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Abstra
t. Let C = (d0, . . . , dn) be an admissible degree sequen
e for a tri-

angulated polyhedron Pn with n + 1 verti
es. We give ne
essary and su�
ient


onditions on its Eu
lidean parameters (angles, lenghts, . . . ) for beeing realized

in the usual 3D-spa
e.
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1. Introdu
tion

In the following, we will deal with polyedra of genus 0 in the usual 3D-spa
e. In order to

be buildable, a triangulated polyhedron Pn with n + 1 verti
es (n ≥ 3) must satisfy some

ne
essary 
onditions. First of all, its degree sequen
e, depending on the numbering of the

verti
es, must be �admissible� (
f. [4℄), whi
h is a 
ombinatorial 
ondition. On the other

hand, the lenghts of the edges, the angles of the fa
es (�internal angles�) and between the

fa
es (�external angles�) must ful�ll some Eu
lidean requirements. We �x now the notations.

2. Combinatorial 
onditions

Before to speak about degree sequen
e, we have to number the verti
es. We do it in the

following way (
f. [4℄). We start with some (positively oriented) fa
e of a polyhedron with

n + 1 verti
es Pn and will denote it by (0, 1, 2). By indu
tion, we 
an number the adja
ent

verti
es of 0: if i is still found, then i + 1 is the point su
h that (0, i − 1, i) is adja
ent to

(0, i, i+1), for i = 2 to d0−1. Of 
ourse, all the triangles are positively oriented. Then, we 
an


ontinue this pro
ess with the vertex 1 and so on. The 
orresponding degree sequen
e is the

list C = (d0, . . . , dn) if Pn has n+ 1 verti
es, where di = deg(i) for ea
h i ∈ [0, n]. Obviously,

this degree sequen
e 
hanges when you start from another triangle, but they all represent

the same triangulation (
f. [3, 4, 6℄ for the S
hlegel diagram) and are 
alled �equivalent�.

Some algorithm allows us (see [4℄) to �nd all these equivalent 
lasses by indu
tion, but its


omplexity is exponential (see [4, 7℄). So, it is more e�
ient to put the results in a database:
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DATABASE polyhedra.

This base will 
ontain the following tables.

* TABLE number_
lasses

id number of verti
es number of 
lasses

1 04 1
2 05 1
3 06 2
4 07 6
· · · · · · · · ·

whi
h indi
ates the number of equivalent 
lasses.

* TABLE degree_sequen
e_Pn (example for n=5)

id number of the 
lass degree sequen
e

1 1 (3, 5, 5, 4, 4, 3)
2 1 (3, 4, 5, 5, 4, 3)
3 1 (3, 5, 4, 5, 3, 4)
4 1 (4, 4, 5, 3, 5, 3)
· · · · · · · · ·

whi
h gives the degree sequen
es of ea
h 
lass of Pn.

* TABLE triangulation_Pn (example for n=5)

id number of the 
lass triangulation

1 1 (0, 1, 2)
2 1 (0, 1, 3)
3 1 (0, 1, 4)
4 1 (0, 1, 5)
5 1 (0, 3, 2)
6 1 (1, 2, 5)
7 1 (2, 3, 4)
8 1 (2, 4, 5)
9 2 (0, 1, 2)
· · · · · · · · ·

where one representative triangulation is shown for ea
h equivalent 
lass.

As a result, we are able to respond qui
kly and e�
iently to the following questions:

• What is the number of �di�erent� polyhedra with n + 1 verti
es?

• Whi
h degree sequen
es are possible for a �xed number of verti
es?

• If a degree sequen
e C is admissible, it is under whi
h triangulation? Here, we have

just indi
ated a triangulation per 
lass, but it is easy to 
ompute the good one from it

by a renumbering.
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3. Eu
lidean 
onditions

Our interest here is the a
tual 
onstru
tion of the polyhedra Pn. We will suppose that

the verti
es are numbered and that the 
orresponding degree sequen
e C is admissible, i.e.,

belong to the TABLE degree_sequen
e_Pn of the DATABASE polyhedra. Moreover, we have

at our disposal the triangulation T obtained from the TABLE triangulation_Pn, up to some

renumbering. We will 
all it a 
ombinatorial polyhedron.

