on the ellipse minor axis,
which meets the line y = b in real points. If the tangents drawn to the circle at such points
touch also the ellipse, then the circle Φy passes through the ellipse foci.

The Lemmas 1 and 2 amount to the following:

Theorem 4. [Figure 2] Let Φy (2.11) be a circle about a point lying on the ellipse minor
axis, which meets the line y = b in real points. A necessary and su�cient condition for the
tangents to the circle at such points to touch also the ellipse is the membership of the circle
in the elliptic pencil of circles de�ned by the ellipse foci.

An obvious consequence of Theorem 4 is the following:
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Corollary 2. [Figure 2] Let the tangent t (1.4) to the ellipse H at P meet the lines y = b
and y = −b in the real points T321 (2.3) and T342 (2.4), respectively. Let Φ4 and Φ5 be two
circles whose centers lie on the minor axis, which touch the line t in the points T321 and T342,
respectively. Under such hypothesis, the circles Φ4 and Φ5 pass through the ellipse foci.

The following equations (2.14) and (2.15) represent the circles Φ4 and Φ5, respectively
(the notation (asbc) = a2 sin2 ε+ b2 cos2 ε is used):

x2 +

(
y − (asbc)− a2 sin ε

b cos2 ε

)2

=

(
a(1− sin ε)

cos ε

)2

+

(
b− (asbc)− a2 sin ε

b cos2 ε

)2

, (2.14)

x2 +

(
y +

(asbc) + a2 sin ε

b cos2 ε

)2

=

(
a(1 + sin ε)

cos ε

)2

+

(
−b+

(asbc) + a2 sin ε

b cos2 ε

)2

. (2.15)

The tangents to the circles Φ4 (2.14) and Φ5 (2.15) at the focus F1(−c, 0) have the following
slopes m4 (2.16) and m5 (2.17), respectively:

m4 :
−bc cos2 ε

(asbc)− a2 sin ε
, (2.16) m5 :

bc cos2 ε

(asbc) + a2 sin ε
. (2.17)

The tangents to the circles Φ4 and Φ5 at the focus F1 form an angle δ,

δ = arctan
m4 −m5

1 +m4m5

= arctan
− bc cos2 ε

(asbc)− a2 sin ε
− bc cos2 ε

(asbc) + a2 sin ε

1− b2c2 cos4 ε

(asbc)2 − a4 sin2 ε

= arctan
2bc

c2 − b2
.

This unexpected result means that � in spite of the dependence of any detail on the eccentric
anomaly ε of P (namely, on the point P location on the ellipse) � the measure of the angle
δ does not depend on such variable but on the ellipse semiaxes only.

A further, unexpected result arises from the bisectors of the angle δ and its supplementary.

Indeed, observing that tan
δ

2
=

b

c
, the slopes of such bisectors � here denoted by mb1 and

mb2 � can be written as follows:

mb1 =
m5 + tan δb

c

1−m5 tan b
c

=
bc2 cos2 ε+ a2b sin2 ε+ b3 cos2 ε+ a2b sin ε

a2c sin2 ε+ b2c cos2 ε+ a2c sin ε− b2c cos2 ε
=

b

c sin ε
,

mb2 = − 1

mb1

= −c sin ε

b
.

These slopes mb1 and mb2 equal the slopes of the tangents drawn to the circles Φ2 and Φ1 at
the focus F1, respectively. Because of the orthogonality of the circles Φ1 and Φ2, this �nding
means that the bisectors b1 and b2 of the angle δ and of its supplementary pass through the
centers � Ty (1.6) and Ny (1.9) � of the circles Φ1 and Φ2, respectively. This result carries
with itself a further consequence: if a circle is constructed on the segment TyNy as diameter,
such circle passes through the foci.

We may summarize these results as follows:

Theorem 5. [Figure 2] Drawn the tangent t to the ellipse H at P , let Φ4 (2.14) and Φ5 (2.15)
be two circles whose centers lie on the minor axis, which touch the line t at the points T321

(2.3) and T342 (2.4), where such line meets the lines y = b and y = −b, respectively. Let these
circles [which pass through the foci by virtue of the Corollary 2] admit as tangent at the foci
two lines denoted by t4 and t5. Then the following holds:
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(i) the lines t4 and t5 meet at constant angle δ = arctan
2bc

c2 − b2
;

(ii) the bisectors of the angles formed by the lines t4 and t5 are tangent to the circles Φ1

(1.12) and Φ2 (1.13), respectively;

(iii) the point P , the y-intercepts Ty and Ny of the tangent and normal to the ellipse at P
and the foci are concyclic on the circle constructed on the segment TyNy as diameter.

