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Abstrat. Let C = (d0, . . . , dn) be an admissible degree sequene for a tri-

angulated polyhedron Pn with n + 1 verties. We give neessary and su�ient

onditions on its Eulidean parameters (angles, lenghts, . . . ) for beeing realized

in the usual 3D-spae.
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1. Introdution

In the following, we will deal with polyedra of genus 0 in the usual 3D-spae. In order to

be buildable, a triangulated polyhedron Pn with n + 1 verties (n ≥ 3) must satisfy some

neessary onditions. First of all, its degree sequene, depending on the numbering of the

verties, must be �admissible� (f. [4℄), whih is a ombinatorial ondition. On the other

hand, the lenghts of the edges, the angles of the faes (�internal angles�) and between the

faes (�external angles�) must ful�ll some Eulidean requirements. We �x now the notations.

2. Combinatorial onditions

Before to speak about degree sequene, we have to number the verties. We do it in the

following way (f. [4℄). We start with some (positively oriented) fae of a polyhedron with

n + 1 verties Pn and will denote it by (0, 1, 2). By indution, we an number the adjaent

verties of 0: if i is still found, then i + 1 is the point suh that (0, i − 1, i) is adjaent to

(0, i, i+1), for i = 2 to d0−1. Of ourse, all the triangles are positively oriented. Then, we an

ontinue this proess with the vertex 1 and so on. The orresponding degree sequene is the

list C = (d0, . . . , dn) if Pn has n+ 1 verties, where di = deg(i) for eah i ∈ [0, n]. Obviously,

this degree sequene hanges when you start from another triangle, but they all represent

the same triangulation (f. [3, 4, 6℄ for the Shlegel diagram) and are alled �equivalent�.

Some algorithm allows us (see [4℄) to �nd all these equivalent lasses by indution, but its

omplexity is exponential (see [4, 7℄). So, it is more e�ient to put the results in a database:
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DATABASE polyhedra.

This base will ontain the following tables.

* TABLE number_lasses

id number of verties number of lasses

1 04 1
2 05 1
3 06 2
4 07 6
· · · · · · · · ·

whih indiates the number of equivalent lasses.

* TABLE degree_sequene_Pn (example for n=5)

id number of the lass degree sequene

1 1 (3, 5, 5, 4, 4, 3)
2 1 (3, 4, 5, 5, 4, 3)
3 1 (3, 5, 4, 5, 3, 4)
4 1 (4, 4, 5, 3, 5, 3)
· · · · · · · · ·

whih gives the degree sequenes of eah lass of Pn.

* TABLE triangulation_Pn (example for n=5)

id number of the lass triangulation

1 1 (0, 1, 2)
2 1 (0, 1, 3)
3 1 (0, 1, 4)
4 1 (0, 1, 5)
5 1 (0, 3, 2)
6 1 (1, 2, 5)
7 1 (2, 3, 4)
8 1 (2, 4, 5)
9 2 (0, 1, 2)
· · · · · · · · ·

where one representative triangulation is shown for eah equivalent lass.

As a result, we are able to respond quikly and e�iently to the following questions:

• What is the number of �di�erent� polyhedra with n + 1 verties?

• Whih degree sequenes are possible for a �xed number of verties?

• If a degree sequene C is admissible, it is under whih triangulation? Here, we have

just indiated a triangulation per lass, but it is easy to ompute the good one from it

by a renumbering.
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3. Eulidean onditions

Our interest here is the atual onstrution of the polyhedra Pn. We will suppose that

the verties are numbered and that the orresponding degree sequene C is admissible, i.e.,

belong to the TABLE degree_sequene_Pn of the DATABASE polyhedra. Moreover, we have

at our disposal the triangulation T obtained from the TABLE triangulation_Pn, up to some

renumbering. We will all it a ombinatorial polyhedron.

Thus, we know all the edges [p, q] of Pn, and for eah suh edge the (positively oriented)

triangles (p, r, q) and (p, q, s) adjaent to it. The needed Eulidean parameters for the on-

strution will be those seen in the Setion 1, to whih must be added the loal geometry

near eah vertex. Indeed, reall that (f. [5℄) the internal and external angles αi and δi at a

vertex p of degree d (i = 1, . . . , d) must verify some equations for the loal onstrutibility.