Thus, we know all the edges [p, q] of Pn, and for ea
h su
h edge the (positively oriented)

triangles (p, r, q) and (p, q, s) adja
ent to it. The needed Eu
lidean parameters for the 
on-

stru
tion will be those seen in the Se
tion 1, to whi
h must be added the lo
al geometry

near ea
h vertex. Indeed, re
all that (
f. [5℄) the internal and external angles αi and δi at a

vertex p of degree d (i = 1, . . . , d) must verify some equations for the lo
al 
onstru
tibility.

In fa
t, we 
an 
ompute some of these parameters by the use of the quaternioni
 algebra in

the following way.

p
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fd−2

fd−1

fd

α2 α3
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αd−1
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δ1
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Figure 1: Lo
al polyhedron S(p)

Denote by fi the fa
es 
ontaining p, δi =ÿ�fi−1, fi the external angles, and αi the internal

angles for i = 1, . . . , d. The unit sphere of 
entre p interse
ts S(p) in a union of great 
ir
les

˚�qi, qi+1, and for q1 = (0, 1, 0, 0), q2 = (0, cos(α1), sin(α1), 0) in the 
anoni
al base of the spa
e

H of quaternions, we have for i = 1, . . . , d− 1 (see [5℄):

(R) : qi+1 =
sin(αi − αi+1)qi + sin(αi+1)Qiqi−1Q

∗

i

sin(αi)
with Qi = cos

(
δi
2

)
+ sin

(
δi
2

)
qi.

This formula permits us to 
ompute qi+1 by knowing the values of qi−1, qi, αi, αi+1, and δi.

Here Q∗ = (A,−B,−C,−D) refers to the 
onjugate of Q = (A,B,C,D). The following result
gives us the last Eu
lidean values δd, α1 and δ1 of the lo
al polyhedron.
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Proposition 1. The lo
al polyhedron S(p) is 
onstru
tible if and only if

(Σd)





α1 = arccos

(
qd q

∗

1 + q1 q
∗

d

2

)
,

cos(δd) + sin(δd)qd =
cos(α1).(cos(αd) + qdqd−1) + q1.(cos(αd−1)qd − qd−1)

sin(αd) sin(α1)
,

cos(δ1) + sin(δ1)q1 =
cos(α2).(cos(α1) + q1qd) + q2.(cos(αd)q1 − qd)

sin(α1) sin(α2)
.

So, for a vertex of degree d, we have d−1 parameters for the internal angles α1, . . . , αd−1,

d− 2 parameters for the external angles δ1, . . . , δd−2, and d parameters for the lenghts of the

edges, that is 3d− 3 parameters.

Theorem 1. Let Pn be a 
ombinatorial polyhedron and T one of his representative triangu-

lation. Then it is 
onstru
tible if and only if the following 
onstraints (En) are respe
ted:

1. (�fa
es� 
ondition): for ea
h triangle (p, r, q) in T , ÷p, r, q +÷r, q, p+÷q, p, r = π.

2. (�edges� 
ondition): for ea
h edge [p, q] in T , |p, q| = |q, p| and ‘q, p = 2π −‘p, q.
3. (�verti
es� 
ondition): for ea
h vertex of degree d, the 
onditions (Σd) must be veri�ed

for the internal and external angles.

Proof. These 
onditions are obviously ne
essary. We do the 
onverse by indu
tion on n. First,

if n = 3, then Pn is a tetrahedron, so any star S(p), p = 0, . . . , 3, determines entirely the

polyhedron, and the theorem is true in this 
ase. Next, suppose it is also true until a rank

n ≥ 3 and 
onsider a polyhedron Pn+1. Let be d = min {di | i = 0, . . . , n+ 1} and suppose

without loss of generality that d0 = d.