The following equation represents the circle � here denoted by KΣ � whose existence is
stated by the last proposition of Theorem 5:

x2 +

(
y − b2 − c2 sin2 ε

2b sin ε

)2

=

(
b2 + c2 sin2 ε

2b sin ε

)2

. (2.18)

The circle (2.18) is well known since a long time. The new proof I have given here of its
existence adds to many others registered in the literature (e.g., see [7, p. 86], [1, Chapter VI,
p. 215], and [6, subsect. 3.2, item 2]).

Remembering that the point T112 is common to (i) the circle Φ1, (ii) the tangent x = a
drawn to the ellipse at V1(a, 0), and (iii) the tangent t (1.4) to the ellipse at P (Theorem 1), let
us assume that a circle denoted Φx, symmetrically lying about the focal axis, passes through
the point T112. Remembering that the line t (1.4) is a diameter of Φ1, it is obvious that, if
such line t touches also the circle Φx at T112, then the circle Φx is orthogonal to Φ1. Since
Φ1 belongs to the elliptic pencil of circles de�ned by the ellipse foci, we conclude that the
circle Φx belongs to the conjugated hyperbolic pencil of circles. On the other hand, if Φx

orthogonally cuts the circle Φ1 at the point T112 � namely: if Φx belongs to the hyperbolic
pencil of circles de�ned by the ellipse foci � then the line t is tangent to Φx, too. Accordingly,
we may state:

Theorem 6. [Figure 3] Let Φx be a circle about a point lying on the ellipse focal axis, which
meets the line x = a in real points. A necessary and su�cient condition for the tangents to
the circle Φx at such points to touch also the ellipse is the membership of the circle in the
hyperbolic pencil of circles de�ned by the ellipse foci.

Of course, what has been said for the point T112 holds also for the point T131, where the
tangent t (1.4) drawn to the ellipse at P meets the line x = −a. Therefore, we may construct
two circles � let them be denoted by Φ′

4 and Φ′
5 � such that their centers lie on the focal

axis and they touch the tangent t in the points T112 and T131, respectively. The following
statement is an obvious consequence of the Theorem 6:

Corollary 3. [Figure 3] Let the tangent t (1.4) to the ellipse H at P meet the lines x = a
and x = −a in the real points T112 (2.2) and T131 (2.1), respectively. Let Φ′

4 and Φ′
5 be two

circles whose centers lie on the major axis, which touch the line t in the points T112 and T131,
respectively.
Under such hypothesis, the circles Φ′

4 and Φ′
5 belong to the hyperbolic pencil of circles de�ned

by the ellipse foci.

A special circle belonging to the hyperbolic pencil de�ned by the foci is Φ3 (1.14) (Fig-
ure 3). The line x = a meets the circle Φ3 (1.14) in two points; one of them is the following
T311,

T311

(
a,

√
2
a2

cos ε
− a2 − c2

)
(2.19)
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Figure 3: The circle Φ3 [red] meets the line x = a [blue] in T311; the tangent to Φ3 at
T311 [blue] touches the ellipse (Theorem 6) at P2. The tangent t to the ellipse at P
meets the lines x = a and x = −a in the points T112 and T131; the circles Φ′

4 and Φ′
5

[blue] touch the tangent t in T112 and T131.

The following line t311 (2.20),

y = x
a(1− cos ε)√

2a2 cos ε− (a2 + c2) cos2 ε
+

a2 − c2 cos ε√
2a2 cos ε− (a2 + c2) cos2 ε

, (2.20)

is tangent to the circle Φ3 at T311 (2.19) and to the ellipse H at the following point P2,

P2

(
−a

3 (1− cos ε)

a2 − c2 cos ε
;
b2
√

2a2 cos ε− (a2 + c2) cos2 ε

a2 − c2 cos ε

)
. (2.21)

We have recognized some special points on the tangent to the ellipse at P , which can be
gathered into special quadruplets, as the following Theorem states:

Theorem 7. [Figure 1] The following quadruplets of points form harmonic ranges.

(i) T131 (2.1), T321 (2.3), T112 (2.2) and T342 (2.4),

(ii) Ty (1.6), T321 (2.3), P and T342 (2.4),

(iii) T131 (2.1), P , T112 (2.2) and Tx (1.5)

The orthogonality of the circles Φ1 and Φ3 accounts for the harmonic range formed by the
�rst quadruplet. As regards the second and third quadruplet, replacing the points by their
x- and y-coordinates, respectively, we may write down the following quadruplets:(

b

sin ε
, b, b sin ε, −b

)
and

(
−a, a cos ε, a,

a

cos ε

)
,
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and check that, for both of them, the product of the 1st and 3rd term equals � apart from
the sign � the product of the 2nd and 4th term.