In fat, we an ompute some of these parameters by the use of the quaternioni algebra in

the following way.
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Figure 1: Loal polyhedron S(p)

Denote by fi the faes ontaining p, δi =ÿ�fi−1, fi the external angles, and αi the internal

angles for i = 1, . . . , d. The unit sphere of entre p intersets S(p) in a union of great irles

˚�qi, qi+1, and for q1 = (0, 1, 0, 0), q2 = (0, cos(α1), sin(α1), 0) in the anonial base of the spae

H of quaternions, we have for i = 1, . . . , d− 1 (see [5℄):

(R) : qi+1 =
sin(αi − αi+1)qi + sin(αi+1)Qiqi−1Q

∗

i

sin(αi)
with Qi = cos

(
δi
2

)
+ sin

(
δi
2

)
qi.

This formula permits us to ompute qi+1 by knowing the values of qi−1, qi, αi, αi+1, and δi.

Here Q∗ = (A,−B,−C,−D) refers to the onjugate of Q = (A,B,C,D). The following result
gives us the last Eulidean values δd, α1 and δ1 of the loal polyhedron.
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Proposition 1. The loal polyhedron S(p) is onstrutible if and only if

(Σd)





α1 = arccos

(
qd q

∗

1 + q1 q
∗

d

2

)
,

cos(δd) + sin(δd)qd =
cos(α1).(cos(αd) + qdqd−1) + q1.(cos(αd−1)qd − qd−1)

sin(αd) sin(α1)
,

cos(δ1) + sin(δ1)q1 =
cos(α2).(cos(α1) + q1qd) + q2.(cos(αd)q1 − qd)

sin(α1) sin(α2)
.

So, for a vertex of degree d, we have d−1 parameters for the internal angles α1, . . . , αd−1,

d− 2 parameters for the external angles δ1, . . . , δd−2, and d parameters for the lenghts of the

edges, that is 3d− 3 parameters.

Theorem 1. Let Pn be a ombinatorial polyhedron and T one of his representative triangu-

lation. Then it is onstrutible if and only if the following onstraints (En) are respeted:

1. (�faes� ondition): for eah triangle (p, r, q) in T , ÷p, r, q +÷r, q, p+÷q, p, r = π.

2. (�edges� ondition): for eah edge [p, q] in T , |p, q| = |q, p| and ‘q, p = 2π −‘p, q.
3. (�verties� ondition): for eah vertex of degree d, the onditions (Σd) must be veri�ed

for the internal and external angles.

Proof. These onditions are obviously neessary. We do the onverse by indution on n. First,

if n = 3, then Pn is a tetrahedron, so any star S(p), p = 0, . . . , 3, determines entirely the

polyhedron, and the theorem is true in this ase. Next, suppose it is also true until a rank

n ≥ 3 and onsider a polyhedron Pn+1. Let be d = min {di | i = 0, . . . , n+ 1} and suppose

without loss of generality that d0 = d.

If d = 3, then the loal polyhedron S(0) is a tetrahedron (0, p, q, r). If we remove the vertex 0
and the edges [0, p], [0, q], [0, r], then we obtain a ombinatorial polyhedron Pn whih satis�es

the faes and the edges onditions, beause (p, q, r) is a fae of the tetrahedron. Moreover,

the verties onditions remain also true for p, q, r in Pn: the new external (oriented) angles

are omputed by deletion of the tetrahedron's faes. We dedue, by applying the indution

hypothesis, that Pn is onstrutible. It remains to glue the tetrahedron to it, whih proves

that Pn+1 is also onstrutible.

We suppose now that the result is true up to a ertain d ≥ 3 and onsider a polyhedron Pn+1

with minimal degree d + 1 = d0. We note p, q, r three onseutive verties adjaents to 0.
Reall that a ��ip� onsists of exhanging the diagonals of a quadrilateral (see, for instane,

[3, 6, 9℄). We an argue like in the ase d = 3, beause we see that (0, p, q) and (0, q, r) are
two faes of a tetrahedron with �xed parameters. Indeed, the internal and external angles in

0 permit us to ompute the lenght |p, r|, as well as the internal angle

÷p, 0, r, and we obtain

a new polyhedron P ′

n+1 with n + 1 verties but of minimal degree d, thanks to the �ip. The

indution hypothesis tells us that P ′

n+1 is onstrutible, and it su�es to apply the same �ip

for oming bak to our original polyhedron. This proves the theorem.