If d = 3, then the lo
al polyhedron S(0) is a tetrahedron (0, p, q, r). If we remove the vertex 0
and the edges [0, p], [0, q], [0, r], then we obtain a 
ombinatorial polyhedron Pn whi
h satis�es

the fa
es and the edges 
onditions, be
ause (p, q, r) is a fa
e of the tetrahedron. Moreover,

the verti
es 
onditions remain also true for p, q, r in Pn: the new external (oriented) angles

are 
omputed by deletion of the tetrahedron's fa
es. We dedu
e, by applying the indu
tion

hypothesis, that Pn is 
onstru
tible. It remains to glue the tetrahedron to it, whi
h proves

that Pn+1 is also 
onstru
tible.

We suppose now that the result is true up to a 
ertain d ≥ 3 and 
onsider a polyhedron Pn+1

with minimal degree d + 1 = d0. We note p, q, r three 
onse
utive verti
es adja
ents to 0.
Re
all that a ��ip� 
onsists of ex
hanging the diagonals of a quadrilateral (see, for instan
e,

[3, 6, 9℄). We 
an argue like in the 
ase d = 3, be
ause we see that (0, p, q) and (0, q, r) are
two fa
es of a tetrahedron with �xed parameters. Indeed, the internal and external angles in

0 permit us to 
ompute the lenght |p, r|, as well as the internal angle

÷p, 0, r, and we obtain

a new polyhedron P ′

n+1 with n + 1 verti
es but of minimal degree d, thanks to the �ip. The

indu
tion hypothesis tells us that P ′

n+1 is 
onstru
tible, and it su�
es to apply the same �ip

for 
oming ba
k to our original polyhedron. This proves the theorem.

We also refer the reader to Alexandrov's famous theorem that ea
h 
onvex metri


de�nes a 
onvex polyhedron uniquely [1℄. There is a 
onstru
tive (algorithmi
) proof by A.I.

Bobenko and I. Izmestiev in [2℄. In Theorem 1, the 
onvexity 
ondition is satis�ed when

the internal angles are between 0 rad and π rad.
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Figure 2: Diagonal �ip in a quadrilateral

4. Filling algorithm

We re
all that we are dealing with a 
ombinatori
al polyhedron Pn with n + 1 verti
es. Let

C be an admissible degree sequen
e and T the 
orresponding triangulation. The 
onstraints

of Theorem 1 are in pra
ti
e di�
ult to verify. Our purpose is to realize these 
onditions

along the way, be
ause the values of the parameters in some vertex would interfere with those

of the adja
ent points. For instan
e, the internal angle at some vertex and the lenghts of

the in
ident edges will �x automati
ally the three internal angles of the fa
es 
ontaining it.

Of 
ourse, this should be done in a

ordan
e with the 
onditions of Theorem 1. In fa
t, we

will pro
ess star by star, and in ea
h star, triangle by triangle, thanks to the quaternioni


algebra. Our aim is to 
ompute the quaternions q0, . . . , qn assigned to the verti
es 0, . . . , n
of the polyhedron, with the following initialization: q0 = (0, 0, 0, 0), q1 = (0, 1, 0, 0) and

q2 = (0, cos(÷1, 0, 2), sin(÷1, 0, 2), 0). The Eu
lidean values will then be 
omputed easily.