In the paper [6], I have introduced the circle Φ2 (1.13). It is constructed about the y-
intercept Ny (1.9) of the normal to H at P , passes through the foci and forms, together with
Φ1 (1.12) and Φ3 (1.14), a triplet of orthogonal circles ([6, Theorem 2.1]). The line x = a
meets the circle Φ2 in the following points T211 and T212 (Figure 1):

T211

(
a;
−c2 sin ε−

√
c4 sin2 ε− b4
b

)
, (2.22) T212

(
a;
−c2 sin ε+

√
c4 sin2 ε− b4
b

)
. (2.23)

Let us restrict ourselves to consider the point T212 (2.23). Corollary 1 enables us to state that
the following Φ2 diameter through T212,

y = −c
2 sin ε

b
+ x

√
c4 sin2 ε− b4

ab
, (2.24)

is tangent to the ellipse H. Indeed, the tangency point is the following P3:

P3

(
a
√
c4 sin2 ε− b4

c2 sin ε
; − b3

c2 sin ε

)
. (2.25)

The circle Φ2 plays, w.r.t. the point P3, the same role the circle Φ1 plays w.r.t. the point P .
Accordingly, as the normal to H at P is, by de�nition, a diameter of Φ2, the normal to H at
P3 is a diameter of Φ1 (Figure 1). Such normal passes, therefore, through the center Ty (1.6)
of Φ1, as the following Theorem states:

Theorem 8. [Figure 1] The normal to the ellipse H at the point P3 (2.25) concurs with the
tangent (1.4) to H at P in the minor axis point Ty(0, b/ sin ε).

If the procedure which has lead us from P to P3 is followed starting from P3, the circles
Φ1 and Φ2 exchange their role with each other, as well as the points T112 and T212, the points
Ty and Ny and, accordingly, the points P and P3, too. This accounts for the following

Theorem 9. The correspondence associating the points P and P3 (2.25) is involutory.

Observing that the y-intercepts of the normal and tangent to H at P3 (2.25) coincide with
the y-intercepts Ty (1.6) and Ny (1.9) of the tangent and normal to H at P , respectively, we
conclude that a circle constructed on the segment TyNy as diameter passes through P and
P3. But we know (Theorem 5)that the segment TyNy is a diameter of the circle KΣ (2.18),
which passes through the point P and the foci. Moreover, also the following point CΨ (2.26),
representing the midpoint between the points Ψ1 (1.15) and Ψ2 (1.16),

CΨ

(
ac2 cos ε

a2 cos2 ε+ b2 sin2 ε
; − bc2 sin ε

a2 cos2 ε+ b2 sin2 ε

)
, (2.26)

belongs to the circle KΣ (2.18). Indeed, replacing the CΨ (2.26) coordinates in the l.h.s. of
(2.18) and doing some simpli�cations, we get

a2c2 cos2 ε+ b2c2 sin2 ε+
(
a2 cos2 ε+ b2 sin2 ε

)
(b2 − c2 sin2 ε)−

(
a2 cos2 ε+ b2 sin2 ε

)2
.

Few, trivial manipulations allow us to conclude that this expression vanishes. Accordingly,
we may state the following
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Lemma 3. The points P3 (2.25) and CΨ (2.26) are concyclic with the point P , the foci and
the y-intercepts of the tangent [Ty (1.6)] and normal [Ny (1.9)] to the ellipse H at P in the
circle KΣ (2.18).

3. The normal to the ellipse at the point P

The normal (1.7) to H at P meets the circle Φ2 (1.13) (Figure 4) in points denoted by N22

and N21 (the farther and closer to P , respectively). Such points are

N22

(
−c cos ε; −c(a+ c) sin ε

b

)
, (3.1) N21

(
c cos ε;

c(a− c) sin ε

b

)
. (3.2)

Six lines link the points N21 (3.2), N22 (3.1), T131 (2.1) and T112 (2.2), two of them being the
normal and the tangent to H at P . The remaining four lines are involved in relationships of
collinearity and concyclicity with several other points.

Theorem 10. [Figure 4] The focus F1(−c, 0) is collinear

1. with the points T131 (2.1) and N22 (3.1) on the line

T131F1N22 : y = − b(1 + cos ε)

(a− c) sin ε
(x+ c), (3.3)

2. with the points T112 (2.2) and N21 (3.2) on the line

T112N21F1 : y =
(a− c) sin ε

b(1 + cos ε)
(x+ c). (3.4)

The lines T131F1N22 (3.3) and T112N21F1 (3.4) meet orthogonally at F1.

The focus F2(c, 0) is collinear

1. with the points T131 (2.1) and N21 (3.2) on the line

T131N21F2 : y = − b(1 + cos ε)

(a+ c) sin ε
(x− c), (3.5)

2. with the points T112 (2.2) and N22 (3.1) on the line

T112F2N22 : y =
b(1− cos ε)

(a− c) sin ε
(x− c). (3.6)

The lines T131N21F2 (3.5) and T112F2N22 (3.6) meet orthogonally at F2.