We also refer the reader to Alexandrov's famous theorem that eah onvex metri

de�nes a onvex polyhedron uniquely [1℄. There is a onstrutive (algorithmi) proof by A.I.

Bobenko and I. Izmestiev in [2℄. In Theorem 1, the onvexity ondition is satis�ed when

the internal angles are between 0 rad and π rad.
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Figure 2: Diagonal �ip in a quadrilateral

4. Filling algorithm

We reall that we are dealing with a ombinatorial polyhedron Pn with n + 1 verties. Let

C be an admissible degree sequene and T the orresponding triangulation. The onstraints

of Theorem 1 are in pratie di�ult to verify. Our purpose is to realize these onditions

along the way, beause the values of the parameters in some vertex would interfere with those

of the adjaent points. For instane, the internal angle at some vertex and the lenghts of

the inident edges will �x automatially the three internal angles of the faes ontaining it.

Of ourse, this should be done in aordane with the onditions of Theorem 1. In fat, we

will proess star by star, and in eah star, triangle by triangle, thanks to the quaternioni

algebra. Our aim is to ompute the quaternions q0, . . . , qn assigned to the verties 0, . . . , n
of the polyhedron, with the following initialization: q0 = (0, 0, 0, 0), q1 = (0, 1, 0, 0) and

q2 = (0, cos(÷1, 0, 2), sin(÷1, 0, 2), 0). The Eulidean values will then be omputed easily.

We �rst onstrut S(0) by setting the values of

÷2, 0, 3, . . . , ¤�d− 1, 0, d, as well as

‘0, 2,

. . . ,

ÿ�0, d− 1 and |0, 1|, . . . , |0, d|. The formula (R) leads to the values of q3,. . . , qd. Here,

d = d0 = deg(0). Next, suppose that S(p) has already been onstruted for a vertex 0 ≤ p < n;

we want to onstrut S(p + 1). For this purpose, we write the adjaent points of p + 1 in a

list: (r1, . . . , rd) where d = dp+1 = deg(p + 1). This list is positively oriented around p + 1,
this means that for eah i ∈ [1, p−1], (rp+1, ri, ri+1) is adjaent to (rp+1, ri+1, ri+2). Moreover,

r1 will be the earliest already omputed, or any point in the list if all are known! Now, we

take qp+1 as the origin of our quaternioni algebra, and we ompute q′1 = qr1 − qp+1, . . . ,

q′d = qrd − qp+1 as in the �rst ase. We should just pay attention to the quaternions already

omputed, that is: if qrj is known, then we go to the next and so on. As the internal angles,

external angles, and lengths will be alulated with these quaternions, we have:

Theorem 2. The �lling algorithm satis�es the onditions of Theorem 1.

5. Numerial examples

Let us write more preisely the former algorithm. We have not detailed the funtions used in

the Python program, we prefer instead illustrating the ideas on some polyhedron P7 with 8
verties.
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5.1. Choie of the degree sequene

We hoose some degree sequene C = [d0, . . . , dn] from the TABLE degree_sequene_Pn of

the DATABASE polyhedra. Here, we have hosen C = [6, 4, 4, 4, 5, 3, 5, 5].

5.2. Corresponding triangulation

This degree sequene belongs to some lass, namely a ombinatorial polyhedron, whose one

reprensentative triangulation T an be found in the TABLE triangulation_Pn. These tri-

angulation should be eventually reordered, and we will name 0, 1, . . . , n the ordered points

orresponding to the degree sequene C. Here we have

T = [[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 4, 5], [0, 5, 6], [0, 6, 1], [1, 6, 7], [1, 7, 2], [2, 7, 3], [3, 7, 4], [4, 7, 6], [4, 6, 5]].

We an even represent this polyhedron in a Shlegel diagram, that is the triangulation viewed through

one of its triangles, here [0, 1, 2].
0

1 2

3
4

5

6
7

Figure 3: Shlegel diagram of the polyhedron P7

Pay attention to the fat that only the �rst triangle [0, 1, 2] is positively oriented on this diagram.

5.3. Computation of the stars

The ordered stars S(0), . . . , S(n) must be known in view of their treatement in the next subsetion.

The �rst star is S[0℄=[[0,1,2℄,[0,2,3℄,...,[0,d,1℄℄ (d = d0).