We �rst 
onstru
t S(0) by setting the values of

÷2, 0, 3, . . . , ¤�d− 1, 0, d, as well as

‘0, 2,

. . . ,

ÿ�0, d− 1 and |0, 1|, . . . , |0, d|. The formula (R) leads to the values of q3,. . . , qd. Here,

d = d0 = deg(0). Next, suppose that S(p) has already been 
onstru
ted for a vertex 0 ≤ p < n;

we want to 
onstru
t S(p + 1). For this purpose, we write the adja
ent points of p + 1 in a

list: (r1, . . . , rd) where d = dp+1 = deg(p + 1). This list is positively oriented around p + 1,
this means that for ea
h i ∈ [1, p−1], (rp+1, ri, ri+1) is adja
ent to (rp+1, ri+1, ri+2). Moreover,

r1 will be the earliest already 
omputed, or any point in the list if all are known! Now, we

take qp+1 as the origin of our quaternioni
 algebra, and we 
ompute q′1 = qr1 − qp+1, . . . ,

q′d = qrd − qp+1 as in the �rst 
ase. We should just pay attention to the quaternions already


omputed, that is: if qrj is known, then we go to the next and so on. As the internal angles,

external angles, and lengths will be 
al
ulated with these quaternions, we have:

Theorem 2. The �lling algorithm satis�es the 
onditions of Theorem 1.

5. Numeri
al examples

Let us write more pre
isely the former algorithm. We have not detailed the fun
tions used in

the Python program, we prefer instead illustrating the ideas on some polyhedron P7 with 8
verti
es.
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5.1. Choi
e of the degree sequen
e

We 
hoose some degree sequen
e C = [d0, . . . , dn] from the TABLE degree_sequen
e_Pn of

the DATABASE polyhedra. Here, we have 
hosen C = [6, 4, 4, 4, 5, 3, 5, 5].

5.2. Corresponding triangulation

This degree sequen
e belongs to some 
lass, namely a 
ombinatorial polyhedron, whose one

reprensentative triangulation T 
an be found in the TABLE triangulation_Pn. These tri-

angulation should be eventually reordered, and we will name 0, 1, . . . , n the ordered points


orresponding to the degree sequen
e C. Here we have

T = [[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 4, 5], [0, 5, 6], [0, 6, 1], [1, 6, 7], [1, 7, 2], [2, 7, 3], [3, 7, 4], [4, 7, 6], [4, 6, 5]].

We 
an even represent this polyhedron in a S
hlegel diagram, that is the triangulation viewed through

one of its triangles, here [0, 1, 2].
0

1 2

3
4

5

6
7

Figure 3: S
hlegel diagram of the polyhedron P7

Pay attention to the fa
t that only the �rst triangle [0, 1, 2] is positively oriented on this diagram.

5.3. Computation of the stars

The ordered stars S(0), . . . , S(n) must be known in view of their treatement in the next subse
tion.

The �rst star is S[0℄=[[0,1,2℄,[0,2,3℄,...,[0,d,1℄℄ (d = d0).

We 
onstru
t now the ordered stars S(p) for p = 1, . . . , n. More pre
isely, we need to 
ompute

the stars S′(0), . . . , S′(n) of the triangles not yet 
omputed. This will be done with the fun
tion

star(T) whi
h returns the list [S,S'℄ from the triangulation T. In our example, we have:

S[0℄=[[0,1,2℄,[0,2,3℄,[0,3,4℄,[0,4,5℄,[0,5,6℄,[0,6,1℄℄

S[1℄=[[[1, 2, 0℄, [1, 0, 6℄, [1, 6, 7℄, [1, 7, 2℄℄℄

S[2℄=[[2, 3, 0℄, [2, 0, 1℄, [2, 1, 7℄, [2, 7, 3℄℄

S[3℄=[[3, 4, 0℄, [3, 0, 2℄, [3, 2, 7℄, [3, 7, 4℄℄

S[4℄=[[4, 5, 0℄, [4, 0, 3℄, [4, 3, 7℄, [4, 7, 6℄, [4, 6, 5℄℄

S[5℄=[[5, 0, 4℄, [5, 4, 6℄, [5, 6, 0℄℄

S[6℄=[[6, 0, 5℄, [6, 5, 4℄, [6, 4, 7℄, [6, 7, 1℄, [6, 1, 0℄℄

S[7℄=[[7, 1, 6℄, [7, 6, 4℄, [7, 4, 3℄, [7, 3, 2℄, [7, 2, 1℄℄

whereas:



P. Honvault: Eu
lidean Realizations of Triangulated Polyhedra 163

S'[0℄=[[0,1,2℄,[0,2,3℄,[0,3,4℄,[0,4,5℄,[0,5,6℄,[0,6,1℄℄

S'[1℄=[[1, 6, 7℄, [1, 7, 2℄℄

S'[2℄=[[2, 7, 3℄℄

S'[3℄=[[3, 7, 4℄℄

S'[4℄=[[4, 7, 6℄, [4, 6, 5℄℄

S'[5℄=[℄

S'[6℄=[℄

S'[7℄=[℄

5.4. Eu
lidean values

We browse the stars S′(0), . . . , S′(n) and, in ea
h star, the ordered list of triangles, in order to


ompute the representative quaternions q0, . . . , qn of the verti
es 0, . . . , n. These will be stored in the

array Q=zeros((4,n+1)) initialized to 0, where for i = 0 to n: qi = Q[:,i℄=[Q[0,i℄,...,Q[3,i℄℄

has four 
oordinates. The Eu
lidean values are put in the array V=empty((3,6*(n-1))) where for

j = 0, . . . , 6(n− 1), V[:,j℄ represents the Eu
lidean values of the jth triangle of the liste S. In fa
t,

if this triangle is

’a, b, c with vertex a, then V[0,j℄ is the external angle â, c, V[1,j℄ is the internal

angle

’b, a, c, and V[2,j℄ is the length |a, b|. We start with S(0).

5.4.1. Filling of the Eu
lidean values of S[0]

We will use the following fun
tions.

intangle(q,q'): 
omputes the non oriented angle between the ve
tors q and q′.

extangle(q,q',q''): returns the oriented angle between the fa
es (q, q′) and (q′, q′′) oriented by q′.

prod(q,q'): 
al
ulates the produ
t of the quaternions q and q′.
Moreover, the formula (R) (
f. Se
tion 3) is also applied for the lo
al 
onstru
tibility at the

vertex 0. This is a
hieved by the fun
tion

re
ur(q1,q2,beta,delta) whi
h gives the quaternion

q3 =
sin(alpha-beta).q2 + sin(beta).prod(prod(Q,q1),Q

*

)

sin(alpha)

,

where alpha = intangle(q1,q2) and Q = 
os(delta/2) + sin(delta/2).q2 . We have 
hosen to

ask the user the values of the �rst external and internal angles, but it is also possible, for instan
e,

to take random values.

def init(n,C): ####initialize star(0) for Pn with degree sequen
e C

I=array([1,0,0,0℄)

Q=zeros((4,n+1)) #array of the quaternions with Q[:,0℄=[0,0,0,0℄

Q[:,1℄=[0,1,0,0℄

V=empty((3,6*(n-1))) #array of Eu
lidean values

V[0,0℄=input("internal angle 1,0,2:")

Q[:,2℄=array([0,
os(V[0,0℄),sin(V[0,0℄),0℄)

for i in range(2,C[0℄):

V[1,i-2℄=input("external angle 0,"+str(i)+":")

V[0,i-1℄=input("internal angle"+str(i)+",0,"+str(i+1)+":")

q1=Q[:,i-1℄

q2=Q[:,i℄

beta=V[0,i-1℄

delta=V[1,i-2℄

Q[:,i+1℄=re
ur(q1,q2,beta,delta)

V[0,C[0℄-2℄=intangle(Q[:,C[0℄℄,Q[:,1℄)
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V[1,C[0℄-2℄=extangle(Q[:,C[0℄-1℄,Q[:,C[0℄℄,Q[:,1℄)

V[1,C[0℄-1℄=extangle(Q[:,C[0℄℄,Q[:,1℄,Q[:,2℄)

for i in range(C[0℄):

V[2,i℄=input("length of the edge 0,"+str(i+1)+":")