The collinearity of the mentioned triplets of points is demonstrated by checking that,
for each of them, the points coordinates ful�ll the equation of the corresponding line. A
glance at the slope of the lines T131F1N22 (3.3) and T112N21F1 (3.4) reveals that such lines are
orthogonal, as well as the lines T131N21F2 (3.5) and T112F2N22 (3.6) are.

In the light of these results, the following holds, too:
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Figure 4: The normal to the ellipse at P meets the circle Φ2 [red] in N21 and N22.
The points forming the triplets T131F1N22, T112N21F1, T131N21F2 and T112F2N22 are
collinear [red lines] (Theorem 10). The points forming the quadruplets T131N22F2P ,
F1N22T112P , N21F2T112P and T131F1N21P are concyclic on the circles Ki(i = 1, 4) [blue]
(Theorem 11). The centers Ci(i = 1, 4) of the circles Ki are the vertices of a rectangle,
whose sides [violet] parallel the tangent and normal to the ellipse H at P (Theorem 12).

Corollary 4. [Figure 4] The normal (1.7) to the ellipse H at P and the lines T131F1 (3.3)
and T112F2 (3.6) concur in the point N22 (3.1), which belongs to the circle Φ2 (1.13).

The normal (1.7) to the ellipse H at P and the lines T131F2 (3.5) and T112F1 (3.4) concur in
the point N21 (3.2), which belongs to the circle Φ2 (1.13).

The tangents to the ellipse H at P (1.4) and at the vertex V3(−a, 0) and the lines N22F1 (3.3)
and N21F2 (3.5) concur in the point T131 (2.1), which belongs to the circle Φ1 (1.12).

The tangents to the ellipse H at P (1.4) and at the vertex V1(a, 0) and the lines N21F1 (3.4)
and N22F2 (3.6) concur in the point T112 (2.2), which belongs to the circle Φ1 (1.12).

Since the lines T131F1N22 (3.3) and T112N21F1 (3.4) meet at the focus F1, both triangles
F1N21T131 and F1N22T112 are right, the point F1 being the common vertex of their right angles
and the sides opposite to F1 � namely, N21T131 and N22T112 � being their hypotenuses. By
similar reasoning, we may achieve the conclusion that the segments N21T112 and N22T131

are the hypotenuses of as many right triangles sharing the vertex F2. Moreover, the same
segments N21T131, N22T112, N21T112 and N22T131 are the hypotenuses of a second set of four
right triangles sharing the point P as the common vertex of their right angles, whilst their
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catheti are segments of the tangent and normal to H at P . Accordingly, if four circles Ki

(i = 1, 4) are constructed on the afore mentioned segments as diameters, each one of such
circles passes through P and the focus non collinear with the diameter. Here, for each segment
assumed as diameter, the center is given:

midpoint of T131N22: C1

(
−a+ c cos ε

2
;
b2(1 + cos ε)− c(a+ c) sin2 ε

2b sin ε

)
, (3.7)

midpoint of T112N22: C2

(
a− c cos ε

2
;
b2(1− cos ε)− c(a+ c) sin2 ε

2b sin ε

)
, (3.8)

midpoint of T112N21: C3

(
a+ c cos ε

2
;
b2(1− cos ε) + c(a− c) sin2 ε

2b sin ε

)
, (3.9)

midpoint of T131N21: C4

(
−a+ c cos ε

2
;
b2(1 + cos ε) + c(a− c) sin2 ε

2b sin ε

)
. (3.10)

Which angles form the radii of the four circles Ki(i = 1, 4) at their common point P ? Here I
give the respective slopes mC1P and mC3P of the radii through P of the circles K1 and K3:

mC1P =
2b2 sin2 ε− b2(1 + cos ε) + c(a+ c) sin2 ε

(2a cos ε+ a+ c cos ε)b sin ε
,

mC3P =
2b2 sin2 ε− b2(1− cos ε)− c(a− c) sin2 ε

(2a cos ε− a− c cos ε)b sin ε
.

Few manipulations allow us to write the product of such slopes as

mC1PmC3P =
−b2 cos2 ε+ 2a cos ε(c− a cos ε) + a2 sin2 ε

−a2 sin2 ε+ 2a cos ε(−c+ a cos ε) + b2 cos2 ε
= −1.

This means that the circles K1 and K3 meet orthogonally. In the same way, we can see that
the circles K2 and K4 orthogonally meet, too. We may summarize these �ndings as follows:

Theorem 11. [Figure 4] Let the circles K1, K2, K3 and K4 be constructed on the segments
T131N22, T112N22, T112N21 and T131N21 as diameters, respectively. Each circle passes through
the point P and through the focus non collinear with the segment taken as diameter. The
circles K1 and K3, as well as the circles K2 and K4, are two couples of orthogonal circles.