We onstrut now the ordered stars S(p) for p = 1, . . . , n. More preisely, we need to ompute

the stars S′(0), . . . , S′(n) of the triangles not yet omputed. This will be done with the funtion

star(T) whih returns the list [S,S'℄ from the triangulation T. In our example, we have:

S[0℄=[[0,1,2℄,[0,2,3℄,[0,3,4℄,[0,4,5℄,[0,5,6℄,[0,6,1℄℄

S[1℄=[[[1, 2, 0℄, [1, 0, 6℄, [1, 6, 7℄, [1, 7, 2℄℄℄

S[2℄=[[2, 3, 0℄, [2, 0, 1℄, [2, 1, 7℄, [2, 7, 3℄℄

S[3℄=[[3, 4, 0℄, [3, 0, 2℄, [3, 2, 7℄, [3, 7, 4℄℄

S[4℄=[[4, 5, 0℄, [4, 0, 3℄, [4, 3, 7℄, [4, 7, 6℄, [4, 6, 5℄℄

S[5℄=[[5, 0, 4℄, [5, 4, 6℄, [5, 6, 0℄℄

S[6℄=[[6, 0, 5℄, [6, 5, 4℄, [6, 4, 7℄, [6, 7, 1℄, [6, 1, 0℄℄

S[7℄=[[7, 1, 6℄, [7, 6, 4℄, [7, 4, 3℄, [7, 3, 2℄, [7, 2, 1℄℄

whereas:
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S'[0℄=[[0,1,2℄,[0,2,3℄,[0,3,4℄,[0,4,5℄,[0,5,6℄,[0,6,1℄℄

S'[1℄=[[1, 6, 7℄, [1, 7, 2℄℄

S'[2℄=[[2, 7, 3℄℄

S'[3℄=[[3, 7, 4℄℄

S'[4℄=[[4, 7, 6℄, [4, 6, 5℄℄

S'[5℄=[℄

S'[6℄=[℄

S'[7℄=[℄

5.4. Eulidean values

We browse the stars S′(0), . . . , S′(n) and, in eah star, the ordered list of triangles, in order to

ompute the representative quaternions q0, . . . , qn of the verties 0, . . . , n. These will be stored in the

array Q=zeros((4,n+1)) initialized to 0, where for i = 0 to n: qi = Q[:,i℄=[Q[0,i℄,...,Q[3,i℄℄

has four oordinates. The Eulidean values are put in the array V=empty((3,6*(n-1))) where for

j = 0, . . . , 6(n− 1), V[:,j℄ represents the Eulidean values of the jth triangle of the liste S. In fat,

if this triangle is

’a, b, c with vertex a, then V[0,j℄ is the external angle â, c, V[1,j℄ is the internal

angle

’b, a, c, and V[2,j℄ is the length |a, b|. We start with S(0).

5.4.1. Filling of the Eulidean values of S[0]

We will use the following funtions.

intangle(q,q'): omputes the non oriented angle between the vetors q and q′.

extangle(q,q',q''): returns the oriented angle between the faes (q, q′) and (q′, q′′) oriented by q′.

prod(q,q'): alulates the produt of the quaternions q and q′.
Moreover, the formula (R) (f. Setion 3) is also applied for the loal onstrutibility at the

vertex 0. This is ahieved by the funtion

reur(q1,q2,beta,delta) whih gives the quaternion

q3 =
sin(alpha-beta).q2 + sin(beta).prod(prod(Q,q1),Q

*

)

sin(alpha)

,

where alpha = intangle(q1,q2) and Q = os(delta/2) + sin(delta/2).q2 . We have hosen to

ask the user the values of the �rst external and internal angles, but it is also possible, for instane,

to take random values.

def init(n,C): ####initialize star(0) for Pn with degree sequene C

I=array([1,0,0,0℄)

Q=zeros((4,n+1)) #array of the quaternions with Q[:,0℄=[0,0,0,0℄

Q[:,1℄=[0,1,0,0℄

V=empty((3,6*(n-1))) #array of Eulidean values

V[0,0℄=input("internal angle 1,0,2:")

Q[:,2℄=array([0,os(V[0,0℄),sin(V[0,0℄),0℄)

for i in range(2,C[0℄):

V[1,i-2℄=input("external angle 0,"+str(i)+":")

V[0,i-1℄=input("internal angle"+str(i)+",0,"+str(i+1)+":")

q1=Q[:,i-1℄

q2=Q[:,i℄

beta=V[0,i-1℄

delta=V[1,i-2℄

Q[:,i+1℄=reur(q1,q2,beta,delta)