Q[:,i+1℄=V[2,i℄*Q[:,i+1℄

return [V,Q℄

In our example, we tried respe
tively

α =
π

6
≃ 0.5236 and δ = 2. arcsin(

√
3)/ cos(π/12) ≃ 2.224

for the �rst internal and external angles, as well as 1 for the lengths of the edges, and the result for

the Eu
lidean values V[:,0℄, . . . , V[:,5℄ is:

[[ 0.5236 0.5236 0.5236 0.5236 0.5236 0.5236 ℄

[ 2.224 2.224 2.224 2.224 2.224 2.224 ℄

[ 1 1 1 1 1 1℄℄

whi
h 
an be veri�ed by another te
hnique. In fa
t, for a regular lo
al polyhedron with n fa
es, the

internal angle α and the external angle δ are bound by the formula cos(π/n) = cos(α/2). sin(δ/2).

5.4.2. Filling of the Eu
lidean values of S[1], . . . , S[n]

On
e again, n, C, and T are the inputs of the program.

####################

### MAIN PROGRAM ###

####################

[V,Q℄=init(n,C)

S=star(T,n)

[S,S'℄=sorted_lists(S,C) # in the 
ase there are not sorted


ounter=C[0℄ # number of quaternions already 
omputed

length=C[0℄ # length of S[0℄

beta=0 # provisional value of V[0,℄

delta=0 # provisional value of V[1,℄

v2=0 # provisional value of V[2,℄

for i in range(1,n+1): # we are looking for the quaternions

for j in range(C[i℄): # in S[i℄ not yet found

if (S[i℄[j℄ in Sdim[i℄) and (S[i℄[j℄[2℄>
ompteur): # new


ompteur+=1 # quaternion to 
ompute

########### requested values ##########

delta=float(input('angle externe '+str(i)+','

+str(S[i℄[j℄[1℄)+': '))

beta=float(input('angle interne '+str(S[i℄[j℄[1℄)+','

+str(i)+','+str(S[i℄[j℄[2℄)+': '))

v2=float(input('longueur arete '+str(i)+','

+str(S[i℄[j℄[2℄)+': '))

##### 
al
ulus of the quaternion ######

q1=Q[:,S[i℄[j-1℄[1℄℄-Q[:,i℄

q1=(1/long_arete(q1))*q1

q2=Q[:,S[i℄[j℄[1℄℄-Q[:,i℄

q2=(1/long_arete(q2))*q2

Q[:,
ompteur℄=Q[:,i℄+v2*re
ur(q1,q2,beta,delta)
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### filling of the tabular V of Eu
lidean values ###

for j in range(C[i℄):

q1=Q[:,S[i℄[j℄[1℄℄-Q[:,i℄

q2=Q[:,S[i℄[j℄[2℄℄-Q[:,i℄

if j ==C[i℄-1:

q3=Q[:,S[i℄[0℄[2℄℄-Q[:,i℄

else:

q3=Q[:,S[i℄[j+1℄[2℄℄-Q[:,i℄

V[0,longueur+j℄=intangle(q1,q2)

V[1,longueur+j℄=extangle(q1,q2,q3)

V[2,longueur+j℄=long_arete(q2)

print(V[0:3,longueur:longueur+C[i℄℄)

longueur+=C[i℄

###########################

# END OF THE MAIN PROGRAM #

###########################

In our example, the program just ask the values of the external angle 1̂, 6, the internal angle ÷6, 1, 7,
and the length |1, 7| in order to 
ompute the last quaternion q7. Then all the Eu
lidean values are


omputed. As another veri�
ation, we have also tested this algorithm on the regular o
tahedron and

obtained the expe
ted values, that is 1.047 rd (≃ π/3) for the internal angles, and 1.9106 rd for the

external angles.

Our algorithm 
an also admit no proper realization. For instan
e, a two-fold 
overed four-sided

pyramid (by putting one star into the other so that two opposite verti
es 
oin
ide), or even two four-

fold 
overed pair of two regular triangles sharing an edge. The only limits are those of Theorem 1.
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