Moreover, as it is easy to check with a bit of algebra, the four midpoints C1 (3.7) through
C4 (3.10) possess the properties described by the next statement:

Theorem 12. [Figure 4] The midpoints C1 (3.7), C2 (3.8), C3 (3.9) and C4 (3.10) of the
segments T131N22, T112N22, T112N21 and T131N21, respectively, are the vertices of a rectangle
whose sides C1C2 and C3C4 are parallel to the tangent to the ellipse at P whilst the sides
C1C4 and C3C2 are parallel to the normal.
The same points are concyclic on the circle KΣ (2.18), which is constructed on the segment
of the ellipse minor axis intercepted by the tangent and normal to the ellipse at P .

The center of the circle KΣ (2.18) is the common midpoint of the segments C1C3 and
C2C4. These segments are, therefore, diameters of KΣ. This result implies, in turn, that the
triangles whose vertices are the points Ci(i = 1, 4) taken three at a time are right, because each
of them is inscribed in a semicircle. The lines C1P and C3P are orthogonal because they are
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inscribed in a semicircle, too. Since these lines are radii of the circles K1 and K2, respectively,
such circles are orthogonal to each other. In this way we �nd again the orthogonality of the
circles K1 and K3 and of K2 and K4.

In 2007, the author introduced in [3] the following circle K (Figure 5), taking as diameter
the segment TyTx of tangent to the ellipse H at P intercepted by the axes,

(
x− a

2 cos ε

)2

+

(
y − b

2 sin ε

)2

=
( a

2 cos ε

)2

+

(
b

2 sin ε

)2

. (3.11)

The circle K (3.11) was shown to pass through many special points, two of them being the
intersections E (1.10) and I (1.11) of the normal (1.7) to the ellipse H at P with the eccentric
(1.2) and the symm-eccentric line (1.3) of P , respectively. A further paper [6] introduced the
concept of symbiotic conics : taken a point P on the ellipse H (1.1), the symbiotic ellipse HΣ

of the ellipse H about P is an ellipse having P as center and passing through the center O of
the ellipse H. The axes of HΣ are the tangent and normal to H at P ; the tangent and normal
to HΣ at O are the y- and x-axes of H, respectively. The equation of the ellipse HΣ follows:

x2 a
2 − b2 cos2 ε

a2 cos2 ε
− 2xy

b

a
tan ε− 2x

c2

a cos ε
+ y2 = 0. (3.12)

The foci of the ellipse HΣ are the points E (1.10) and I (1.11) ([6, Theorem 3.1]). We can
say that the point E, I and O are, for the ellipse HΣ, objects homologous to the points F1,
F2 and P . On the other hand, the symbiotic ellipse of HΣ about O is the ellipse H.

Remembering that the circle KΣ (2.18) is, by de�nition, the circle constructed taking as
diameter the segment TyNy of the y-axis intercepted by the tangent and normal to H at P , the
introduction of the symbiotic ellipse HΣ allows to rede�ne such circle KΣ (2.18) as the circle
constructed taking as diameter the segment TyNy of the tangent to the ellipse HΣ intercepted
by the axes of HΣ. Since this new de�nition faithfully traces the de�nition of the circle K,
we can conclude that the circle KΣ is homologous to the circle K (3.11). In [6], it was shown
that the circles homologous to Φ1, Φ2 and Φ3 are the circles Φ1, Φ3 and Φ2, respectively.
Objects which correspond to themselves, as the circle Φ1, are said auto homologous. Now, we
can determine objects homologous to the newly introduced points, lines and circles.

From Theorem 1, we know that the points T131 (2.1) and T112 (2.2) are the intersections of
the tangent to H at P with the circle Φ1, where they are diametrical opposite. More precisely,
T112 lies on the same side as P , with respect to the ellipse H minor axis, at variance with T131;
the former will be said homolateral and the latter contralateral. Accordingly, as the circle Φ1

is auto homologous, we may conclude that the points homologous to T131 and T112 are the
intersections of the y-axis [namely, the tangent to HΣ at O] with the circle Φ1; such points
are the following Φ1d (3.13) and Φ1p (3.14), respectively:

Φ1d

(
0;

b+
√
a2 sin2 ε+ b2 cos2 ε

sin ε

)
, (3.13) Φ1p

(
0;

b−
√
a2 sin2 ε+ b2 cos2 ε

sin ε

)
. (3.14)