V[0,C[0℄-2℄=intangle(Q[:,C[0℄℄,Q[:,1℄)
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V[1,C[0℄-2℄=extangle(Q[:,C[0℄-1℄,Q[:,C[0℄℄,Q[:,1℄)

V[1,C[0℄-1℄=extangle(Q[:,C[0℄℄,Q[:,1℄,Q[:,2℄)

for i in range(C[0℄):

V[2,i℄=input("length of the edge 0,"+str(i+1)+":")

Q[:,i+1℄=V[2,i℄*Q[:,i+1℄

return [V,Q℄

In our example, we tried respetively

α =
π

6
≃ 0.5236 and δ = 2. arcsin(

√
3)/ cos(π/12) ≃ 2.224

for the �rst internal and external angles, as well as 1 for the lengths of the edges, and the result for

the Eulidean values V[:,0℄, . . . , V[:,5℄ is:

[[ 0.5236 0.5236 0.5236 0.5236 0.5236 0.5236 ℄

[ 2.224 2.224 2.224 2.224 2.224 2.224 ℄

[ 1 1 1 1 1 1℄℄

whih an be veri�ed by another tehnique. In fat, for a regular loal polyhedron with n faes, the

internal angle α and the external angle δ are bound by the formula cos(π/n) = cos(α/2). sin(δ/2).

5.4.2. Filling of the Eulidean values of S[1], . . . , S[n]

One again, n, C, and T are the inputs of the program.

####################

### MAIN PROGRAM ###

####################

[V,Q℄=init(n,C)

S=star(T,n)

[S,S'℄=sorted_lists(S,C) # in the ase there are not sorted

ounter=C[0℄ # number of quaternions already omputed

length=C[0℄ # length of S[0℄

beta=0 # provisional value of V[0,℄

delta=0 # provisional value of V[1,℄

v2=0 # provisional value of V[2,℄

for i in range(1,n+1): # we are looking for the quaternions

for j in range(C[i℄): # in S[i℄ not yet found

if (S[i℄[j℄ in Sdim[i℄) and (S[i℄[j℄[2℄>ompteur): # new

ompteur+=1 # quaternion to ompute

########### requested values ##########

delta=float(input('angle externe '+str(i)+','

+str(S[i℄[j℄[1℄)+': '))

beta=float(input('angle interne '+str(S[i℄[j℄[1℄)+','

+str(i)+','+str(S[i℄[j℄[2℄)+': '))

v2=float(input('longueur arete '+str(i)+','

+str(S[i℄[j℄[2℄)+': '))

##### alulus of the quaternion ######

q1=Q[:,S[i℄[j-1℄[1℄℄-Q[:,i℄

q1=(1/long_arete(q1))*q1

q2=Q[:,S[i℄[j℄[1℄℄-Q[:,i℄

q2=(1/long_arete(q2))*q2

Q[:,ompteur℄=Q[:,i℄+v2*reur(q1,q2,beta,delta)
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### filling of the tabular V of Eulidean values ###

for j in range(C[i℄):

q1=Q[:,S[i℄[j℄[1℄℄-Q[:,i℄

q2=Q[:,S[i℄[j℄[2℄℄-Q[:,i℄

if j ==C[i℄-1:

q3=Q[:,S[i℄[0℄[2℄℄-Q[:,i℄

else:

q3=Q[:,S[i℄[j+1℄[2℄℄-Q[:,i℄

V[0,longueur+j℄=intangle(q1,q2)

V[1,longueur+j℄=extangle(q1,q2,q3)

V[2,longueur+j℄=long_arete(q2)

print(V[0:3,longueur:longueur+C[i℄℄)

longueur+=C[i℄

###########################

# END OF THE MAIN PROGRAM #

###########################

In our example, the program just ask the values of the external angle 1̂, 6, the internal angle ÷6, 1, 7,
and the length |1, 7| in order to ompute the last quaternion q7. Then all the Eulidean values are

omputed. As another veri�ation, we have also tested this algorithm on the regular otahedron and

obtained the expeted values, that is 1.047 rd (≃ π/3) for the internal angles, and 1.9106 rd for the

external angles.

Our algorithm an also admit no proper realization. For instane, a two-fold overed four-sided

pyramid (by putting one star into the other so that two opposite verties oinide), or even two four-

fold overed pair of two regular triangles sharing an edge. The only limits are those of Theorem 1.
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