The points Φ1d (3.13) and Φ1p (3.14) are the Φ1 points lying at maximal and minimal distance
to the H center O. They will be referred to as the Φ1 distal and proximal points, respectively.
Quite analogously, the points T131 and T112 are the Φ1 points lying at maximal and minimal
distance to the HΣ center P .
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Figure 5: The circles Φi(i = 1, 3) are represented by red, dashed lines; their points
lying at maximal and minimal distance to the origin are denoted by Φid and Φip, re-
spectively. The symbiotic ellipse HΣ (3.12) [magenta] is constructed about the points E
and I as foci. The points forming the triplets Φ1dEΦ3d, Φ1pΦ3pE, Φ1dΦ3pI and Φ1pIΦ3d

are collinear [red lines] (Theorem 13). The points forming the quadruplets Φ1dOIΦ3d,
Φ1pΦ3dEO, Φ1pIΦ3pO and Φ1dOΦ3pE are concyclic on the circles K ′

i(i = 1, 4) [blue]
(Theorem 14). The centers C ′

i(i = 1, 4) of the circles K ′
i are the vertices of a rectangle

whose sides (violet) parallel the x- and y-axes; the same points C ′
i are concyclic with

E and I, Ty and Tx and the midpoint CΨ of the chord Ψ1Ψ2 in the circle K [green]
(Theorem 15).

The points N22 (3.1) and N21 (3.2) are the intersections of the normal (1.7) to H at P
with the circle Φ2. Accordingly, they correspond to the intersections of the normal to HΣ

at O [namely, the x-axis] with the circle Φ3 [the circles Φ2 and Φ3 are homologous to each
other]. Precisely, as N22 and N21 are the farther and closer to P , their homologous points are
the following Φ3d and Φ3p, namely the Φ3 distal and proximal points, respectively:

Φ3d

(
a+
√
a2 sin2 ε+ b2 cos2 ε

cos ε
; 0

)
(3.15) Φ3p

(
a−
√
a2 sin2 ε+ b2 cos2 ε

cos ε
; 0

)
(3.16)

We may conclude by saying that the points E (1.10), I (1.11), Φ1d (3.13), Φ1p (3.14), Φ3d

(3.15) and Φ3p (3.16) are homologous to the H foci F1 and F2, the points T131 (2.1), T112
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(2.2), N22 (3.1) and N21 (3.2) and viceversa, respectively. In other words, when dealing with
the ellipse H and its point P , we regard the points E and I as the intersections of the normal
to H at P with the eccentric and symm-eccentric line. If we change our perspective, dealing
with the ellipse HΣ and its point O, we regard the points E and I as the foci of HΣ.

The fruit of this approach is that, from a given statement involving a special set of
geometrical objects, we may generate a twin statement involving the set of the homologous
objects. In many cases, the new statement, far from being a trivial duplicate of the previous
statement, reveals new, worth mentioning facts.

The following Theorem 13 is an example of this approach; it is but the Theorem 10,
invoked for the objects homologous to those mentioned in the original statement.

Theorem 13. [Figure 5] The point E (1.10) is collinear

1. with the points Φ1d (3.13) and Φ3d (3.15) on the line

Φ1dEΦ3d : y =
b+
√
a2 sin2 ε+ b2 cos2 ε

sin ε
− x b+

√
a2 sin2 ε+ b2 cos2 ε

a+
√
a2 sin2 ε+ b2 cos2 ε

cot ε, (3.17)

2. with the points Φ1p (3.14) and Φ3p (3.16) on the line

Φ1pΦ3pE : y =
b−
√
a2 sin2 ε+ b2 cos2 ε

sin ε
− x b−

√
a2 sin2 ε+ b2 cos2 ε

a−
√
a2 sin2 ε+ b2 cos2 ε

cot ε. (3.18)

The lines Φ1dEΦ3d (3.17) and Φ1pΦ3pE (3.18) meet orthogonally at E.

The point I (1.11) is collinear

1. with the points Φ1d (3.13) and Φ3p (3.16) on the line

Φ1dΦ3pI : y =
b+
√
a2 sin2 ε+ b2 cos2 ε

sin ε
− x b+

√
a2 sin2 ε+ b2 cos2 ε

a−
√
a2 sin2 ε+ b2 cos2 ε

cot ε, (3.19)

2. with the points Φ1p (3.14) and Φ3d (3.15) on the line

Φ1pIΦ3d : y =
b−
√
a2 sin2 ε+ b2 cos2 ε

sin ε
− x b−

√
a2 sin2 ε+ b2 cos2 ε

a+
√
a2 sin2 ε+ b2 cos2 ε

cot ε. (3.20)

The lines Φ1dΦ3pI (3.19) and Φ1pIΦ3d (3.20) meet orthogonally at I.

Now, if we construct four circles K ′
i(i = 1, 4) on the segments Φ1dΦ3d, Φ1pΦ3d, Φ1pΦ3p and

Φ1dΦ3p as diameters, it su�ces that we invoke Theorem 11 to state the following:

Theorem 14. [Figure 5] Let the circles K ′
i (i = 1, 4) be constructed taking as diameters the

segments Φ1dΦ3d, Φ1pΦ3d, Φ1pΦ3p and Φ1dΦ3p, respectively.

1. The points Φ1d, O, I and Φ3d are concyclic on the following circle K ′
1 about the midpoint

C ′
1 between Φ1d and Φ3d,(
x−

a+
√

(asbc)

2 cos ε

)2

+

(
y −

b+
√

(asbc)

2 sin ε

)2

=

(
a+

√
(asbc)

2 cos ε

)2

+

(
b+

√
(asbc)

2 sin ε

)2

. (3.21)
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2. The points Φ1p, Φ3d, E and O are concyclic on the following circle K ′
2 about the midpoint

C ′
2 between the points Φ1p and Φ3d:(
x−

a+
√

(asbc)

2 cos ε

)2

+

(
y −

b−
√
(asbc)

2 sin ε

)2

=

(
a+

√
(asbc)

2 cos ε

)2

+

(
b−

√
(asbc)

2 sin ε

)2

. (3.22)

3. The points Φ1p, O, Φ3p and I are concyclic on the following circle K ′
3 about the midpoint

C ′
3 between Φ1p and Φ3p:(
x−

a−
√

(asbc)

2 cos ε

)2

+

(
y −

b−
√
(asbc)

2 sin ε

)2

=

(
a−

√
(asbc)

2 cos ε

)2

+

(
b−

√
(asbc)

2 sin ε

)2

. (3.23)

4. The points Φ1d, O, Φ3p and E are concyclic on the following circle K ′
4 about the midpoint

C ′
4 between the points Φ1d and Φ3p:(
x−

a−
√

(asbc)

2 cos ε

)2

+

(
y −

b+
√
(asbc)

2 sin ε

)2

=

(
a−

√
(asbc)

2 cos ε

)2

+

(
b+

√
(asbc)

2 sin ε

)2

. (3.24)

The circles K ′
1 (3.21) and K ′

3 (3.23) are orthogonal, as well as the circles K ′
2 (3.24) and K ′

4

(3.22). The centers C ′
i of the circles K ′

i (i = 1, 4) belong to the circle K (3.11).

Invoking Theorem 12 for the points homologous to Ci (i = 1, 4), we may state the follow-
ing:

Theorem 15. [Figure 5] The midpoints C ′
1, C

′
2, C

′
3, and C

′
4 of the segments Φ1dΦ3d, Φ1pΦ3d,

Φ1pΦ3p and Φ1dΦ3p, respectively, are the vertices of a rectangle whose sides C ′
1C

′
2 and C ′

3C
′
4

are parallel to the y-axis [that is the tangent to the ellipse HΣ at O] whilst the sides C ′
1C

′
4 and

C ′
2C

′
3 are parallel to the x-axis [that is the normal to the ellipse HΣ at O].

The same points are concyclic on the circle K (3.11), which is constructed on the segment of
the tangent to the ellipse H intercepted by the x- and y-axes.

The points Ty (1.6), Ny (1.9), Φ3p (3.16) and Φ3d (3.15) are linked by six lines, two of
which are the x- and y-axes; the remaining four lines are the following:

TyΦ3d : y =
b

sin ε
−
b
(
a−
√
a2 sin2 ε+ b2 cos2 ε

)
c2 sin ε cos ε

x , (3.25)

NyΦ3p : y = −c
2 sin ε

b
+

sin ε
(
a+
√
a2 sin2 ε+ b2 cos2 ε

)
b cos ε

x , (3.26)

NyΦ3d : y = −c
2 sin ε

b
+

c2 sin ε cos ε

b
(
a+
√
a2 sin2 ε+ b2 cos2 ε

) x , (3.27)

TyΦ3p : y =
b

sin ε
− b cos ε

sin ε
(
a−
√
a2 sin2 ε+ b2 cos2 ε

) x . (3.28)

The lines TyΦ3d (3.25) and NyΦ3p (3.26) meet at the following point P12 (the notation (asbc) =
a2 sin2 ε+ b2 cos2 ε is used):

P12

(
c2 cos ε

√
(asbc)

a
√

(asbc) + c2 sin2 ε− b2
;

2bc2 sin ε

a
√

(asbc) + c2 sin2 ε− b2

)
. (3.29)
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The lines NyΦ3d (3.27) and TyΦ3p (3.28) meet at the following point P13,

P13

 c2 cos ε
√

(asbc)

a
√

(asbc)− c2 sin2 ε+ b2
;

2b sin ε
(√

(asbc)− a
)

(1 + sin2 ε)
√

(asbc)− 2a sin2 ε

 . (3.30)

The following holds:

Theorem 16. The lines TyΦ3d (3.25) and NyΦ3p (3.26) are orthogonal, and their common
point P12 (3.29) belongs to the circles Φ3 (1.14) and KΣ (2.18).

The lines NyΦ3d (3.27) and TyΦ3p (3.28) are orthogonal, and their common point P13 (3.30)
belongs to the circles Φ3 (1.14) and KΣ (2.18).

The orthogonality of the lines TyΦ3d (3.25) and NyΦ3p (3.26) clearly appears from the
product of their slopes,

mTyΦ3d
mNyΦ3p = − b cos ε

sin ε
(
a+

√
(asbc)

) c2 sin ε cos ε

b
(
a−

√
(asbc)

) = − c2 cos2 ε

a2 − a2 sin2 ε− b2 cos2 ε
= −1,

and the same holds for the lines NyΦ3d (3.27) and TyΦ3p (3.28),

mNyΦ3d
mTyΦ3p = − c2 sin ε cos ε

b
(
a+

√
(asbc)

) b cos ε

sin ε
(
a−

√
(asbc)

) = − c2 cos2 ε

a2 − a2 sin2 ε− b2 cos2 ε
= −1.

To demonstrate that the point P12 (3.29) belongs to the circle KΣ (2.18), we will replace the
coordinates (3.29) in the l.h.s. of (2.18). Making some obvious manipulations, we get

c2(asbc) cos2 ε+ 4b2c2 sin2 ε− 2
(
b2 − c2 sin2 ε

) (
a
√

(asbc) + c2 sin2 ε− b2
)

−
(
a
√

(asbc) + c2 sin2 ε− b2
)2

.

Afterwards, further manipulations lead us to conclude that such expression identically van-
ishes and that P12 belongs, therefore, to KΣ.

Quite similarly, to demonstrate that the point P12 (3.29) belongs to the circle Φ3 (1.14),
too, we will replace the coordinates (3.29) in the l.h.s. of (1.14), getting the following:

c4(asbc) cos2 ε− 2ac2
√

(asbc)
(
a
√

(asbc) + c2 sin2 ε− b2
)

+ 4b2c4 sin2 ε

+ c2
(
a
√

(asbc) + c2 sin2 ε− b2
)2

.

A bit of manipulations is enough to show that this expression vanishes, too. This proves that
P12 belongs to the circle Φ3, too. Analogously, one proves that the point P13 (3.30) belongs
to the circles KΣ (2.18) and Φ3 (1.14).

The new �ndings regarding the circle KΣ � namely, the Lemma 3, the Theorem 12 and
part of the Theorem 16 � may be summarized in the following statement:

Theorem 17. [The 13-Point Circle] Let the following points be considered:

(i) the point P3 (2.25) [where the Φ2 diameter through T212 (2.23) touches the ellipse H];

(ii) the point CΨ (2.26) [the midpoint between the points Ψ1 (1.15) and Ψ2 (1.16), where
the circles Φ2 and Φ2 meet];
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(iii) the midpoints C1 (3.7), C3 (3.9), C4 (3.10) and C2 (3.8) of the segments T131N22, T112N21,
T131N21 and T112N22, respectively;

(iv) the point P12 (3.29) [where the lines TyΦ3d (3.25) and NyΦ3p (3.26) meet];

(v) the point P13 (3.30) [where the lines NyΦ3d (3.27) and TyΦ3p (3.28) meet].

The afore mentioned eight points are concyclic with the ellipse foci, the point P and the
y-intercepts of the normal and tangent to H at P in the circle Σ (2.18).

Invoking Theorem 16 for the homologous objects, the following results:

Theorem 18. The lines TyN22 and TxN21 are orthogonal and their common point belongs
to the circles Φ2 (1.13) and K (3.11). The lines TxN22 and TyN21 are orthogonal and their
common point belongs to the circles Φ2 (1.13) and K (3.11).

In [3, 4] the author has introduced the symm-normal line, whose equation is

y = b sin ε− a

b
tan ε (x− a cos ε) . (3.31)

The symm-normal passes through P and shares two points with Monge's circle (x2 + y2 =
a2 + b2). Each one of these points can be regarded as inverse of itself with respect to Monge's
circle. Moreover, such points have been recognized [3] to belong to the circle K (3.11), too.
The inversion of P with respect to Monge's circle yields the point

IP :M

(
a2 + b2

a2 cos2 ε+ b2 sin2 ε
a cos ε;

a2 + b2

a2 cos2 ε+ b2 sin2 ε
b sin ε;

)
which belongs ([4, Theorem 1]) to the circle K (3.11), too. Having found three points which
belong to the circle K and are inverse � w.r.t. Monge's circle � of as many points belonging
to the symm-normal, we may state the following:

Theorem 19. The circle K (3.11) is the inverse curve of the symm-normal (3.31) with respect
to Monge's circle.
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